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General selection rules for second-harmonic generation in isolated nanoparticles are derived from angular
momentum and parity conservation laws. A set of rules is discussed as a function of the particle symmetry
group and the polarization of the fundamental wavelength �FW� and second-harmonic fields. A few relevant
cases of particle geometry and FW illumination are discussed as examples.
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I. INTRODUCTION

Second-harmonic generation �SHG� in optical media is a
well-known nonlinear phenomenon involving three photons
which was first demonstrated1 in 1961 and whose peculiar
behavior at boundaries was soon recognized.2 Nevertheless,
it was only in the early 1980s that nonlinear optical spectros-
copy of surfaces and interfaces started to develop as a well-
established analysis tool in a wide area of fields.3 The inter-
est in SHG lies in its ability to selectively probe surfaces and
interfaces, since selection rules for SHG do not allow for
dipole emission from the bulk of centrosymmetric materials,
such as metals or elemental semiconductors. At the surface
or interface, however, the symmetry of the bulk is broken
and dipole generation is no longer forbidden. This peculiar
property has determined the enormous spread of SHG-based
techniques in the community of surface and interface phys-
ics.

In the last decade, a renewed attention has been dedicated
to SHG following the development of nanotechnologies and
the increasing interest in nano-optics.4 Metal nanostructures,
which can be very effective for field-enhancement and con-
finement processes at optical wavelengths, are widely stud-
ied both as suitable substrates for surface-enhanced spectros-
copy techniques5,6 or as possible targets for localized
photothermal therapies.7,8 To this aim, SHG provides the
ideal tool to study the field distribution around metal
nano-objects,9 with the high sensitivity which is naturally
provided by a nonlinear process.

When studying SHG from subwavelength objects, how-
ever, not only the symmetry of the bulk atomic structure of
the optical material is to be taken into account but also the
symmetry of the object itself. In fact, at variance with an
ideally infinite interface, the overall shape of the nanoparticle
plays a significant role in determining the conditions for ef-
ficient SHG. This was clearly recognized by Dadap et al.,10

who theoretically addressed second-harmonic scattering
from a sphere of centrosymmetric material excited by a plane
wave, where the overall response vanishes in the electric
dipole approximation owing to the presence of inversion
symmetry, while the leading emission terms are a nonlocally
excited electric dipole and a locally excited electric quadru-
pole. The analysis leads to a set of selection rules, which are
valid for linearly and circularly polarized plane waves inci-
dent on a sphere of a centrosymmetric material.11

In the work by Dadap et al., the nonlocally excited elec-
tric dipole is due to retardation effects along the propagation
direction of the incident plane wave. Brudny and
co-workers12,13 have extended the analysis to illumination
other than plane wave, showing how dipolar emission from
spherical particles is possible also due to inhomogeneous
transverse and/or longitudinal electromagnetic fields, for ex-
ample, when the particle lies close to a surface.

Nowadays, microscopic techniques are sometimes em-
ployed to locally study field-enhancement processes, and,
generally, high-numerical-aperture objectives or even scan-
ning near-field optical microscopy is used.4 In this case, the
fundamental wavelength illumination is not a plane wave
anymore, and strong field gradients, together with a nonvan-
ishing longitudinal field component, can be present in the
illumination area. Moreover, not only spherical particles but
also more complex geometrical shapes are under extensive
investigation for their promising behavior as resonators in
nano-optics applications.6 Although nanoscale SHG has al-
ready been discussed by Bozhevolnyi and Lozovski9 for a
few particle geometries excited by either far or near funda-
mental wavelength �FW� fields, a set of general validity se-
lection rules for SHG might be helpful in addressing more
complicated particle geometries and FW field distributions.

In this paper, selection rules for SHG in isolated nanopar-
ticles are derived from parity and angular momentum con-
servation laws. The lowest-order nonzero term in the �elec-
tric and magnetic� multipole expansion of the FW and the
second-harmonic �SH� fields is given for different particle
symmetry groups and incident field polarizations. Some pe-
culiar geometries are then addressed and discussed as ex-
amples for their importance.

II. CONSERVATION OF PARITY AND ANGULAR
MOMENTUM

In a SHG process, two photons in the FW electromagnetic
field are annihilated and their energy transferred to a photon
in a field oscillating at double frequency. Using perturbation
theory, the cross section � of this three-photon process can
be expressed by a third-order term of the form
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� � ��
u,w

��0�p̂ · A��u��u�p̂ · A��w��w�p̂ · A2���0�
��Eu − E0� − � + i�u	��Ew − Eu� − � + i�w	

+
��0�p̂ · A��u��u�p̂ · A2��w��w�p̂ · A���0�
��Eu − E0� − � + i�u	��Ew − Eu� + 2�	

+
��0�p̂ · A2��u��u�p̂ · A��w��w�p̂ · A���0�
��Eu − E0� + 2�	��Ew − Eu� − � + i�w	 �2

, �1�

where �0 is the particle ground state, u and w are eigenfunc-
tions corresponding to excited states of the unperturbed par-
ticle, and E0, Eu, and Ew are the corresponding energies. The
three terms in the sum correspond to the Feynman diagrams
shown in Fig. 1. In this expression, p̂ is the particle momen-
tum quantum operator, A2� is the SH vector potential, and
A� is the vector potential of the externally applied FW field.
The FW field generated by the particle should not be added
to A� in Eq. �1� since the interaction between the particle
and the field the particle produces represents an internal self-
interaction. The latter is accounted for by the particle eigen-
functions u and w, which describe excited electronic states as
well as plasmon modes.

We consider the multipole expansions of the matrix ele-
ments describing the interaction of the particle with the SH
and FW fields in Eq. �1�. Let L�� and L�� be the L2 quantum
numbers of the two FW absorbed photons, M�� and M�� their
Lz quantum numbers �z being an arbitrary quantization axis�,

and L2� and M2� the respective quantum numbers for the
emitted SH photon. The Feynman diagram in Fig. 1�a� gives
a contribution to Eq. �1� that can be expressed as the sum of
terms T defined as follows:

TL
�� ,M

�� ,L
�� ,M

�� ,L2�,M2�

u,w
� ��0�p̂ · A�L�� ,M�� ��u�

��u�p̂ · A�L�� ,M�� ��w�

��w�p̂ · A�L2�,− M2����0� , �2�

where p̂ ·A�L ,M� represents the electric �E� or magnetic �M�
multipole operator of order �L ,M�. M2� is taken with a nega-
tive sign since the emitted SH photon carries the correspond-
ing Lz angular momentum component away from the par-
ticle. Similar terms can be given for the other Feynman
diagrams in Fig. 1.

The selection rules that determine the conditions for
which a given T term is identically zero depend on how the
multipoles in Eq. �2� transform under the particle symmetry
group operations. For instance, the ground as well as the
excited states of a particle with spherical symmetry are
eigenstates of both L2 and Lz. Therefore, the SH photon an-
gular momentum must correspond to the sum of the angular
momenta of the two FW incoming photons. On the other
hand, in cylindrical symmetry, only the projection of the
photon angular momentum along the symmetry axis �taken
as the quantization axis z� needs to be conserved.

The photon parity conservation must be respected for par-
ticles exhibiting an inversion symmetry center, axis or plane.
Considering inversion with respect to the origin, electric and
magnetic multipoles of order �L ,M� have opposite parity,
corresponding to �−1�L and �−1�L+1, respectively.14 Electric
multipoles of order �L ,M� are symmetric �antisymmetric�
with respect to reflection by a plane perpendicular to the
quantization axis when L+M is even �odd�, while magnetic
multipoles are symmetric �antisymmetric� when L+M is odd
�even�.14 Considering inversion with respect to the quantiza-
tion axis, electric and magnetic multipoles of order �L ,M�
have the same parity, given by �−1�M.14

TABLE I. SHG selection rules for the different particle symmetries illustrated in Fig. 2. Conservation of
angular momentum for spherical symmetry corresponds to a condition involving a 3-j symbol �Ref. 15�.

Symmetry and point groupa Selection rule

Spherical � L�� L�� L2�

M�� M�� −M2�
��0

and

��−1�L��+L��+L2�+m=1	b

Cylindrical M�� +M�� −M2�=0

Central, S2 ��−1�L��+L��+L2�+m=1	b

Axial, C2 �−1�M��+M��−M2� =1

Reflection, C1h ��−1�L��+M��+L��+M��+L2�−M2�+m=1	b

aSchoenflies notation, see Ref. 16.
bThe value m indicates the number of magnetic multipole transitions involved in the T term.
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FIG. 1. The Feynman diagrams corresponding to second-
harmonic generation.
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By combining the symmetry properties of electric and
magnetic multipoles with the conservation rules imposed by
the particle symmetry groups, one can provide selection rules
for the SHG process. Table I reports the conditions giving
nonvanishing transition cross sections for a given combina-
tion of multipoles in the various particle symmetries illus-
trated in Fig. 2. If the particle symmetry is given by a com-
bination of symmetry groups, the corresponding conditions
listed in Table I must be satisfied at the same time. For in-
stance, SHG from particles with C2h symmetry must obey
both the selection rules for axial �C2� and reflection �C1h�
symmetries with respect to the same quantization axis. For
the same reason, when the particle exhibits two �or three�
orthogonal symmetry axes, the corresponding selection rules
must be simultaneously satisfied by the field multipole ex-
pansions expressed by using either one of the symmetry axes
as the quantization axis.

III. EMISSION PATTERNS AND LIGHT POLARIZATION

Let k2� be the SH wave vector and r the distance from the
particle. In the limit k2�r�1 �far field�, the SH electric fields
EL2�M2�

�E� and EL2�M2�

�M� produced by electric �E� or magnetic
�M� multipoles of order �L2� ,M2�� are given by14

EL2�,M2�

�E� = − �− i��L2�+1�e
ik2�r

k2�r
�ûr � r � �YL2�M2�

� , �3a�

EL2�,M2�

�M� = �− i��L2�+1�e
ik2�r

k2�r
r � �YL2�M2�

. �3b�

Here, ûr is a unit vector in the radial direction. YL2�M2�
is the

spherical harmonic of order �L2� ,M2��.

Pure electric and magnetic multipoles of order �L2� ,M2��
have the same angular distribution of the time-averaged ra-
diated power per solid angle dP

d� �L2� ,M2��. A graphical rep-
resentation of dP

d� �L2� ,M2�� is given in Fig. 3 for dipoles
�L2�=1� and quadrupoles �L2�=2�.14

From Eqs. �3a� and �3b�, one can also obtain the polariza-
tion state of the emitted SH light. Table II reports the direc-
tion of the electric far field for pure multipoles with L2�

	2. The direction is indicated by a combination of the unit
vectors û
 and û� defined in a spherical coordinate system
centered on the particle where 
 and � are the zenith and
azimuth angles, respectively, the former being referred to the
z quantization axis. An imaginary �real� ratio between the
coefficients of û
 and û� corresponds to a � /2 �zero� phase
difference between the two field components and hence in-
dicates elliptical �linear� polarization.

IV. DISCUSSION

Matrix elements of the form �u�p̂ ·A�L ,M��w� in the long-
wavelength limit �ka
1, a being the particle size and k the
field wavelength� rapidly fall off with increasing multiple
order L of the multipole p̂ ·A�L ,M�.14 The ratio R�L� be-
tween matrix elements for successive orders, L and �L+1�,
of either electric or magnetic multipoles of the same fre-
quency is

R�L� 

ka

2L
. �4�

The SHG cross section � in Eq. �1� is given by the square
of the sum of products involving three matrix elements, so
only lowest-order contributions need to be taken into ac-
count. The analysis can be restricted to five distinct SHG
mechanisms indicated, following the notation in Ref. 11, as
E1+E1→E1, E1+E2→E1, E1+M1→E1, E1+E1→E2,
and E1+E1→M1. In this notation, the first two symbols
refer to the nature of the interaction with the FW field, and
the third symbol describes the SH emission. The E1+E2
→E1 interaction represents, for example, electric dipole
�E1� emission that arises through combined electric dipole
�E1� and electric quadrupole �E2� excitations. M1 indicates a
magnetic dipole transition, which is of the same order in ka
as an electric quadrupole transition.11,14 If all five contribu-
tions are allowed, the SH field associated with the local E1
+E1→E1 channel will be stronger than the other processes

TABLE II. SH electric field polarization for pure electric or magnetic multipoles with L2�	2. For each
point in space, the unit vectors û
 and û� are, respectively, parallel and perpendicular to the plane containing
the z �quantization� axis, and are both perpendicular to the radial unit vector ûr.

M2�=0 M2�= ±1 M2�= ±2

L2�=1 �E� sin 
û
 e±i��±cos�
�û
+ iû��
L2�=1 �M� sin 
û� −e±i��iû
�cos�
�û��
L2�=2 �E� −i sin 
 cos 
û
 e±i���i cos 2
û
+cos 
û�� e±2i� sin 
�i cos 
û
± û��
L2�=2 �M� −i sin 
 cos 
û� −e±i��cos 
û
± i cos 2
û�� e±2i� sin 
�±û
+ i cos 
û��

FIG. 2. The particle symmetry groups discussed in the text and
referred to z quantization axis: �a� spherical, �b� cylindrical, �c�
central, �d� axial, and �e� reflection symmetries across a mirror
plane perpendicular to z, as shown.
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by a factor of the order of �ka�−1, resulting in a �ka�−2 higher
radiating average power.

The E1+E1→E1 interaction violates parity conservation
for any incident FW field distribution on S2 symmetry par-

ticles since �−1�L��+L��+L2� = �−1�1+1+1=−1. This channel is
therefore forbidden for a centrosymmetric particle under
more general conditions than those discussed in Refs. 10 and
11, which refer to plane-wave illumination. This transition
may, however, be allowed for lower symmetry particles.

In general, in order to be able to apply the selection rules
listed in Table I, one must know which are the relevant terms
in the multipole expansion of the p̂ ·A interaction Hamil-
tonian for a given FW field distribution on the particle. In the
following, we will discuss a few important examples.

A. Plane-wave illumination

In an arbitrarily polarized FW plane wave propagating
along the z direction, A=A�0�eikz, with A�0� · ûz=0. By ex-
panding A around the particle position z=0, one finds �to
first order�

�u�p̂ · A�w� 

Ew − Eu

��
�u�r · E�0��w� + �u�L̂ · B�0��w�

+ ik�u�p̂z�xAx�0� + yAy�0�	�w� . �5�

In this expression, E�0� and B�0� are the oscillating electric
and magnetic fields at the particle position, Ax�0� and Ay�0�
the �complex� components of A�0�, and L̂=r� p̂. The three
terms on the right-hand side of Eq. �5� correspond to E1, M1,
and E2 transitions, respectively.

Let us first consider a circularly polarized plane wave, for
which Ay�0�= ± iAx�0�, the plus or minus sign depending on
the light helicity. In this case, thanks to the Wigner-Eckart
theorem,15 the E1 and M1 terms can be shown to be propor-
tional to �u�Y1±1,z�w�, while the E2 term is proportional to
�u�Y2±1,z�w� �we have explicitly indicated the quantization
axis which the spherical harmonics are referred to�. These
matrix elements correspond to transitions involving one FW
photon with an L2 quantum number L�=1 �dipole transi-
tions� or L�=2 �quadrupole transitions� and an Lz quantum
number M�= ±1. The sign of M� depends on the light he-
licity and is either positive or negative for all the terms in Eq.
�5�. The application of the selection rules in Table I is now
straightforward. For instance, one can see that the E1+E1
→E1 transition is forbidden under circularly polarized FW
plane-wave illumination for spherical-symmetry particles, as

�−1�L��+L��+L2� = �−1�1+1+1=−1, and for cylindrical-symmetry
particles, as M�� +M�� −M2�� = ±1±1−M2�� �0. However, the
transition becomes allowed for noncentrosymmetric particles
that also violate cylindrical symmetry. In this case, SH emis-
sion is given by an E1 term with M2�=0 �M2�= ±1� for C2

�C1h� symmetry, corresponding to SHG from an electric di-
pole oriented parallel �perpendicular� to z.

The lowest allowed SHG channel for S2 particles dis-
playing spherical or cylindrical symmetry around z and illu-
minated by a circularly polarized plane wave is
E1+E1→E2.10,11 The SH emission pattern can be only char-
acterized by M2�= ±2 �see Fig. 3�.10,11 Other SH emission
patterns become possible if the cylindrical symmetry is bro-
ken. A complete set of selection rules for different multipole
transitions and particle symmetry groups under far-field cir-
cularly polarized plane-wave illumination is provided in
Table IV �see the Appendix�.

If we now turn to a linearly polarized FW plane wave
with electric field pointing in the x direction, we have
Ay�0�=0. In this case, it is important to consider both the Lz

and Lx photon quantum numbers. The choice of the quanti-
zation axis in turn determines the reference axis for the defi-
nition of the particle symmetry group. Let M� and M2� be
the FW and SH photon Lz quantum numbers, and N� and N2�

be the FW and SH photon Lx quantum numbers. When re-
ferred to the z quantization axis, the E1, M1, and E2 terms in
Eq. �5� are proportional to �u�Y11,z+Y1−1,z�w�, �u�Y11,z

−Y1−1,z�w�, and �u�Y21,z+Y2−1,z�w�, respectively. Therefore,
all these transitions involve FW photons with an M� quan-
tum number that can be either +1 or −1 �but not 0�. On the
other hand, the E1, M1, and E2 terms are, respectively, pro-
portional to �u�Y10,x�w�, �u�Y11,x+Y1−1,x�w�, and �u�Y21,x

+Y2−1,x�w� when referred to the x quantization axis, corre-
sponding to photon L2 and Lx quantum numbers equal to
�L=1, N=0�, �L=1, N= ±1�, �L=2, N= ±1�, respectively.
With this information, the rules in Table I can be applied
considering either the z- or the x-quantization axis, thus ob-
taining the selection rules reported in the Appendix and listed
in Tables V and VI, respectively. As for the particle symme-
try groups, one must observe that particles with z-axis cylin-
drical symmetry have x-axis reflection �C1h� symmetry,
while particles with z-axis axial or reflection symmetry will
in general show no particular symmetry with respect to the x
axis.

From Tables V and VI, one can see that the E1+E1
→E1 channel is available for SHG in all noncentrosymmet-
ric particles with linearly polarized FW plane-wave
illumination.17 In particular, if the particle exhibits C2 sym-
metry either around the z or the x axis, SH emission will be
given by an oscillating dipole parallel to the C2 symmetry
axis.

Using linearly polarized plane-wave illumination, the
lowest-order allowed SH emission channels for centrosym-
metric particles with cylindrical symmetry around z �and
thus C1h symmetry around x� are E1+E1→E2 �N�� =0, N��
=0, N2�=0�, E1+M1→E1 �M�� = ±1, M�� = �1, M2�=0�,
and E1+E2→E1 �M�� = ±1, M�� = �1, M2�=0�.10,11 Note
that electric dipole SH emission is always given by a dipole
parallel to z, while the quadrupole SH emission pattern is
symmetric around x �see Fig. 3�. M1 emission is
forbidden10,11 because the selection rules would lead to
M2�=N2�=0, which is a condition that cannot be met since
Y10,z and Y10,x are orthogonal to each other.
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B. Illumination with a laterally limited light beam

If a coherent converging light beam produced by a high-
numerical-aperture objective or even near-field illumination
is used to excite the particle, other emission channels be-
come available under the condition that the beam lateral ex-
tension is comparable with the particle size. In this case, the
beam cannot be considered as a plane wave any longer. Con-
sequences are that a sizable longitudinal component is
present and that the rapid spatial variations of the field inten-
sity can increase the relative weight of the higher-order mul-
tipoles with respect to a plane wave. This second effect can
be easily understood for a converging beam focused by an
objective, in which the spot size is limited by diffraction to
about 1 /k. If this value is comparable with the particle size
a, then the long-wavelength approximation is not valid and
higher order multipoles cannot be neglected.

The case of FW illumination through an aperture is more
subtle and deserves further discussion. The electromagnetic
field in the proximity of a circular aperture at the apex of
a metal-coated conical near-field probe can be viewed, to
first approximation, as the static-like field produced by an
electric and a magnetic dipole oscillating at the fundamental
frequency in the center of the aperture.18 These electric and
magnetic dipoles are perpendicular to each other and to the
optical axis.19 In this case, the particle-field interaction
Hamiltonian p̂ ·A can be approximated to lowest order by
considering only the static interaction between the field
sources and the electric dipole, magnetic dipole, and electric
quadrupole induced on the particle.

The interaction Hamiltonian H� between the particle and
the staticlike FW field can be approximated as follows:14

H� = − q̂ · E�0� − m̂ · B�0� −
1

6 �
i,j=x,y,z

Q̂i,j
�Ei

�rj
�0� , �6�

where E�0� and B�0� are the electric and magnetic staticlike

fields at the particle position, and q̂, m̂, and Q̂i,j are the
particle electric dipole, magnetic dipole, and electric quadru-
pole operators. The three terms in Eq. �6� give origin to the
E1, B1, and E2 absorptions of a FW photon, respectively.

The electric quadrupole contribution to the interaction
Hamiltonian in Eq. �6� is proportional to the space deriva-
tives �Ei /�rj of the electric field at the particle position. In
the proximity of the aperture, these do not depend just on
the FW far-field wavelength k as in a nonconfined propagat-
ing wave. In this region, the electric field is characterized
by a superposition of waves with high imaginary-part wave
vectors.4 Their magnitude is of the order of 1 /d, d being
the near-field aperture diameter.4 Therefore, the ratio be-
tween the E1 and E2 FW absorption matrix elements
does not scale as �ka�−1 but rather as d /a, which might
be of the order of unity. For this reason, even when the
E1+E1→E1 channel is allowed, the latter might not be
the only relevant one. Other relevant channels might be

E1+E2→E1 or even E2+E2→E1, while M1 or E2 emis-
sion can be reasonably ruled out �unless they represent the
only allowed channels� sincethe contributions of the E2 and
M1 multiplets to the average irradiated power will still be
weaker by a factor of the order of �ka�−2 with respect to E1
emission.

In calculating the allowed SHG transitions, both for near-
field and focused beam FW illumination, one must consider
that the particle is not necessarily located on the optical axis.
For instance, a subwavelength aperture is raster scanned over
the particle in scanning near field microscopy. Under these
conditions, the particle will sense a FW electric �magnetic�
field with a longitudinal component and, in the case of lin-
early polarized light coupled to the objective or to the aper-
ture, with a transverse component perpendicular to the im-
pinging electric �magnetic� field.4 The consequence is that
photons with Lz quantum number M�=0 can also be ab-
sorbed by the particle from a linearly polarized FW field, a
possibility excluded by plane-wave illumination. For the
same reason, FW photons with M�=0, ±1, ±2 are available
for E2 absorption. Therefore, SH emission channels that
would generally be forbidden under far-field FW plane-wave
illumination might thus become allowed under FW near-field
or converging beam illumination. For example, SHG given
by an electric dipole oriented parallel to FW electric field
linear polarization can be obtained even in a spherical
particle,20 as indicated, for instance, by the fact that the 3-j

zzzzzzzz

zzzz

zzzz

zzzz

L ML ML ML M2 22 22 22 2� �� �� �� �
= 2, = 0= 2, = 0= 2, = 0= 2, = 0

L ML ML ML M=1, = 0=1, = 0=1, = 0=1, = 02222����2222����

L ML ML ML M2 22 22 22 2� �� �� �� �
= 2, = 2= 2, = 2= 2, = 2= 2, = 2����L ML ML ML M2 22 22 22 2� �� �� �� �

= 2, = 1= 2, = 1= 2, = 1= 2, = 1����

L ML ML ML M2 22 22 22 2� �� �� �� �
= 1, = 1= 1, = 1= 1, = 1= 1, = 1����

FIG. 3. �Color online� Graphical representation of emission pat-
terns dP

d� �L2� ,M2�� for dipoles �upper row� and quadrupoles �lower
row�. The time-averaged radiated power per unit solid angle dis-
plays cylindrical symmetry around the quantization axis z.
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symbol associated to �L�� =1,M�� =0�, �L�� =2,M�� = ±1�, and
�L2�=1,M2�= �1� is nonzero. The corresponding T terms
would represent SHG induced by combined electric dipole
and quadrupole FW photon absorption from perpendicu-
larfield components,21 which is not possible for plane-wave
illumination.

As a highly relevant application, let us consider litho-
graphed particles on a substrate �see Fig. 4�, such as those
employed in surface-enhanced spectroscopy techniques. It is
common practice to locally characterize these samples by
scanning far-field or near-field microscopy. The presence of
the substrate breaks the inversion symmetry with respect to
the particle center. For ellipsoidal-shaped dots as those de-
scribed in Refs. 6 and 22, the particle symmetry group re-
duces to C2v. In this case, the selection rules governing SHG
in C2 symmetry around the z axis must apply, z being the
substrate normal, which is taken parallel to the optical axis.
When such particles are excited with a FW plane wave with
k � z and considering only the lowest-order E1 transitions, M��
and M�� can only assume the values ±1 both for linearly and
circularly polarized light, so parity is conserved only for
M2�=0, corresponding to SH emission from an electric di-
pole parallel to k and z �see Fig. 4�a�	, as demonstrated in the
previous section. The particles also belong to the C1h sym-
metry group defined with respect to either the x or y axis,
oriented parallel to the in-plane principal axes of the ellip-
soids. However, this further symmetry does not provide more
restrictive selection rules.

When the particles are excited using a focused FW beam
or the near field of an aperture, photons with M�=0 can be
absorbed even from a linearly polarized excitation beam,
which means that new channels are open. Considering E1
+E1→E1 excitations, the Lz quantum number of the incom-
ing photons can assume all the values M�=0, ±1. A com-
plete set of selection rules for converging illumination and
particles with axial symmetry around z is given in Table III.
It basically shows that all channels with E1 emission are now
available for the SHG process �see Fig. 4�b�	. The dominant
one will be determined by the particle fine structure, which
defines the relative strength of each channel.

V. SUMMARY AND CONCLUSIONS

In conclusion, SHG selection rules for nanoparticles have
been derived from general conservation laws for photon par-
ity and angular momentum. A complete set of rules has been
given for different particle geometries, different polariza-
tions, and different multipole contributions to the matrix el-
ements describing the particle interactions with FW and SH
fields. We show that peculiar emission channels that are al-
lowed only when using nonuniform converging illumination
can be addressed. Some general interest examples, such as
spherical particles in an isotropic environment and ellipsoi-
dal particles on a substrate, have been discussed with some
more detail.
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APPENDIX: SELECTION RULES FOR PLANE-WAVE
ILLUMINATION

We provide a set of tables �Tables IV–VI� listing the al-
lowed and forbidden SH emission channels for FW plane-
wave illumination with different light polarizations and par-
ticle symmetries.

TABLE III. Selection rules for E1+E1→E1 second-harmonic emission in particles with axial �C2�
symmetry with respect to z.

Incoming photons Lz quantum numbers Allowed second harmonic emission

M�� M�� M2�

0 0 0

0 ±1 ±1

±1 ±1 0

yyyy
(a)(a)(a)(a)

qqqq2222����

yyyy
xxxx

(b)(b)(b)(b)

zzzz
EEEE

����

qqqq2222����

kkkk
����

xxxx

EEEE
����

kkkk
����

zzzz

FIG. 4. �Color online� Allowed E1 second-harmonic emission
channels for a particle with C2 symmetry �axial particle over a
substrate� excited by �a� a plane wave or �b� a laterally limited
beam. The allowed directions of the particle electric dipole q2�

generating the E1 second-harmonic radiation are indicated by the
double-headed arrows on the particle.
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TABLE IV. SHG selection rules for the different particle symmetries illustrated in Fig. 2, under circularly
polarized far-field plane-wave illumination. Every transition multipole is considered separately. The propa-
gation direction �z axis� is chosen as the quantization axis.

Symmetry and
point group E1+E1→E1 E1+E1→E2 E1+E2→E1 E1+M1→E1 E1+E1→M1

Spherical Forbidden Allowed Forbidden Forbidden Forbidden

for M2�= +2 or −2

Cylindrical Forbidden Allowed Forbidden Forbidden Forbidden

for M2�= +2 or −2

Central, S2 Forbidden Allowed Allowed Allowed Allowed

Axial, C2 Allowed Allowed Allowed Allowed Allowed

for M2�=0 for M2�=0, ±2 for M2�=0 for M2�=0 for M2�=0

Reflection, C1h Allowed Allowed Allowed Allowed Allowed

for M2�= ±1 for M2�=0, ±2 for M2�=0 for M2�=0 for M2�=0

TABLE V. SHG selection rules for the different particle symmetries illustrated in Fig. 2, under linearly
polarized far-field plane-wave illumination. The propagation direction �z axis� is chosen as the quantization
axis.

Symmetry and
point group E1+E1→E1 E1+E1→E2 E1+E2→E1 E1+M1→E1 E1+E1→M1

Spherical Forbidden Allowed Allowed Allowed Forbidden

for M2�=0, ±2 for M2�=0 for M2�=0

Cylindrical Allowed Allowed Allowed Allowed Forbidden

for M2�=0 for M2�=0, ±2 for M2�=0 for M2�=0

Central, S2 Forbidden Allowed Allowed Allowed Allowed

Axial, C2 Allowed Allowed Allowed Allowed Allowed

for M2�=0 for M2�=0, ±2 for M2�=0 for M2�=0 for M2�=0

Reflection, C1h Allowed Allowed Allowed Allowed Allowed

for M2�= ±1 for M2�=0, ±2 for M2�=0 for M2�=0 for M2�=0

TABLE VI. SHG selection rules for the different particle symmetries illustrated in Fig. 2, under linearly
polarized far-field plane-wave illumination. The electric-field polarization direction �x axis� is chosen as the
quantization axis.

Symmetry and
point group E1+E1→E1 E1+E1→E2 E1+E2→E1 E1+M1→E1 E1+E1→M1

Spherical Forbidden Allowed Allowed Allowed Forbidden

for N2�=0 for N2�= ±1 for N2�= ±1

Cylindrical Allowed Allowed Allowed Allowed Allowed

for N2�=0 for N2�=0, ±2 for N2�= ±1 for N2�= ±1 for N2�=0

Central, S2 Forbidden Allowed Allowed Allowed Allowed

Axial, C2 Allowed Allowed Allowed Allowed Allowed

for N2�=0 for N2�=0, ±2 for N2�= ±1 for N2�= ±1 for N2�=0

Reflection, C1h Allowed Allowed Allowed Allowed Allowed

for N2�= ±1 for N2�=0, ±2 for N2�= ±1 for N2�= ±1 for N2�=0
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