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In the present work, we deal with the dynamics of wave packets in a two-dimensional crystal under the
action of magnetic and electric fields. The magnetic field is perpendicular to the plane and the electric field is
on the plane. In the simulations, we considered a symmetric gauge for the vector potential while the initial
wave packet was assumed to have a Gaussian structure with given velocities. The parameters that control the
kind of time evolution of the packets are the width of the Gaussian, its velocity, and the intensity and direction
of the electric field as well as the magnitude of the magnetic field. In order to characterize the kind of
propagation, we evaluated the mean-square displacement and the participation function, and, more importantly,
we were able to follow the wave at different times, which allowed us to see the time evolution of the centroid
of the wave packets. We observed that the dynamics is such that the wave function splits into two or more
components and reconstructs successively as time goes; vortices form. As for the inclusion of the electric field,
we observed a complex behavior of the wave packet as well as noted that the vortices propagate in a direction
perpendicular to the applied electric field, a similar behavior presented by the classical treatment. In our case,
we give a quantum mechanics explanation for that.
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I. INTRODUCTION

In the present work we deal with the problem of the be-
havior of wave packets in a two-dimensional square lattice
under the action of magnetic and electric fields. The mag-
netic field is perpendicular to the lattice, while the electric
field is in the plane. We can mention the �pioneering� works
done on the subject of wave propagation in low-dimensional
systems that have attracted interest since the early days of
quantum mechanics.1–5 The subject of carriers in a two-
dimensional structure under the action of external magnetic
and electric fields has aroused intense interest since it has
become recently experimentally accessible.6–9

We have found very interesting properties of the time evo-
lution of initial wave packets that were assumed to be a
Gaussian structure with a given velocity. We analyzed Gaus-
sians with different dispersions, which, in turn, determine the
type of propagation a wave packet will present. Another pa-
rameter which has a direct influence on the wave packet
behavior is the assumed initial velocity. Obviously, the mag-
nitude as well as the direction of the electric field has also a
direct influence on propagation. Clearly, one notices the
wavy nature of the solution of the time dependent
Schrödinger equation, but the following effect is observed:
the successive splitting and reconstruction of the wave func-
tion into two or more components as time goes on. We ob-
serve the formation of vortices due to the joint effect of the
crystal potential and the external fields. In order to compre-
hend the characteristic of propagation, we resort to the study
of the trajectories in reciprocal space since they are con-
nected with the ones in direct �coordinate� space by a rota-
tion of � /2.

It will be very interesting to perform an experiment with
the purpose of measuring magnetic field fluctuations eventu-

ally produced by the rotating currents. It is worth remarking
that some theoretical predictions in physics came much ear-
lier than the experimental verification; i.e., the Bloch
oscillations1 predicted in the early days of quantum mechan-
ics were confirmed experimentally several decades later.10

A pioneering work dealing with the motion of an electron
in a two-dimensional �2D� lattice potential superimposed to a
magnetic field is due to Peierls,2 who considered an effective
single band Hamiltonian arising from a tight-binding disper-
sion relation. As a result of this model, the single Bloch band
is split into magnetic subbands according to the number of
flux quanta that pierces the unit cell of the 2D lattice. At the
same time, the parameter �=� /�0, being the ratio of the
magnetic flux through the unit cell to the quantum of flux,
controls the kind of propagation of wave packets in a lattice
under a uniform magnetic field. For a rational value, we re-
cover a translational symmetry with an enlarged unit cell,
which, in turn, makes it possible for a packet to propagate in
the sample. On the contrary, for an irrational value of �, we
face the problem of incommensurability of the potential,
which, in turn, produces a localization of a wave packet in a
definite region of the lattice.11 Recently, the electronic spec-
trum of a two-dimensional quantum dot array under mag-
netic and electric fields was presented.12

II. MODEL

The action of a magnetic field is analyzed along the
Peierls model,2 which consists in taking a dispersion relation
for a square lattice

E�k� = 2W�cos kxa + cos kya� �1�

and replacing in it the quasimomentum k by
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�k ⇒ − i� � − eA/c �2�

to obtain a model Hamiltonian. In the present work, we used
the symmetric gauge for the vector potential,

A =
B

2
�− yî + xĵ + 0k̂� . �3�

The classical paper of Hofstadter13 showed that such an
approach leads to a spectrum as a function of the magnetic
field that presents a fractal structure, the so-called Hofstadter
butterfly. On the other hand, Hall measurements on a
GaAs/AlGaAs superlattice provided evidence of the exis-
tence of the structure of Hofstadter’s butterfly.14 Since this
model is of a single band, it is limited to analyze systems of
large gaps and/or magnetic intensities such that no interband
transitions occur. Since we want to study the kind of propa-
gation of a particle in such a system, we expand the wave
function in the Wannier representation,

���t�� = �
mn

gmn�t��mn� , �4�

where the ket �mn� is the ket associated with the correspond-
ing site.3,4 Next, we assume a discrete set of coordinates such
that x=ma and y=na. The time dependent Schrödinger equa-
tion in the Wannier representation becomes the set of equa-
tions

i�
dgmn

dt
= W�gm+1,nei��n + gm−1,ne−i��n + gm,n+1e−i��m

+ gm,n−1ei��m� + gmn��mn + eExam + eEyan� ,

�5�

where �=� /�0 is the ratio between the flux through the unit
cell in the �x ,y� plane to the quantum of flux,11 �0=hc /e,
�mn are the on-site energies, and W is the hopping term.

We have used the Runge-Kutta method of fourth order to
integrate the equations of motion. In order to solve the time
dependent Schrödinger equation, we chose as an initial con-
dition a Gaussian wave packet with a certain width and a
given velocity,

�x,y���t = 0�� = exp i�k · r�
1

���

	exp�−
�x − x0�2 + �y − y0�2

2�2 	 . �6�

We chose this since it is more realistic to assume that the
injected electron is not extremely localized. One difficulty
faced during the calculations was to decide the right size of
the lattice in order to avoid boundary effects. To be specific,
we have taken a lattice of 400	400 sites, �=0.0242, which
corresponds to a magnetic field of intensity B=1 T, the di-
mensionless units of time 
=Wt /�, corresponding to
0.026 ps, the dimensionless units of electric field, W /ea,
equivalent to 12.5 kV/cm, and all lengths in units of the
lattice parameter a. After solving the set of equations, we
constructed the following:

�i� the mean-square displacement �MSD�

�r2��t� = �
mn

�gmn�t��2�n2a2 + m2a2� , �7�

�ii� the centroid of the wave packet which we follow by
evaluating the following quantities, which give us the
amount of the displacement from the initial position of the
particle:

��x��t� = �
n

�n − n0��
m

�gmn�t��2, �8�

��y��t� = �
m

�m − m0��
n

�gmn�t��2, �9�

�iii� the participation function15

P�t� = ��
mn

�gmn�t��4	−1
. �10�

An interesting feature of this function is that it indicates the
sites that participate in the wave packet. At the same time, it
presents an abrupt decline once the packet reaches the
boundary of the lattice; in this way we can note the presence
of size effects. We followed the Anderson16 criterion for ana-
lyzing diffusion; namely, we can conclude that diffusion has
occurred if at t→� the Wannier amplitudes at the starting
sites go to zero. If these amplitudes remain finite, decreasing
rapidly with distance, we say we have a localized state. We
also plot the wave packet as it evolves in time, which tells us
the kind of propagation for the different cases in study. More
than that, by looking at the displacements of the maxima of
the packet, we can infer the kind of trajectory a particle will
describe. Besides that, we follow the time evolution of the
centroid of the wave packet, which gives complementary in-
formation.

III. SPLITTING OF THE WAVE PACKET: VORTEX
FORMATION

We would like at this point to describe a surprising be-
havior observed during the time evolution of wave packets.
First, we note that their Gaussian structure means that in

FIG. 1. We show the lines of constant energy for the square
lattice. The solid lines are the ones corresponding to zero energy.
The arrows indicate the orbits in reciprocal space.
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reciprocal space we have a certain dispersion in k, which
implies that several wave vectors will participate in the evo-
lution of the wave function. This plays an important role as
long as we consider the wave vector associated with the ve-
locity of the initial wave packet, lying along and around the
lines of zero energy in the Brillouin zone of the square lat-
tice. In Fig. 1, we show the lines of constant energy where
the arrows signal the orbit in reciprocal space described by
the wave vector.

As it is well described in Ref. 17, the quasimomentum
satisfies an equation of motion analogous to the classical
one, where one takes the group velocity v= 1

�
�

�k in the ex-

pression of the Lorentz force, which, in turn, determines that

the wave vector moves along the lines of constant energy.
First, consider k inside the region of energy zero but close to
its boundaries; it will describe a clockwise orbit in reciprocal
space. As for k outside but close to the line, we get another
trajectory described in a counterclockwise sense. This will
result in the appearance of vortices rotating in opposite di-
rections when describing the evolution of the wave packet in
direct space, where the “orbits” are obtained after rotation by
� /2.

What is very interesting is to consider k on one of the
lines of zero energy. In such a case, due to the dispersion in
k because of the Gaussian structure of the initial packet we
discussed above, we have to take into account k values in-

FIG. 2. The time evolution of the wave packet for the following parameters: �=0.0242, dispersion �=2, and ka= �� /2 ,� /2�.
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side and outside the line, symmetrically distributed. Conse-
quently, part of the wave �half of it� will describe a trajectory
in the clockwise sense and the other half of the wave in the
opposite sense; the resulting movements consist in the pres-
ence of a vortex and an antivortex. As time goes on, the
wave packet starts to move in the direction of the velocity
and then splits into two components that will join in a single
component, and so on. Consequently, two vortices with op-
posite angular velocities are formed. The wave remains sta-
tionary in a certain region of the lattice �see Fig. 2, where
this remarkable effect is shown�. Assuming k now with com-

ponents �� /a ,0�, as shown in Fig. 1, four squares in recip-
rocal space participate in the movement of the packet, rein-
forcing each other such that at a certain time the wave
appears as shown in Fig. 3. To get the evolution of the wave
packet, one has to follow the arrows in each of the four
regions. Again, we observe the splitting and reconstruction
of the wave, this time in several components. In this case,
several vortices are present.

One encounters a similar effect when considering a one-
dimensional crystal under the action of a dc electric field.
When considering as an initial state a well localized state at

FIG. 3. The same as Fig. 2 but for ka= �� ,0�.
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a site in the system, the evolution of the packet is such that it
is split into two symmetric parts, which oscillate with the
Bloch frequency in opposite directions.18

Let us assume k inside the region limited by the lines of
zero energy but close to one of them. The wave function will
split into two components in such a way that one part of the
wave, the major part, will rotate clockwise while the rest will
do counterclockwise. As for k outside the region but close to
one of the lines, the reciprocal is true; the major part of the
wave will perform a rotation counterclockwise. To illustrate
this effect, consider now the wave vector of the initial wave
packet inside the region of the lines for �=0 but close to one
of it; we took, for example, ka= �1.4,1.4�. As said above, the
wave is split into two components, where the bigger part
rotates clockwise and the smaller part rotates in the opposite

sense. In this case, it results in the appearance of two asym-
metric vortices �see Fig. 4�.

IV. EFFECT OF A dc ELECTRIC FIELD

We consider now the inclusion of a dc electric field in the
equation of motion for the Wannier amplitudes. As a general
trend, we observe that the packet will propagate in a more
complex way, but always in a direction perpendicular to the
electric field, as it was shown previously.11 This behavior is
also present in the classical treatment of the problem.19 From
the viewpoint of quantum mechanics, we understand this be-
havior since the electric field breaks the degeneracy of the
on-site energies along the direction of the applied field, in-
hibiting hopping between these sites. First, we take k on one

FIG. 4. The same as Fig. 3 but for ka= �1.4,1.4�.
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of the lines of zero energy, for example, �� /2a ,� /2a� and
the electric field along the diagonal, E= �0.1,0.1�, while the
initial packet has �=1. The wave is split while propagating,
but due to the presence of the electric field, one part of the
wave proceeds with a greater velocity, with a centroid trajec-
tory which consists in a superposition of an oscillatory
movement and a displacement perpendicular to the oscilla-

tion, i.e., a reptilian kind of movement. The other part that
moves in the opposite direction remains close to the starting
point �see Fig. 5, where we also show the centroid trajectory,
and the MSD and participation as functions of time�.

For the same configuration but for �=2, we observe that
the wave is not split and follows a trajectory quite similar to
the classical one; i.e., the more so, the more extended the

FIG. 5. The time evolution of the wave packet for the following parameters: E= �0.1,0.1�, �=1, and ka= �� /2 ,� /2�. On the left, MSD
and participation as functions of time, and the centroid trajectory, which resembles a trochoid.
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initial wave packet is, i.e., the greater the sigma is. This
comes about since a greater dispersion in direct space is re-
lated to a smaller one in reciprocal space �see Fig. 6�. For the
case �=3, we confirm this behavior of the propagation of the
wave. It is interesting to mention that the trajectories for �
=2 and 3 are exactly the same. By increasing the intensity of
the electric field, we obtain a displacement of the centroid

along a trajectory similar to the former one; the only differ-
ence is that in the case of stronger field, the amplitude of the
displacement as well as the period of the oscillations are
reduced. This field effect is shown at the bottom left of Fig.
6.

A very peculiar effect is obtained by considering the elec-
tric field with components �−0.1,0.1� and taking k

FIG. 6. The same as Fig. 5 but for �=2. The bottom left shows the trajectories of the centroids for two field intensities: E= �0.1,0.1� and
E= �0.2,0.2�. Note the different periods when varying the field intensity. See the text.
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= �� /2a ,� /2a�. In this case, we note that the wave packet,
which is formed by a vortex and an antivortex displaces per-
pendicular to the electric field. Consequently, the centroid
moves along a straight line, as shown in Fig. 7. This should
be compared with the case without electric field in which the
packet remains stationary, as shown in Fig. 2.

V. CONCLUSIONS

We show in this work an effect of wave packet propaga-
tion in a two-dimensional crystalline system under the action
of combined magnetic and electric fields. Using the Runge-
Kutta method of fourth order, we integrate the equations of

FIG. 7. The same as Fig. 6 but for E= �−0.1,0.1�. Note the straight line described by the centroid.
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motion in the Wannier representation, assuming as an initial
condition a Gaussian wave packet with a given velocity. We
found a very interesting behavior of the wave function,
namely, that by taking the initial velocity with the associated
wave vector close to the lines of zero energy, the wave is
split and reconstructed as time goes, with the appearance of a
series of vortices. This effect comes about since we used a
Gaussian as an initial condition. This, in turn, implies that
one has to take into account a dispersion in the reciprocal
space, so there are contributions of the lines of constant en-
ergy on both sides of the zero energy line, as explained
above. Without the presence of the electric field the wave
remains in a definite region of the lattice. The inclusion of
the electric field produces a displacement of the vortices
along the perpendicular direction of the applied field, show-
ing a more complex behavior since now, besides the dis-

placement, the wave is split and reconstructed as time goes.
As for the centroid trajectory, for a configuration such that
the applied electron field is parallel to the initial velocity, it
describes a trochoid, similar to the one obtained in the clas-
sical treatment. For other configurations, i.e., for the wave
packet with an initial velocity perpendicular to the field, the
centroid trajectory is a straight line. One last comment de-
serves to be made: the effects we described are the results of
taking into account that the particle, besides being under the
action of the fields, is subjected to a 2D crystal potential as
well.

The present quantum mechanics treatment provides a
clear description of the topology of a wave packet propaga-
tion in the Hall configuration. Finally, we suggest an experi-
ment that should be able to detect magnetic field fluctuations
caused by the created vortices.
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