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Motivated by the interest to testable, exactly solvable models of quantum behavior in the time-dependent
potentials, which may be important in studying �and in proof� basic quantum mechanical laws, as well as in
considering the possibility of using the electronic components suggested to hypothetical “quantum computers,”
we develop a method of solving the Schrödinger equation in a certain class of time-periodic and space-
dependent one-dimensional potentials. In particular, it is shown that the quasistationary electronic state in the
one-dimensional cyclic mesoscopic metallic ring in a rotating-potential field displays periodic variation of
quasienergy in the function of magnetic flux threading the ring �the Aharonov-Bohm effect� and oscillation,
superposed on the monotonous dependence, in the function of angular velocity of rotating potential �the effect
similar to Rabi and/or Bloch oscillation�. At large speed of rotation, quasienergy decreases rather than increases
with the increase of angular velocity. The dependence of quasienergy on flux in space periodic potential
displays standard hc /e periodicity as well as the periodicity with a larger period, Nhc /e, where N is the number
of sites in the loop, corresponding to one flux quantum per lattice site. This is an interference effect similar to
one observed in the fractional quantum Hall effect but, unlike in the latter, not requiring the concept of
“fractional electron charge,” e /N. The physical significance of the quasienergy states is clarified by studying
the quantum transitions between the states as well as by investigating the energy flow between the ring and the
external source of the potential.
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I. INTRODUCTION

The impressive 80-year progress in quantum mechanics,
owing to the epistemological role which the Schrödinger
wave function � plays in the explanation, prediction, and
description of various phenomena and properties of atoms,
complex molecules, mesoscopic systems, and solids, resulted
in the idea of the possibility of “quantum computation,”1

i.e., the usage of reversible time-dependent unitary transfor-
mation of � resulting in the �0,1� to �1,0� �and vice versa�
probability changes in certain “qubits” �quantum bits� mim-
icking the bits of classical computers, but processing in the
“quantum parallelism” regime thus believed to make the
computation exponentially faster than that of the polynomi-
ally fast classical computers.

The natural suggestions for electronic qubits are meso-
scopic quantum phenomena of which the Coulomb-blockade
charge oscillations in small metallic grains2–5 and persistent
currents6–9 in small metallic rings related to the Aharonov-
Bohm effect10 are the best known. Recent discoveries of thin
metallic wires �carbon nanotubes�11,12 finalize this arsenal of
mesoscopic and nanoscopic devices, making possible the re-
alization of the quantum networks for superfast computers,
as well as for other fast �multiprocessor� computational ar-
chitectures such as the synergetic13 or neural14,15 computers.

In the application to quantum computation, it is often sug-
gested that the system of coupled qubits operates under the
condition of a special space arrangement of qubits, within
certain time steps during which the external potentials are
applied to qubits. The properly designed unitary evolution of
qubits allows solving certain mathematical problems un-
tractable by classical computers, e.g., the discrete Fourier
transform in the known Shor factorization algorithm.16 Such

processes can run properly if we assume that the wave func-
tion plays the ontological role,17,18 i.e., represents the exact
amplitudes of probability changes, with phases of the qubit
components changing coherently.

At this level of quantum integration, in addition to the
severe criticism related to daunting technological problems,
fundamental problems arise related to the well known fact
that the quantum Schrödinger equation for � has never been
derived on a microscopic basis, and was not thoroughly
tested in the case of stand-alone electronic systems �rather
than a macroscopic ensemble of systems�, especially regard-
ing the possibility of a coherent bit flip in a finite time inter-
val.

The aim of this paper is to study the time-dependent be-
havior of persistent currents in ballistic �i.e., free of impuri-
ties or imperfections� Aharonov-Bohm loops. The simplest
realization of a regular time oscillation of persistent current
can be achieved by introducing a periodic potential rotating
around the ring in the near vicinity of the latter, thus forming
moving barriers �at potential V�0� or potential traps �at V
�0� for electrons. The other case is the rotating electric field
perpendicular to the magnetic field, as well as the rotating
periodic lattice in the form of Kronig-Penney barriers. �Simi-
lar time-dependent problems have been considered
earlier�.19,20

The mechanical rotation of a potential source is a sketch
of the time-dependent situation. In fact, fast rotating poten-
tials can also be generated by the motion of solitons �mag-
netic, superconducting, etc.� near and along the path of the
Aharonov-Bohm loop, as well as acoustic or laser-focused
rotating photonic fields, possibly with the near-zone focusing
of the latter to reach the domain of submicron resolution
along the loop.
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The above mentioned problems fall in the range of poten-
tials of generic form

V��,t� = �
j

Vj��� − ��t + � j�2	� , �1�

where � is an angle defining position of point at the loop and
�X�2	 means X mod 2	, i.e., X with a proper number of in-
teger periods 2	 subtracted such that X falls within the in-
terval 0
��2	. Equation �1� corresponds to the rotation of
potential along the ring with the angular velocity �.

The solution of the Schrödinger equation with such a po-
tential can be presented, according to the Floquet theorem, in
the form �=e−i�1�e−i�2t f�� , t�, where f is periodic in � and in
t. In the physical language, �1 and �2 are the Bloch quasi-
momenta. The space quasimomentum �1 is also called “crys-
tal momentum” �see, e.g., Kittel’s book.21�. In a closed �cir-
cular� periodic structure, the crystal momentum should be
put equal to zero or be a multiple of 2	 �in the extended
zone representation� because of the single valuedness of the
wave function at �=0 and �=2	. The “time quasimomen-
tum” has been nominated in Ref. 22 as the quasienergy.

The wave function of the electron in the time-periodic
potential in a ring is therefore presented in the form of Zel-
dovich’s quasistationary state22 with quasienergy �,

� = e−i�t = �
n=−�

�

nein��−�t�e−i�t, �2�

where  is a periodic function of time with a period T
=2	 /�.

II. EXACTLY SOLVABLE TIME-DEPENDENT MODELS

We consider three simple models of rotating potentials
satisfying Eq. �1�, namely:

�a� a ballistic one-dimensional loop with a single rotating
impurity atom or aggregate of atoms �quantum dot, 1d elec-
tronic island or trap� which satisfies Eq. �1� with j=1 and
V�0, or a rotating barrier which is obtained at V�0 �Fig.
1�a��;

�b� an Aharonov-Bohm loop in crossed electric and mag-
netic fields, with the magnetic field perpendicular to loop
plane and the electric field in the plane of the loop �Fig. 1�b��
�The effect of the magnetic field can be produced by the
vector-potential field created by a thin, infinitely long sole-
noid localized inside the loop. We will simulate the homoge-
neous electric field by the electric potentials ±V localized at
opposite sides of the loop.�;

�c� a periodic 1d lattice of electronic dots �V�0� or anti-
dotes �V�0� assuming that the ring circumference L

matches the integer number N of lattice periods a=L /N �Fig.
1�c��.

A. Rotating electronic island or barrier

Assume that the �-functional electric potential is rotating
around the one-dimensional conducting loop of radius R
�Fig. 1�a��. The Schrödinger equation for the loop

− K� �

��
− i��2

� + V��� − ����2	�� = i��/�t ,

0 
 � � 2	 , �3�

where � is the angular velocity of rotation, K=	h /�L2 is the
kinetic energy �in units of Planck constant �=h /2	�, and �
is the electron mass. V is the height of the potential barrier
for electron when V is positive, and the depth of the elec-
tronic trap is at V�0. The quantity � is the ratio of the
magnetic flux within the loop �produced either by a uniform
magnetic field B such that �=	R2B or by a thin, infinitely
long solenoid inserted into the loop and carrying magnetic
flux �� to the single-electron flux quantum �0=hc /e.

Equation �3� takes the form

�K�n − ��2 − n� − ��n +
V

2	
�

n�=−�

�

n� = 0, �4�

which solves for

n = −
V

2	

X

K�n − ��2 − n� − �
, �5�

where

X = �
n=−�

�

n. �6�

Summing by n and assuming X�0, we receive the equation

1 +
V

2	K
�

n=−�

�
1

�n − ��2 − �2 = 0, �7�

in which

� = � + �/2K and �2 = � + �� + �2/4K . �8�

By making use of the identity23

lim
N→�

�
n=−N

N
1

n + x
= 	 cot 	x �9�

and expanding the summand in Eq. �7� to simple fractions,
we transform this equation to a simpler form,

cos 2	 � +
V

2K

sin 2	 �

�
= cos 2	�� +

�

2K
� . �10�

Solved for �, this equation determines the quasienergy

� = �2 − �� − �2/4K . �11�

Equation �10� coincides with the Kronig-Penney relation for
the energy states in a one-dimensional periodic rectangular

� �
� �

� �
� �

� �
� �

θ
R

a) b) c)

Φ

FIG. 1. Sketch of rotating potentials: �a� isolated barrier, �b�
rotating capacitor, and �c� rotating Kronig-Penney potential.
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potential.21 The solution to Eq. �10� is multivalued, �
=��m�, with m=1,2 , . . . numerating the quasienergy bands in
the time-periodic potential.

The magnetic flux and angular velocity of rotation enter
into Eq. �10� in a symmetric way. However, their contribu-
tions to quasienergy �Eq. �11�� are not equivalent. It is inter-
esting to note that the quasienergy decreases with the in-
crease of � at large angular velocity, which can be
interpreted as an effect of blocking the standard classical �2

�positive� variation with the angular velocity due to spatial
quantization �� remains of the order 1 an any ��, and then
the quantum �negative� � dependence shows up �see Figs. 2
and 3 below�.

At the values of � and � such that �+� /2K=0, by recol-
lecting the value of parameters � and �, we receive

B = −
2�c

e
� . �12�

The relation dB /d�=−2�c /e in the mesoscopic normal-
conducting ring is equivalent to that in the macroscopic su-
perconductor �the “London moment”24�. London’s interpre-

tation was based on a suggestion �which was later supported
and elucidated microscopically by Bardeen et al.25� that the
wave function of the superconductor is rigid with respect to
the adiabatic change of the magnetic field, resulting in the
decompensation of diamagnetic and paramagnetic compo-
nents of the currents and, therefore, in the appearance of the
nonzero superconducting persistent current at B�0. A simi-
lar property of “rigidity” of the wave function of electron in
the mesoscopic nonsuperconducting metallic ring is the
mechanism of mesoscopic persistent current in the
Aharonov-Bohm loop.26,27 The current changes periodically
with magnetic flux with a period hc /e in mesoscopic ring
and with the period hc /2e in the superconductor. The reason
for the latter is the pairing of electrons, and a kind of Bose
condensation, of Cooper pairs in superconductor whereas the
mesoscopic persistent current is a single-electron topological
effect related to the spatial quantization of electronic states in
the ring. The rigidity of the wave function in the normal-
metallic ring means the following.

The wave function of electron in a one-dimensional ring
is const ein�. It remains unchanged, i.e., rigid, at the adiabatic
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FIG. 2. Lowest quasienergy bands n=1,2 ,3 in a loop with one
isolated barrier �a� as a function of magnetic flux at �=0 and �b� as
a function of frequency at �=0. Coupling parameter �=5, where
�=	V /K.
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FIG. 3. Groups of lowest quasienergy states k=0,1 ,2 corre-
sponding to band numbers n=1,2 ,3, respectively, in a three-site
loop �N=3� �a� as a function of magnetic flux at �=0 and �b� as a
function of frequency at �=0 �b�. Coupling parameter �=5, where
�=	V /2K.
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change of magnetic flux within a certain range of magnetic
flux value, �n−1/2��0��� �n+1/2��0 because the energy
�= 1

2 �n−� /�0�2 is separated by a finite gap from the nearest
higher energy states �= 1

2 �n±1−� /�0�2. Current J=
−�� /��=J0�n−� /�0� remains nonzero in the ground state,
provided the magnetic flux is on. This can be interpreted as
an effect of “carrying along” of the electronic flow in the
field of vector-potential flow A. Formally, the origin of per-
sistent current is due to two simultaneous mechanisms: �1�
the violation of time-reversal symmetry in the magnetic field
and �2� the existence of energy gap in the electron spectrum
providing the rigidity of the wave function as discussed
above. These two circumstances have been recognized as
early as in 1970. However, it took time to mentally accept
this “unusual” aspect of the Aharonov-Bohm effect, and the
microelectronic technology was not ready until the mid-
1980s to manipulate the submicron size conductors.28 Note
that it was recognized at a later time that persistent current in
nanoscopic �almost atomic� structures can arise as a sponta-
neous current without the, or in presence of infinitely small,
magnetic field,9,29,30 provided the ring is stable against a
structural Jahn-Teller transformation by adhesing the ring at-
oms on the tight-binded solid nonmetallic surface �or, almost
equivalently, developing the J��� dependencies with the ab-
normally large dJ /d� slope at �=0, with almost a fump of
J��� near the zero magnetic field�.

In the case of the standard persistent current �J=0 at �
=0�, the current changes under rotation periodically with the
magnetic flux �the Aharonov-Bohm effect10� and with the
angular velocity of rotation �the effect analogous to the Rabi
oscillation31–33�.

B. Rotating electric field

The rotating electric field �Fig. 1�b��, which will be pre-
sented with a potential V���=V cos��−�t� �the Mathieu
problem at �=0�, will be modeled here by two opposite-sign
� potentials of magnitude V at the opposite sides of the ring,

V��,t� = V��� − ��t�2	� − V��� − ��t + 	�2	�, 0 
 � � 2	 .

�13�

The Schrödinger equation is solved with the Fourier expan-
sion �Eq. �2��, resulting in an equation for the Fourier coef-
ficients,

�K�n − ��2 − n� − ��n +
V

2	
�

n�=−�

�

�1 − �− 1�n+n��n� = 0.

�14�

By introducing the notations

X = �
n=−�

�

n, Y = �
n=−�

�

�− 1�nn �15�

and summing both sides of Eq. �14� �after being solved for
n� by n, we receive a set of coupled equations for X, Y,

�1 +
V

2	
S1�X −

V

2	
S2Y = 0,

V

2	
S2X + �1 −

V

2	
S1�Y = 0.

�16�

In these formulas,

S1 − S2 = �
m=−�

�
1

K�2m + 1 − ��2 − � − �2m + 1�� − �

�17�

and

S1 + S2 = �
m=−�

�
1

K�2m − ��2 − � − 2m� − �
. �18�

By using the formula for such sums derived in Sec. II A, we
receive the identity

cos2 2	� − �V/4K��2 sin2 2	� = cos2 	�� + �/2K� ,

�19�

which should be solved for � to determine the quasienergy

� = 4�2 − �� − �2/4K . �20�

Figure 2�a� shows an example of flux dependence of
quasienergy for three lowest quasienergy bands for the value
of positive potential V such that the “coupling parameter”
�=	V /K=5. The quasienergy oscillates as function of mag-
netic flux with the Aharonov-Bohm period ��=hc /e corre-
sponding to a single-electron charge e. Similarly, Fig. 2�b�
shows the � dependence of three lowest quasienergy bands
on the angular velocity of rotation. Classically, we expect
that the energy should increase with �, but in the quantum
regime it decreases monotonically and oscillates as a func-
tion of � with a period ��=2K.

C. Rotating periodic potential

The method of �� , t� Fourier transform of the wave func-
tion allows for a solution of another �-functional model, that
of lattice of moving � barriers �Fig. 1�c��

V��,t� = �
l=0

N−1

Vl��� − ��t +
2	

N
l�

2	
	, 0 
 � � 2	 .

�21�

Here, N is the number of “atomic periods” of length 2	 /N
along the ring. Putting Vl=const=V, we receive

�K�n − ��2 − n� − ��n +
NV

2	
�

n�=−�

�

n���n� − n�N,0 = 0,

�22�

where nN means n mod N. We introduce the composite
indices n=Np+k, n�=Np�+k�, where p, p� are integers and
k ,k�=1,2 , . . . ,N−1. The Kronecker symbol in Eq. �22� re-
duces to �k,k�, which means that k is selected as an index
specifying a particular type of solution. It follows from Eq.
�22� that the dispersion relation for the eigenquasienergy is
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specified by the parameter k and by another parameter, n,
determining the number of solutions to the equation

1 +
NV

2	
�

p=−�

�
1

K�Np + k − � − �/2K�2 − Q2 = 0, �23�

where Q is related to quasienergy �,

� = �n,k = N2Q2 − �� − �2/4K . �24�

With the use of an identity �Sec. II A�,

�
n=−�

�
1

�n + ��2 − x2 =
	

x

sin 2	x

cos 2	x − cos 2	�
, �25�

Eq. �23� takes form

cos 2	Q +
V

2NK

sin 2	Q

Q
= cos 2	

k − � − �/2K

N
. �26�

Index k=1,2 , . . .. specifies the multivalued solutions to Eq.
�26�.

Combining all bands, quasienergy becomes periodic with
the magnetic flux with two periods: ��=1 and ��=N corre-
sponding to single flux quanta �=0 and ��=N�0, re-
spectively. The second periodicity corresponds to one flux
quantum per one lattice site of the periodic potential. Single-
quantum periodicity is clear from the possibility of replacing
k to k+1 when � changes to �+1. This is the standard
Aharonov-Bohm effect. The N�0 periodicity is obtained
when k is fixed. These types of energy versus flux depen-
dence �together with the corresponding � versus � depen-
dence� are illustrated in Figs. 3�a� and 3�b�.

The anomalous periodicity ��=�1=N�0=hc /q*, where
�0 is a single-electron flux quantum and q*=e /N is a frac-
tional charge often discussed in the theory of quantum Hall
effect.34 What happens is that an electron shares N positions
in the N unitary cells along the ring, thus making the charge
e /N per one cell. Since there is no interaction between the
charges and there is no way to separate the e /N charge from
one cell, we do not see any reason to claim this situation the
“fractional charge quantization,” as is assumed in a similar
�but clearly not identical� situation in fractional Hall effect in
the 2d metallic layers.

III. QUANTUM TRANSITIONS BETWEEN
THE QUASIENERGY STATES

A. Perturbation theory for quasistationary states

We suppose that the potential energy of the ring has a
form V�� , t�=V0�� , t�+V1�� , t�, with small V1 having the
same period as V0�� , t�, and solve perturbatively for V1. For
illustration, we consider the case of a single rotating-
potential barrier �or the potential well� considered in Sec.
II A.

We seek the solution to the Schrödinger equation �H0

+V1��= i�� /�t in the form �=e−i�t��−�t� and find the
correction to the wave function =0+1+¯ and to the
quasienergy �=�0+�1+¯. In the case of a single barrier
�Sec. II A�, the zero and the first order of perturbation con-
ditions read

�K�n − ��2 − n� − �0�n
0 +

�0

2	
�

n�=−�

�

n�
0 = 0 �27�

and

�K�n − ��2 − n� − �0�n
1 +

�0

2	
�

n�=−�

�

n�
1 = �1n

0

− �
m=−�

�

�mn−m
0 , �28�

respectively, where �m is the mth Fourier harmonic of poten-
tial V1�� , t�.

The zero order equation solves for the value of quasien-
ergy �0. The solution to the first-order correction n

1 gives

n
1 =

−
�0

2	
X0 + �1n

0 − �
m=−�

�

�mn−m
0

K�n − ��2 − n� − �0
, �29�

with X0=�n=−�
� n

0. Summing by n and taking into account
the equation for �0, we receive the first-order correction to
quasienergy,

�1 = �
m=−�

�

�mZm/Z0, �30�

where

Zm = �
n=−�

�


�K�n − ��2 − n� − �0�

��K�n − m − ��2 − �n − m�� − �0��−1. �31�

B. Quantum transitions

We assume that the Hamiltonian of the ring contains a
small part of H1 periodic with frequency �, which turns on
at t=0

H1 = 2����cos �t at t � 0, �32�

and seek for the solution to the Schrödinger equation in the
form

� = �
k

Ck�t�k
0�t�e−i�k

0t, �33�

where index k enumerates the quasieigenstates of the unper-
turbed Hamiltonian. The solution to coefficients Ck�t�, per-
turbatively Ck�t�=Ck

0+Ck
1�t�+¯, gives in the first order

i
�Ck

1

�t
= �

m
�

l
�

0

2	

d�k
0*�� − �t��m

�eim�l
0�� − �t��ei�t + e−i�t�ei��k

0−�l
0�t, �34�

where �m are Fourier coefficients of ����. Integrating by �
gives the following for the amplitude Ak,l,m of the transition
between the k and l quasistationary states, involving m pho-
tons of frequency �,
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Ak,l,m2 � k,n
0* �ml,n+m

0* 2
sin2��k

0 − �l
0 − m� ± ��/2

���k
0 − �l

0 − m� ± ��/2�2 .

�35�

At large time, the probability of transition increases linearly
with t and satisfies the “conservation” of energy with given
m,

Ak,l,m2 � 2	t���k
0 − �l

0 − m� ± �� . �36�

This relation differs from the standard Fermi “golden rule”
by an extra energy m��. This condition means that the sys-
tem in a rotating potential can radiate �or absorb� energy in
multiple steps of rotation energy quantum, ��. Unlike in the
case of a stationary potential, there is no such thing as the
“ground state” in which there would be no possibility of
emission of radiation. Considering full energy conservation,
it means that the rotating-potential device requires the work
to be done by �or the work to be released from� this external
device.

IV. DISCUSSIONS

Our investigation showed the existence of a solvable
model of quantum mechanical behavior in systems with pe-
riodical space and time dependences, generated by external
“classical” potentials. The advantage is that the model is ex-
actly solvable and therefore suggests a possibility of experi-
mental verification. The disadvantage is that the condition to
satisfy the criteria necessary to distinguish between the clas-
sical and the quantum behavior is quite difficult to satisfy.

The quantum interference in the model discussed
shows an unexpected periodicity of physical properties
�the quasienergy states and the transition probabilities
between the states�, particularly, the new periods of energy
versus magnetic field and versus the angular velocity of ro-
tation dependences. The latter effect resembles the Rabi
oscillation31–33 as well as the finite-band-width Bloch oscil-
lation in metals and semiconductors,35–37 but is not reducible
to any one of those. The periodicity in the regular �� , t� plane
results in quasienergy oscillation with period, which can be
written in terms of fractional charge of electron. We consider
this as a mere coincidence with the widely discussed frac-
tionalization of electronic charge in the �x ,y� periodic space
plane in the fractional quantum Hall effect.34 We adhere to
the point of view that quantum interference rather than the
physical “falling apart” of electrons is a more adequate in-
terpretation.

Considering the possibility of experimental realization
of fast rotation, which was partly mentioned in the Intro-
duction, we need to mention the numerous technological
problems arising from the attempt to address the issue, by
considering an example of rotating superconducting solitons
�Josephson vortices� in long tunneling junctions38,39 in the
form of a periodic array �1d periodic Abrikosov lattice� mov-
ing along the boundary between two superconductors in an
annular40–42 tunneling junction due to voltage V applied
across the junction.

We suppose that the thin superconducting sheet is divided
into two parts, S1 and S2, across a barrier shown by the

dashed line in Fig. 4 and placed in a magnetic field larger
than the Josephson critical field Hc1 �termed Hs in Ref. 39�
perpendicular to the sheet. The solitons �shown by closed
loops representing the flow of supercurrent in solitons� move
parallel to the barrier, making the periodic array rotate with
the angular velocity �=� /N, where N is the number of soli-
tons in the junction and � is the Josephson frequency,

� = 2eV/� , �37�

where V is a voltage applied between S1 and S2 across the
tunneling barrier. The perturbation created by magnetic field
focusing inside the solitons creates an effective periodic po-
tential inside the Aharonov-Bohm loop �, which is assumed
to be within the vicinity of the tunneling barrier. Quite large
� is created in this way ���3�109 rad/s for V=1 �V�
such that the product ���1, where � is the dephasing
time estimated in Ref. 43 as

� �
1

�3

�

�B
� L

aB
�4

, �38�

where �=1/137 is the fine structure constant, and ab and �B
are the Bohr radius and the atomic Bohr energy, respectively.

The experiment should be done at temperature T such that
kBT��vF /L, where vF is the electron velocity. This condi-
tion is satisfied at T�10 �K in the case of ring circumfer-
ence L below 1 �m. Due to a large size of the Josephson
vortex �say, a�103 nm�, all conditions are satisfied except
the requirement of ballistic transport, l�L, where l is the
elastic mean free path of electron, which is realistically ex-
pected to be of the order of the ring circumference. There-
fore, the possibility of creating an appropriate environment
for quantum experiments with rotating potentials in the
mesoscopic system remains at present a thought experiment
rather than a suggestion for actual experimentation, except in
the case of extremely small �nanoscopic and molecular� sys-
tems.

However, we mention the possibility of mechanical rota-
tion of the loop in exotic quantum systems such as super

S S1 2 Γ

B
V

FIG. 4. Sketch of the suggested experiment with rotating super-
conducting solitons. dc voltage V is applied between the center and
the periphery of the superconducting film of the Corbino disk ge-
ometry creating, in an external magnetic field perpendicular to the
film, Josephson vortices �shown by closed loops� moving along the
potential barrier separating superconducting regions S1 and S2

�shown by dashed line�. � is the Aharonov-Bohm ring inspected by
measuring the radiated/absorbed electromagnetic quanta due to
transitions between the quasienergy states of the ring.
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cooled highly rarefied gases �and, possibly, neutrons� inves-
tigated for Bose and Fermi condensation44,45 and the acoustic
or electromagnetic waves in metallic structures �in particular,
in the wrapped to ring carbon nanotubes�.
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