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We describe the process of Förster transfer between semiconductor nanoparticles in the presence of a metal
subsystem �metal nanocrystals�. In the presence of metal nanocrystals, the Förster process can become faster.
The enhancement of Förster transfer occurs due to the effect of plasmon-assisted amplification of electric fields
inside the nanoscale assembly. Simultaneously, metal nanocrystals lead to an increase of energy losses during
the Förster transfer process. We derive convenient equations for the energy transfer rates, photoluminescence
intensities, and energy dissipation rates in the please of plasmon resonances. Because of strong dissipation due
to the metal, an experimental observation of plasmon-enhanced Förster transfer requires special conditions. As
possible experimental methods, we consider cw- and time-resolved photoluminescence studies and describe the
conditions to observe plasmon-enhanced transfer. In particular, we show that the photoluminescence spectra
should be carefully analyzed since the plasmon-enhanced Förster effect can appear together with strong exciton
energy dissipation. Our results can be applied to a variety of experimental nanoscale systems.
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I. INTRODUCTION

In many experiments, colloidal nanoparticles �NPs�
strongly confine carriers and do not permit efficient tunnel
coupling. However, instead of direct tunnel coupling, the col-
loidal NPs permit Förster transfer �FT� of optically generated
excitons.1 The FT mechanism comes from the inter-NP Cou-
lomb interaction and does not require the tunnel coupling
between semiconductor nanoparticles �SNPs�. The FT pro-
cess can also be viewed as exciton energy flow from a donor
to acceptor nanocrystal. Figure 1�a� illustrates a process of
exciton transfer from a donor SNP1 to acceptor SNP2. Both
SNPs can emit photons and FT can be observed experimen-
tally as increased emission from SNP2.2–4 Another type of
structure studied in recent experiments consists of SNPs and
metal nanocrystals. In these structures, individual NPs can
also interact via the Coulomb forces. However, the character
of interaction can be different due to large electric dipole
moments and plasmon resonances in metal nanoparticles
�MNPs�. The interaction between excitons in SNPs and sur-
face plasmons in MNPs can result in enhanced exciton emis-
sion due to the so-called plasmon-induce field enhancement
effect.5–9 Such plasmon-enhanced exciton emission can ap-
pear due to amplification of both absorption and emission
processes.9 Simultaneously, in the metal-semiconductor
structures, the exciton energy can be transferred from SNPs
to MNPs and then converted into heat. SNP-MNP energy
transfer becomes especially strong in the exciton-plasmon
resonance and can be observed as shortening of the exciton
lifetime.5,9,10 The FT process can also be combined with the
plasmon resonances in the structures incorporating an emitter
�dye or SNP� and MNPs. For the case of dye molecules and
silver MNPs, such plasmon-assisted FT process was studied
experimentally in Ref. 11 and theoretically in Ref. 12.

Here we study theoretically the FT process between SNPs
in the presence of metal nanocrystals. Our calculations show

an effect of accelerated FT assisted by plasmons. Simulta-
neously, the exciton lifetime can become shorter due to en-
ergy transfer to the metal component. This leads to energy
losses and can strongly reduce the efficiency of FT process.
Our formalism is based on the rate equations and fluctuation-
dissipation theorem. Previously, plasmon-assisted FT was
studied for dye molecules and silver NPs.11,12 Here we de-
scribe the plasmon-assisted FT process for the case of SNPs.
For the metal component, we consider two technologically
important materials, Au and Ag. We found that the behaviors

SNP1 SNP2

a)

b)
SNP1 MNPs SNP2

Coulomb

1exc

0

2exc

0

incident
photons

emission

pl

Coulomb

optical absorption

optical emission

Fast intra-band
relaxation

Coulomb interaction
and transfer

�� 11 �
'22 �� �

FIG. 1. �Color online� �a� Schematics of the system. �b� Energy
diagram of FT process and other related processes. The processes
are specified in the right upper corner.
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are strongly material dependent. From the point of view of
physics, SNPs and dye molecules have important differ-
ences: �1� A SNP has three optically active excitons which
take part in the FT process; it also has several dark excitons.
At the same time, a dye molecule can be well approximated
as a single optically active dipole. �2� Because of fast spin
flips at room temperature, dark and bright excitons in a SNP
become almost equally populated. The resultant FT rate
should incorporate the exciton populations in a SNP. For the
case of a dye molecule, such exciton dynamics is not in-
volved. �3� SNPs have a large background dielectric constant
�about 5–10�. This background dielectric constant strongly
affects the process. From the mathematical side, dye mol-
ecules and SNPs should also be treated differently. In Ref. 12
dye molecule was treated as a pointlike dipole in the vicinity
of metal particle. For this case, the FT rate can be written
analytically as an infinite sum. A SNP is not a pointlike di-
pole since its size can be comparable with the internanocrys-
tal distances in the complex. In addition, SNP has a large
background dielectric constant and, therefore, the effect of
surface charges on the electrostatics and FT process is
strong. Therefore, the FT process rate should be modeled
numerically. Here we suggest a convenient numerical for-
malism to compute the FT rates for complexes with arbitrary
architecture. Our formalism is based on the multipole expan-
sion and fluctuation-dissipation theorem. In addition, we de-
rive convenient analytical equations for the dipole limit;
these analytical expressions can be used to obtain reliable
estimates. For the general case, the FT and energy dissipation
rates should be calculated numerically. This paper considers
several material systems where plasmon-enhanced FT can be
observed. Our results suggest that the conditions to observe
accelerated FT are quite peculiar due to strong energy dissi-
pation in MNPs. In this paper, we mostly focus on the optical
effects at room temperature.

II. RATE EQUATIONS

Here we describe energy transfer between two SNPs in
the presence of metal component �Fig. 1�a��. In our system,
SNPs have different optical band gaps due to the size quan-
tization. A small nanoparticle �SNP1� absorbs an incident
photon and then acts as a donor supplying an exciton to a
larger nanoparticle �SNP2� which represents an acceptor. Ex-
citon transfer between the donor and acceptor is induced by
the Coulomb interaction. This transfer process has three
steps: fast energy relaxation in SNP1, FT process, and fast
energy relaxation in SNP2 �Fig. 1�b��. Finally, SNP2 emits a
secondary photon at a lower energy. The FT scheme shown
in Fig. 1�b� is rather conventional;1,2 this scheme also in-
cludes direct absorption of incident photons by the SNP2. In
the presence of efficient FT, optical emission of SNP2 should
be much stronger than that of SNP1 because of directional
exciton flow from SNP1 to SNP2. The MNPs in our scheme
can strongly change the FT probability and energy dissipa-
tion rates. Depending on the parameters of the system, the
FT rate can be enhanced or suppressed in the presence of
MNPs.

Below, we consider the following conditions: a NP com-
plex size �Lcomplex� is much smaller than the wavelength of

incident light ��laser�, i.e., �laser�Lcomplex. Under the typical
experimental conditions, we also have �SNP1��SNP2��laser
and �SNP1 ,�SNP2�Lcomplex, where �SNP1 and �SNP2 are the
exciton emission wavelengths of SNP1 and SNP2, respec-
tively. In addition, we assume that intraband relaxation pro-
cesses within SNPs are fast �continuous blue arrows in Fig.
1�b�� whereas the exciton recombination and FT processes
are slower. Typically, the intraband energy relaxation time
�ener is in the range of 10 ps while the recombination and FT
times ��rec and �transfer� are 10–20 ns �Refs. 2 and 4� at room
temperature. Another fast process involved in our scheme is
plasmon relaxation in MNP; the lifetime of plasmon ��plas� is
very short, in the range of femtosecond.

Excitons in their excited states ��exc1� and �exc2�� can be
created optically or due to FT �Fig. 1�b��. After fast intraband
relaxation, optically generated excitons in SNP1 and SNP2
reside in the low-energy exciton states, ��1� and ��2� �see
Fig. 1�b��. These exciton states with low energies ���1� and
��2�� will be denoted as �i��, where �=1,2 , . . . ,8 and i
=1,2 is the SNP number. The energies of the states ��i� with
i=1,2 will be denoted as E1=��1 and E2=��2, respec-
tively; �i=2�c /�SNPi. The number of excitons with low en-
ergies in SNP is eight since there are four single-electron
states in the valence band �heavy and light holes with jz
= ±1/2 , ±3/2� and two-electron states in the conduction
band �with spins sz= ±1/2�.13,14 The total recombination rate
of exciton �i�� is given by

	exc,i� = 	rad,i� + 	nonrad,i�
0 + 	metal,i�,

where 	rad,i� and 	nonrad,i�
0 are radiative and nonradiative re-

combination rates, respectively. Here we assume, for sim-
plicity, that all “intrinsic” nonradiative rates are the same:
	nonrad,i�=	nonrad

0 ; 	metal,i� are the rates of exciton-energy
transfer from SNPs to MNPs. For fast intraband energy re-
laxation of excitons, the rate equations at room temperature
take the form

dn1�

dt
= Ii� − �	nonrad

0 + 	rad,1� + 	metal,1�

+ 	
��=x,y,z

	Förster,1�→2��
n1� − 	spin 	
��=�

�n1� − n1��� ,

dn2��

dt
= I2�� − �	nonrad

0 + 	rad,2� + 	metal,2���n2��

+ 	
��=x,y,z

	Förster,1��→2��n1�� − 	spin 	
�����

�n2�� − n2��� ,

�1�

where n1� and n2�� are averaged numbers of excitons in the
low-energy exciton states �1�� and �2���, respectively. The
exciton-state indices � and �� vary independently ��
=1,2 , . . . ,8 and ��=1,2 , . . . ,8�. The rates Ii� describe the
optical generation of excitons in SNPs in the presence of
laser light. The rate 	Förster,1�→2�� represents the unidirec-
tional FT process 1�→2��. The FT process is unidirectional
because of fast energy relaxation and trapping of excitons in
SNP2. The rate 	spin is responsible for spin relaxation be-
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tween different exciton ground states. We should stress that
Eqs. �1� are given for the room temperature regime. At room
temperature, spin relaxation is typically fast �in the picosec-
ond range� and we obtain ni��ni��. At low temperatures, the
spin relaxation can be slow and therefore ni��ni�� for �
���.15 Below we will comment more on the low-
temperature regime. In addition, the classical description �1�
assumes that the exciton-plasmon coupling is noncoherent.
In this case, we neglect interference effects �Fano reso-
nances� which may appear at low temperatures.16

Using the approximation of fast spin relaxation �ni�
�ni��, 	spin→
� and the steady-state condition, we can eas-
ily solve Eqs. �1� for the total exciton populations in SNPs as
follows:

n1 = 	
�

n1�

=

8	
�

I1�

	
�

	nonrad
0 + 	rad,1� + 	metal,1� + 	

����

	Förster,1�−2��

=
I1,tot

	1
,

n2 = 	
�

n2� = 8

	
�

I2� +
n1

8 	
��,��

	Förster,1��→2��

	
�

	nonrad
0 + 	rad,2� + 	metal,1�

=
I2,tot + n1	Förster

	2
, �2�

where Ii,tot=	�Ii� are the total absorption rates in SNPs. The
rates 	i and 	Förster are the averaged recombination rates of
excitons and the averaged FT rate, respectively. These rates
are given by

	1 = 	
�
�	nonrad

0 + 	rad,1� + 	metal,1� + 	
��

	Förster,1�→2��
� 8,

	2 = �	
�

	nonrad
0 + 	rad,2� + 	metal,1�
� 8,

	Förster = 	
����

	Förster,1�→2��� 8.

The exciton rates depend on the exciton wave functions. For
the sake of simplicity, we employ here simplified wave func-
tions without the mixing between heavy- and light-hole
states. In other words, we use the approximation �exc
=�e�re�usz

�re��h�rh�ujz
�rh�, where usz

�re� and ujz
�rh� are the

Bloch wave functions in the conduction and valence bands,
respectively. In the absence of valence-band mixing, the
corresponding envelope functions for a spherical SNP
are �e=�h=�=sin��r /RSNP� / �
2RSNP�r�, where RSNP

is a radius of SNP. Among the functions ���
=�e�re�uSz

�re��h�rh�ujz
�rh�, there are several optically dark

states. We can make linear combinations of these functions
and obtain a more convenient set of states �new�
=�e�re��h�rh�unew�rh ,re�. Among the new functions, there

are three optically active states ��=x ,y ,z� and five dark
states �
=1,2 , . . . ,5�. The � exciton has an optical dipole
moment in the � direction. We can make this convenient
choice of wave functions due to the spherical symmetry of
SNPs.17 Therefore, we can write the transfer rates in terms of
the bright states as follows:

	1 = 	nonrad
0 + 	

�=x,y,x
�	rad,1� + 	metal,1�

+ 	
��

	Förster,1�→2��
� 8,

	2 = 	nonrad
0 + �	

�

	rad,2� + 	metal,1�
� 8,

	Förster = 	
����

	Förster,1�→2��� 8. �3�

In our model, the dark states do not take part in optical and
energy transfer processes. However, they take part in exciton
dynamics due to spin flips and this brings the factor 1 /8 in
Eq. �3�. We should note that the above approximation makes
our description much more convenient and transparent, but it
ignores the valence-band mixing. The valence-band mixing
effect can lead to nonzero optical and FT matrix elements for
dark excitons if the size of SNPs is comparable with inter-NP
distance. This is due to inhomogeneous fields inside a nano-
complex induced by the long-wavelength photonic fields ��
�Lcomplex�. Numerically, the valence-band mixing effects in
the optical and FT matrix elements are relatively small.18 We
also should mention that the above simplification holds for
small SNPs �RSNP�Lcomplex� even in the presence of the
valance-band mixing effect.

We also should mention the effect of energy splitting be-
tween bright and dark excitons and the influence of tempera-
ture �T�. The dark states in nanocrystals have typically a
lower energy. The dark-bright exciton splitting �exc is
�5 meV for both CdTe and CdSe SNPs with
RSNP�2 nm.13,14 This is essentially smaller than the thermal
energy at room temperature: kBT�26 meV. Therefore, our
assumption ni��ni�� is a good approximation at room tem-
perature. At low temperatures, the spin-flip rates for the pro-
cesses dark→bright should have an exponential factor
e−�exc/kBT. Therefore, at low temperatures, the dark-exciton
population should be larger than the bright-exciton one. Si-
multaneously, the averaged energy transfer rates will also
acquire the same Boltzmann factor e−�exc/kBT and all inter-NP
transfer processes should slow down as temperature de-
creases. Overall, the exciton dynamics at low T can become
more complicated; this comes also from the fact that the
processes dark→bright become slow and bring additional
exponential functions to photoluminescence kinetics.19 Some
of these issues were addressed in the recent experimental
papers.3,19 The parameters Ii� and 	rad,i� can be strongly
modified inside a NP complex due to the plasmon resonances
in MNPs. To account for this effect, we will calculate these
parameters in the following way:20
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	rad,i� = Pi�
a ��i�	rad,exc, Ii,tot = Pi

b��laser�Ii
0, �4�

where �i=Ei /� is the optical emission frequency of i-SNP,
�laser is the exciting laser frequency, and 	rad,exc

0 is the radia-
tive rate of SNP in the absence of the metal; for simplicity,
we assume 	rad,exc

0 is the same for both SNPs. The enhance-
ment factor Pi�

� ��i� is introduced for the process of emission
from the lowest exciton states as follows:

Pi�
a ��� =

��
Vi

E� actualD� i�
a �r��dV�2

��
Vi

E� no metalD� i�
a �r��dV�2 , �5�

where E� actual is the resultant electric field inside the SNP

induced by the external field E� 0�t�=E� 0 ·e−i�t��SNPi

�RSNPi ,Lcomplex�; the function D� i�
a �r�� describes the spatial

distribution of interband dipole moment in the ground-state
exciton �i��. For our choice of wave functions, we obtain

D� i�
a �r��=e�� ·dexc�

2�r�−r�SNPi�, where r�SNPi is the position of
i-SNP, dexc= �0�x�ix� is the interband dipole moment of SNP
�dexc is few angstroms typically�, e�� is the unit vector �x�, y�,
or z�� parallel to the � direction, and �=x ,y ,z. The integral

�ViE� no metalD� i�
a �r��dV=3dexcE0,��0 / �2�0+�s�, where �0 and �s

are the dielectric constants of the surrounding media and
semiconductor, respectively. The factor R=3�0 / �2�0+�s� ap-
pears due to screening of external field inside a dielectric
sphere.21 The absorption process is described with a similar
factor as follows:

Pi
b��� =

	
exci

��
Vi

E� actual,laserD� exci

b �r��dV�2

�	
exci

�
Vi

E� no metal,laserD� exci

b �r��dV�2 , �6�

where E� no metal,laser�t�=E� 0 ·e−i�t is the external laser field, and
�exci� are the excited states of exciton in i-SNP. In this case,

the function D� exc
b �r�� describes the local dipole moment of an

excited state of exciton. Since excited states have a more
uniform spatial probability distribution, we will assume that
the local dipole moment inside a SNP is a constant:

D� exci

b �r��=e�exci
·dexc/VSNPi for �r�−r�SNP2��RSNP2, where VSNPi

is the volume of i-SNP. For bright excited states, �exci�
= �	i�, where 	=x ,y ,z; e�exci

=e�	 are the unit vectors. Then,
the denominator of Eq. �6� can be written as

�		�ViE� no metalD� exci

b �r��dV�2=dexc
2 R2E0

2. Note that, in a NP
complex, the factor �6� depends on the direction of the laser

field E� 0. Using similar approximations for the enhancement
factors �Eqs. �5� and �6��, we could successfully describe
several recent experiments.9,20

III. FORMALISM FOR TRANSFER TIMES

To describe exciton transfer between SNPs and energy
dissipation due to MNPs we should compute the energy

transfer rates 	metal,i� and 	Förster,1�→2��. The plasmons and
excitons in our system interact via Coulomb fields and we
are going to explore this interaction. The total transfer rates
for an exciton �1�� are given by the Fermi’s golden rule

	1� = 	metal,1� + 	Förster,1� =
2�

�
	
�

����ÛCoul�1���2��E1 − E�� ,

�7�

where E1=��1 is the exciton energy of the states �1�� in

SNP1, ÛCoul is the inter-NP Coulomb interaction, and ��� are
the collective states of the system. These states ��� include
plasmons in MNPs and excitons in SNP2 and have energies
E�. In the states ���, there is no the exciton in SNP1 since the
SNP1 exciton is assumed to be transferred to the other NPs.
Equation �7� describes two types of processes: energy trans-
fer to the metal and FT. The FT rate is composed of transi-
tions from the low-energy exciton state �1�� in SNP1 to the
excited states of exciton in SNP2 �exc1�: 	Förster,1�

=	exc2
	Förster,1�→exc2

. For the SNP2, we have a similar equa-
tion

	2� = 	metal,2� =
2�

�
	
�

����ÛCoul�2���2��E2 − E�� , �8�

where E2=��2 are the exciton energy of the states �2�� in
SNP2. Since E2�E1 the rate 	metal,2� does not include the
FT process. Again, the states ��� include plasmons in MNPs
and have no exciton in SNP2. The above approach is based
on the perturbation theory. This approach assumes that the
excitons are well defined quasiparticles and the exciton-
plasmon interaction is relatively weak. In other words,
�	i��Ei.

Now we express the rates �7 and 8� through correlation
functions. Detailed derivation can be found in Ref. 22. These
derivations are based on fluctuation-dissipation theorem23

and on other theoretical methods used before in Refs. 12, 20,
and 24. For the rate of transfer to the MNPs, we obtain

	metal,1� = −
2

�
Im �

all NPs
d3r�ind�r��0

*�r�

=
2

�
Im �

metal
d3r

�m��1�
4�

E� totE� tot
* , �9�

where �ind�r� is the surface charges induced by the oscillating
exciton potential in the SNP1, �0�r�e−i�1t. This “driving”
potential is given by �0�r�=edexce� ·�r� /�r3, where �r�=r�

−R� SNP1 and R� SNP1 corresponds to the center of SNP1. E� tot is
the actual field inside MNP due to the oscillating potential
�0�r�e−i�1t. We should stress that these charges appear also
on the surface of both SNPs. The actual electric field is given

by E� tot=−�� �tot. Mathematically, �tot should be found from
the Poisson equation
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�� ��r�,�1��� �tot�r�� = 4�edexce�� · ��2�r� − R� SNP1�/�r� ,

�10�

where �1�r� ,�1� is the local dielectric constant. Outside NPs
��r� ,�1�=�0, inside metal MNPs ��r� ,�1�=�m���, and inside
SNPs ��r� ,�1�=�s.

For the FT rate, we should take into account dissipation of
exciton energy inside the SNP2 as follows:22

	Förster,1��E1� =
2�

�
e2dexc

2 	
exc2

��
SNP2

d3r�exc2

2 �r�

��E� tot,� · e�exc2
��2

J�E1 − Eexc2
� . �11�

This equation includes the total electric field created by the

SNP1 exciton inside the SNP2, E� tot,�. This field can be en-
hanced due to the plasmon resonance in the MNPs. Also, the
state �exc2� has an electron envelope function �exc2

�r� and an
interband dipole moment parallel to the unit vector
e�exc2

�e�exc2
=x� ,y� ,z��; the state �exc2� is described by two quan-

tum indices �e�exc2
,k�, where k is the number of energy level

and e�exc2
determines the dipole moment direction. The pa-

rameters �exc2
and Eexc2

are the off-diagonal broadening and
energy of the excited state �exc2� of SNP2. The overlap inte-
gral in Eq. �10� is given by J�E1−Eexc2

�=�exc2
/���exc2

2

+ �E1−Eexc2
�2�. For SNP2, we have only transfer to the metal,

	metal,2� = −
2

�
Im �

all NPs
d3r�ind�r��0

*�r�

=
2

�
Im �

metal
d3r

�m��2�
4�

E� totE� tot
* , �12�

where the nonequilibrium density and electric fields should
be found again as response to the “driving” potential �0�r�
=edexc�e� ·�r�2 /�r2

3�, where �r�2=r�−R� SNP2; this potential
originates from the exciton in SNP2.

IV. FÖRSTER TRANSFER RATE AND EFFICIENCY

To describe the effect of MNPs on FT, we introduce the
following quantities:

f� =
	Förster,1�

	Förster,1�
0 , f =

	Förster

	Förster
0 , e =

	Förstern1

I1,tot
=

	Förster

	1
.

�13�

The first two parameters are the relative Förster rates; here
	Förster,1�

0 and 	Förster
0 denote the FT rates in the absence of

MNPs. The parameters f� and f can be regarded as coeffi-
cients of plasmon enhancement of FT. The third parameter in
Eq. �13� is the efficiency of FT that is defined as a ratio:
number of excitons transferred from SNP1 to SNP2/number
of excitons generated inside SNP1=	Förstern1 / I1,tot. In the ab-
sence of energy transfer, e=0. In the presence of strong en-
ergy dissipation due to the metal, the parameter e→0.

V. DIPOLE LIMIT

A. Energy transfer to metal nanoparticles

Figure 2�a� shows the geometry. We now use Eq. �9� and
apply the dipole condition: d�RSNP1, RMNP, where d is the
inter-NP distance. The electric field generated by the exciton

�1�� outside SNP1 along the z axis is E� exc
=b�edexce�� / ��effd

3�, where bx=by =−1 and bz=2, �eff= ��s

+2�0� /3; e�� are the unit exciton-polarization vectors as be-

fore. The field E� exc is partially screened by the background
dielectric constant of SNP. Then, the resultant field inside the
MNP becomes “screened” one more time,21

E� tot =
b�edexce��

�effd
3

3�0

�m��� + 2�0
.

Assuming that E� tot does not vary much over the MNP vol-
ume, we obtain the following from Eq. �9� �right-hand side
form� for the energy transfer rate:

	metal,1� =
2b�

2

�

e2dexc
2

d6�eff
2

3�0
2RMNP

3

��m��� + 2�0�2
Im �m��� . �14�

Using this formula, it was possible to describe experimental
data of several groups.20 The 1/d6 dependence corresponds
to the FT theory. In the other limit ��RMNP and ��RSNP1,
	metal,1��d−3 �see Ref. 25�. Here � is the surface-to-surface
distance �Fig. 2�a��.

B. Role of bound charges in transfer processes

It is seen from Eq. �9� that the rate 	metal,1� can be written
either through the charge density or through the current den-
sity. It is interesting that the correct expression for the trans-
fer rate, which is written through the charge density, should
include two terms as follows:
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FIG. 2. �Color online� Schematics of NP complexes. �a�–�c�
depict the processes of energy transfer between NPs. �d� illustrates
the role of surface changes.
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	metal,1� = −
2

�
Im��

SNP1
d3r�elect�r��0

*�r�

+ �
MNP

d3r�elect�r��0
*�r�� . �15�

The first term is due to the image charges on the surface of
SNP1. Even though the constants �0 and �s do not have an
imaginary part �Im �0,s=0�, the first term contributes to the
dissipation. Mathematically, the reason is that these charges
are partially induced by the dipole moment of the MNP and
this dipole moment includes �m��� with a nonzero imaginary
part �Im �m����0�. Simultaneously, the electric-current
form for the transfer rate 	metal,1� includes only an integral
over MNP �see the last term in Eq. �9��. Since the function
inside this integral is the local Joule-heat dissipation rate,
this form indicates that the dissipation process appears inside
the MNP.

The role of the bound surface charges on the SNP1 sur-
face is numerically important since, for most matrices, �0 is
essentially larger than unit. For example, �0�1.8 and 2.3 for
water and polymers at the optical energies E1�2 eV. We can
see from Eq. �20� that the metal transfer rate strongly de-
pends on �0. In the case of matrix with �0�1, the bound
charges originate both from NPs and matrix. Figure 2�d� il-
lustrates this situation. If we formally introduce a thin
vacuum layer between NPs and matrix, we can see that
bound charges can be accumulated on both interfaces. Since
our general formalism treats the surface changes consistently,
the general formulas �7�–�9� incorporate the surface bound
charges originating from both NPs and matrix. We also note

that the operator ÛCoul in Eqs. �7� and �8� includes summa-
tion over electrons of the matrix �e.g., water�.

C. Förster transfer

Now we calculate the FT rate from Eq. �11� in the absence
of MNPs �Fig. 2�b��. The electric field induced by the exci-

ton �1�� inside SNP2 is E� tot= �b�edexce�� /�effd
3�3�0 / ��s

+2�0�. The sum in Eq. �17� should be taken over three bright
excitons with e�exc2

=x� ,y� ,z� �Fig. 2�b��. The FT rate is

	̃Förster,1� =
2�

�

e4dexc
4 b�

2

d6

�0
2

�eff
4 J�E1� , �16�

where

J�E1� = 	
exc2

J�E1 − Eexc2
�

is the overlap integral. Equation �23� corresponds to the
Förster theory1 and also includes the screening effect of
bound charges ��0

2 /�eff
4 �. Again, we see the importance of

surface charges.
For relatively large E1−E2 �i.e., larger than the size-

quantization energy in a SNP�, the states in SNP2 can be
treated semiclassically. Then, the FT rate can be calculated
using Eq. �14� with the substitution �m���→�s���, where
�s��� is the bulk dielectric constant of a semiconductor. For
the commonly used materials �CdTe, CdSe, and CdS�, �s���
can be found in Ref. 26. From comparison of Eqs. �14� and
�16� we find the overlap integral as function of �s��� and
RSNP2,

J�E1� =
RSNP2

3

�e2dexc
2

3�eff
2

��s��� + 2�0�
Im �s��� .

D. Plasmon-assisted Förster transfer

Now we focus on the FT rate in the presence of MNP
�Fig. 2�c��. In the dipole limit, the total electric field inside
SNP2 created by the exciton �1�� is a sum of two contribu-
tions coming from SNP1 and MNP:

E� tot,� =
�0

�eff

edexc

�eff

3�e�� · r�12�r�12 − r12
2 e��

r12
5

+
�0

�eff

3�D� MNP · r�m2�r�m2 − rm2
2 D� MNP

rm2
5 ,

where

D� MNP = �MNP��� · E� SNP1
0

is the dipole moment induced in MNP by the SNP1 exciton,

�MNP���=R3��m−�w / �2�w+�m��, E� SNP1
0 = �edexc/�eff�

��3�e�� ·r�1m�r�1m−r1m
2 e�� /r1m

5 �, r�1m=r�m−r�1, r�12=r�2−r�1, and

r�m2=r�2−r�m; r�1, r�2, and r�m are the coordinates of SNP1,
SNP2, and MNP, correspondingly. The bright excited states
in SNP2 have the polarizations e�exc2

=x� ,y� ,z�. Equation �17�
takes a form

	̃Förster,1� =
2�

�
e2dexc

2 J�E1��E� tot,��2. �17�

The terms in this sum are the rates 	̃1�→exc2
for the processes

�1��→ �exc2�. The field enhancement factor for FT is

f� =
	̃Förster,1�

	̃Förster,1�
0 =

�E� tot,��2

�E� tot,�,no metal�2
=

�edexc
�0

�eff
2

3�e�� · r�12�r�12 − r12
2 e��

r12
5 +

�0

�eff

3�D� MNP · r�m2�r�m2 − rm2
2 D� MNP

rm2
2 �2

�edexc
�0

�eff
2

3�e�� · r�12�r�12 − r12
2 e��

r12
5 �2 . �18�
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In the end of this section, we give simple equations for the
case �=180° �Fig. 2�c�� as follows:

	̃Förster,1x = 	̃Förster,1y =
2�

�
e4dexc

4 � �0

�eff
2 
2�−

1

d3

+
�MNP���

d1
3d2

3 �2

J�E1� ,

	̃Förster,1z =
2�

�
e4dexc

4 � �0

�eff
2 
2� 2

d3 +
4�MNP���

d1
3d2

3 �2

J�E1� .

�19�

Note that, for the geometry of Fig. 2�c�, the vector n� is par-
allel to z�. From Eq. �19�, it is easy to see that the plasmon
effect on the FT rate for the SNP1 exciton �=z should be the
largest, because of the factor 42. The reason is that the optical
dipole for the state �=z is perpendicular to the MNP surface.

E. Numerical results for plasmon-assisted Förster transfer
in the dipole limit

The NP position vectors in Eq. �18� can be expressed, for
convenience, through the inter-NP distances d1, d2, and d,
and the angle � �Fig. 2�c��. Figures 3–5 show the results for
Ag MNP. For the Ag dielectric constant �m���, we use em-
pirical bulk values from Ref. 26. For the other dielectric
constants, we took �0=1.8 �water� and �s=7.2 �CdTe�. The
geometrical parameters were somewhat similar to the
experiments:4,9: d1=d2=10 nm and RMNP=4 nm. The optical

dipole moment can be estimated from the typical radiative
lifetime. For CdTe and CdSe SNPs, a radiative lifetime mea-
sured in time-resolved photoluminescence �PL� studies at
room temperature 1/	rad�10 ns. Since there are three bright
and five dark excitons, 	rad

0 = �3/8�	rad,exc
0 , where 	rad,exc

0

=	rad,�
0 is the radiative rate of a bright exciton ��=x ,y ,z�.

From the quantum optics, we know that

	rad,exc =
8�
�0�exc

2 e2dexc
2

3��eff/�0�2hc3 . �20�

Using the above value for 	rad
0 , we obtain an estimate dexc

�4.6 A. Another important parameter of the problem is the
overlap integral, J. From experimental studies,4 we can esti-
mate the typical FT rate as 	Förster=	����	Förster,1�→2�� /8
�1/ �10 ns� for d�10 nm. From these numbers, we obtain
an estimate J�0.008 meV−1. The FT parameters �f� and
	Förster,1�� are calculated using Eqs. �17� and �18�. The angle
� was taken as 60° and 180° for Figs. 3�a� and 3�b�, respec-
tively. We can see significant enhancement of FT for the
wavelengths close to the plasmon resonance. Orientation of
exciton dipole relative to the MNP surface plays an impor-
tant role. Strongest enhancement can be achieved if the ex-
citon dipole is perpendicular to the surface of MNP; this is
because the MNP plasmon resonance mostly enhances elec-
tric fields perpendicular to the MNP surface.20 Figure 3�b�
also includes numerical results �see Sec. V A�. We can see
that the analytical results obtained within the dipole approxi-
mation provide us with reasonable estimates for the NP com-
plex with d1�2� /RMNP=0.4 �error is about 10%�.
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Another important geometrical parameter is the angle �.
Figures 4 and 5 show the spatial maps of the FT coefficient.
As a two-directional variable, we use the SNP2 position,
r�SNP2. The position of SNP1 is fixed: r�SNP1= �0,0 ,10 nm�.
The geometry with �=180° has a clear advantage from the
point of view of FT rate enhancement. Simultaneously, the
geometry with �=180° has an obvious disadvantage: the
inter-SNP distance for �=180° is relatively long and the ab-
solute value of the FT rate can be relatively small; therefore,
the FT effect would be less visible in optical spectra.

Calculated FT rate is shown in Figs. 6 and 7. One can see
that the plasmon resonance effect on the FT process. Plas-
mon enhancement of FT can be seen for the z exciton in the
geometry of �=60° in the vicinity of the plasmon resonance
in Ag NP �below 400 nm� and in the geometry of �=180°
for ��400 nm. We also can see the effects of screening and
suppression of FT process. In particular, z-exciton transfer
becomes strongly enhanced for the geometry �=180° �Fig.
7, middle�. Such process can be called as plasmon-assisted
accelerated Förster transfer. Here we should note that the
asymptotic behavior for d1�2� ,d→
 is still similar to the
dipole-dipole FT �	Förster�1/d6�. However, the FT process
becomes faster for the distances d1�2� ,d�RMNP.

F. Diagram representation for the plasmon-enhanced FT

We now derive Eq. �19� using the diagram method. We start from the expression �7� and apply the standard perturbation
theory method. To the second order of the perturbation theory, the amplitude of FT is given by27

���ÛCoul�1�� = �0;exc2;0pl�ÛSNP1−SNP2�1�;0exc2
;0pl�

+ 	
pl

�0;exc2;0pl�ÛSNP1−MNP�0exc1
;0exc2

;pl���0exc1
;0exc2

;pl��ÛSNP2−MNP�1�;0exc2
;0pl�

E1 − Epl + i�/�
, �21�

where the wave function �1� ;0exc2
;0pl� describes the state

with one exciton �1�� in SNP1, and no plasmons and exci-
tons in MNP and SNP2; similarly, the wave function
�0exc1

;0exc2
;pl�� denotes the state with one plasmon and no

excitons. The total Coulomb interaction operator should be
written as ÛCoul= ÛSNP1−SNP2+ ÛSNP1−MNP+ ÛSNP2−MNP, where
the terms describe the dipole-dipole interactions between
three NPs. For example, ÛSNP1−SNP2=�0e2 /�eff

2 	1,2�r�1 ·�r�2
−3��r�1 ·n����r�2 ·n�� /d3, where �r�1 and �r�2 are electron coordi-
nates related to SNP1 and SNP2, respectively; the sum
should be taken over all electrons taking part in interband
transitions in SNPs. The unit vector n� “connects” the SNPs
�Fig. 2�c��. For the SNP-MNP interaction, we have

ÛSNP1−SNP2 = e2/�eff	1,m
�r�1 · �r�m − 3��r�1 · n����r�m · n��/d1

3

, where �r�m is the position of an electron inside MNP; again,
�r�m is related to the MNP center. Using the fluctuation-

dissipation theorem23 and the response function of a single
spherical MNP, one can obtain the useful equality

�MNP��� = −
e2

�0
	
pl�

��pl��x�0pl��2� 1

�� − Epl� + i�/�

−
1

�� − Epl� + i�/�� .

In the next step, we use the resonant approximation and ob-
tain

���ÛCoul�1�� =
�0

�eff
2 e2dexc

2 � 1

d3 +
b��MNP���

d1
3d2

3 � ,

where bx=by =−1 and bz=2, as before. This equation repro-
duces our previous result �Eq. �19��. The upper two diagrams
in Fig. 8�a� show the processes corresponding to the two
terms in Eq. �26�. The second diagram in Fig. 8�a� describes
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FIG. 8. �Color online� �a� Diagrams responsible for FT,
plasmon-assisted FT, and transfer of energy to MNP. �b� These dia-
grams represent the shift of the exciton energy in the presence of
plasmons. �c� Diagrams for plasmon-assisted FT in the presence of
two interacting MNPs.
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the FT assisted by virtual creation of a plasmon in MNP.
Using perturbation theory, we also can calculate the FT am-
plitude in the presence of few MNPs. As an example, we
solve now the case of two MNPs �a and b� arranged in a line

�Fig. 8�c��. This case has a rather simple geometry; dab is the
inter-MNP distance, and dia and dib are the SNP-MNP dis-
tances. Including the interaction between MNPs in all orders
of the parameter 1 /dab

3 , we arrive to

���ÛCoul�1�� =
�0

�eff
2 e2dexc

2 � 1

d3 + � b��a

d1a
3 d2a

3 +
�0

2

�eff

b�
2�a�b

d1a
3 d2b

3 dab
3 +

b��b

d1b
3 d2b

3 +
�0

2

�eff

b�
2�a�b

d1b
3 d2a

3 dab
3 � 1

1 −
�0

2

�eff
2

b�
2�a�b

dab
6 � ,

where the functions �a�b�=�MNP,a�b���� are defined for two
MNPs �a and b�. The above formula assumes that the inter-
action between MNPs involves only dipole moments. In the
following, we will give numerical results involving all mul-
tipoles.

In the end of this section, we comment on the renormal-
ization of the exciton energy of a single SNP due to
the presence of other NPs. Mathematically, the exciton
shift due to the presence of other NPs is given by the
real part of the response function: �E1���1/��Re F�E1�.
For the case of SNP-MNP interaction only, this shift
is given the MNP response function �E1�

��1/��Re �metald
3r��m��1� /4��E� totE� tot

* . To calculate the
shift using diagrams, one should look at the response func-
tion F���� and sum up an infinite series of diagrams that
involve the exciton state; Fig. 8�b� shows two first relevant
diagrams. For SNP-MNP molecule, the exciton shift is a
relatively small number �less than 1 meV� as calculated in
Ref. 20. This shift of exciton energy can become important at
low temperatures whereas, at room temperature, it can be
neglected.

VI. NUMERICAL RESULTS

A. Numerical method

For numerical results, it is necessary to compute reliably
electric fields inside a NP complex and the response func-
tions �Eqs. �9�, �11�, and �12��. Here we employ the multi-
pole expansion method. This method is every efficient and
was used by us to calculate the optical properties of com-
plexes with many NPs �up to 100�.20 To solve the Poisson
equation �Eq. �14�� for the medium with nonuniform dielec-
tric constant �1�r� ,��, we expand the electrical potential in
terms of spherical harmonics: �tot=�external�t ,r��+	n�n,
where �external�t ,r��=�ext�r��e−i�t and �n is the potential in-
duced by the charges on the surface of the nth NP. The po-
tentials of single NPs are expanded in terms of spherical
harmonics as follows:

�n�r� = 	
l,m

ql,m
n Yl,m��n,�n�

rn
l+1 , �22�

where Yl,m�� ,�� are the spherical harmonics, −l�m� l, and
the coordinates ��n ,�n ,rn� are related to the coordinate sys-

tem of the nth NP. The standard boundary conditions are
introduced at the surface of each NP and involve the dielec-
tric constants �0, �m, and �s. In our computations, we trun-
cate the system of equations assuming that the coefficients
ql,m

n rapidly decrease as a function of l. Therefore, we include
only l� lmax. Below we will use lmax=5 that provides us with
a very good precision �the error is a few %�.

B. Silver NPs

Below we will use geometrical parameters similar to
those used in Sec. V E: d1=d2=10 nm and RNMP=4 nm.
First of all, we show that the dipole approximation provides
us with reliable estimates. As an example, Fig. 9�a� shows
the rates of exciton transfer from SNP1 to MNP calculated
within the dipole approximation �Eq. �15�� and numerically.
We also observed that the dipole approximation gives reli-
able estimates for the FT rates �Fig. 3�b��.

First we show the numerical results for the imaginary part
of the response function �Eqs. �9� and �11��. As an example,
we will compute the response function describing the trans-
fer process of 1z exciton as follows:

	1z = 	metal,1z + 	Förster,1z =
2

��1
Im i� d3r · j��r�E� tot

* �r�

�see Fig. 10�. This function describes energy transfer from
SNP1 to SNP2 and MNP. Mathematically, this function looks
like a dissipation rate of a SNP1 exciton due to absorption in
SNP2 and MNP. In Fig. 10, the exciton emission wavelength
of SNP1 is a variable, whereas the exciton wavelength of
SNP2 is fixed ��SNP2=600 nm�. The dielectric constants and
the overlap integral �J� were specified above. We see that
	metal,1z�	Förster,1z. This inequality reflects the fact that MNP
has many mobile electrons participating in the energy trans-
fer process. These electrons create a strong plasmon reso-
nance and a large dipole. Simultaneously, SNP2 absorbs the
SNP1 exciton via the exciton resonance; in our simplified
model, the exciton absorption under the resonant condition
�E1�Eexc2

� involves only four valence-band electrons �two
heavy-hole and two light-hole states�. However, SNPs give
the main contribution to photoluminescence process and,
therefore, the rate 	Förster plays the important role in optical
experiments and can be measured.2–4 Emission from metal
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NPs and their quantum yield are typically small because of
fast energy relaxation inside the metal crystal.

Due to fast spin relaxation, the optical spectra of SNPs at
room temperature depend on the averaged FT and metal
transfer rates,

	Förster = 	
�,��=x,y,x

	Förster,1�→2��� 8,

	metal,1 = 	
�

	metal,1�� 8.

These rates can be calculated using Eqs. �9�, �11�, and �12�.
For the excited states in Eq. �11� we use the approximation
�k

2�r�=1/VSNP2. In addition, we assume for simplicity that
the overlap integral J�E1� is a constant: J�E1�=J
=0.008 meV−1. As it was mentioned above, with this number
for the overlap integral, we obtain realistic numbers for inter-
SNP FT rates. Figures 11 and 12 show the averaged FT rate.
The plasmon-enhancement effect for the geometry �=180°
is very remarkable. Again, we see plasmon-enhanced FT.

Now we compute the FT efficiency and the ratio of emis-
sion peaks. The corresponding equations involve the bright
excitons:

e =
	Förster

	1
=

	Förster

	rad1 + 	metal,1 + 	Förster
,

where the averaged radiative rate is

	rad,1 = 	rad,exc	
�

P1�
a ��1�� 8.

Calculated efficiency and metal transfer rate are shown in
Fig. 13. As expected, the presence of the metal component

reduces the FT efficiency since the exciton energy flows to
MNP. We also can see the regime of enhanced FT efficiency
for �=180° and the exciton wavelength �SNP1�570 nm. The
increase of efficiency in this regime happens because the
metal transfer rate becomes small far from the plasmon reso-
nance. In general, we observe that the FT efficiency is re-
duced in the vicinity of the plasmon resonance due to strong
dissipation.

Now we calculate the PL spectrum of a SNP. The PL peak
intensities are given by

IPL,1 =
	rad,1

	1
I1,tot, IPL2 =

	rad,2

	2
�I2,tot + I1,tot

	Förster

	1

 .

We calculated the PL spectra as a sum of two Lorentzian
peaks: IPL���= IPL,1L��−�SNP1�+ IPL,2L��−�SNP2�, where
L���=�PL/ ��PL

2 +�2� and �PL=80 meV. The chosen broad-
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ening ��PL� is typical for the emission spectra of colloidal
SNPs in solution.4 Figure 14 shows the results. As before, we
used 1/	rad�10 ns and J=0.008 meV−1. Also, we assumed
that I2,tot= I1,tot. Calculated PL spectra are mostly governed
by the processes of energy transfer to MNP and it is not easy
to see the effect of FT. For the SNP pair ��SNP1 ,�SNP2�
= �440 nm,500 nm� and �=90°, we obtain the following pa-
rameters: 	Förster=0.1 ns−1 and 	Förster=0.78 ns−1. The corre-
sponding FT enhancement parameter f =7.8. Simultaneously,
the metal transfer rates become large: 	metal,1=5.2 ns−1 and
	metal,2=1.1 ns−1. The asymmetry of peaks in Fig. 14�a� is
mostly due to the large difference between 	metal,1 and
	metal,2. For the case of ��SNP1 ,�SNP2�= �400 nm,500 nm�
and �=180°, we obtain the same behavior. The PL peak
asymmetry is mostly due to a large difference between metal

transfer rates for SNP1 and SNP2. In the case of Fig. 14�b�,
the FT enhancement factor is remarkably large: f �50.

To summarize, we see from our calculations that the
cw-PL study is not so informative and should be analyzed
very carefully using the rate equations incorporating the set
of parameters, 	Förster, 	metal,1�2�, 	rad,1�2�, and I1�2�,ot. In par-
ticular, we should comment on the PL peak asymmetry. In
many experiments, the PL peak asymmetry can be taken as a
signature of FT. But, this is not the case for our situation.
Here, the PL peak asymmetry occurs due to exciton energy
transfer to MNP. The exciton peak of SNP1 becomes less
intensive than that of SNP2 because the energy relaxation
rate for SNP1 exciton is larger �see the numbers in Fig. 14�.
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The latter comes from the fact that the SNP1 exciton energy
is closer to the plasmon resonance. A time-resolved study of
single NP complex may be more productive and we will
discuss this opportunity below.

C. Gold NPs

Another important material system is Au nanocrystals. We
now show the results for SNP-MNP complexes with param-
eters d1=d2=8 nm, RMNP=4 nm, RSNP1=1.5 nm, and RSNP2
=2.5 nm. For the geometry �=90°, the FT process is sup-
pressed due to the screening effect �Fig. 15�a��. But, the ge-
ometry �=180° demonstrates again enhanced, plasmon-
assisted FT �Fig. 15�b��. In Fig. 15�b�, we also plot the metal
energy transfer rate. Again, this rate is larger than 	Förster.
This leads to a small FT efficiency, like in the case of Ag
MNP �Fig. 13�.

Like in the case of Ag MNP, the metal relaxation rates
determine the intensity of exciton peaks in cw-PL spectra. As
an example, we show the PL spectrum for ��SNP1 ,�SNP2�
= �800 nm,900 nm�. Because of fast energy relaxation, the
PL emission becomes strongly reduced �inset of Fig. 16�.
The peak asymmetry comes mostly from the difference in
energy relaxation rates, 	metal,1 and 	metal,2. The effect of FT
is visible in Fig. 16. In experiments, it can be derived from
the PL spectrum using the rate equations.

A more promising method to observe plasmon-enhanced
FT can be time-resolved PL. We now consider temporal dy-
namics of excitons and denote the populations of SNPs as
n1�t� and n2�t�. At t=0, n1�0�=n10 and n2�0�=n20 for exci-
tons in SNP1 and SNP2, respectively. The temporal evolu-
tion of exciton populations is given by

n1�t� = n10e
−	1t, n2�t� = ae−	1t + be−	2t,

where a=−	Förster / �	1−	2�n10 and b=n20+	Förster / �	1

−	2�n10. For simplicity, we assume that n12=n20. Figure 17
shows temporal dynamics. The indication of FT is the pres-
ence of two exponential functions in the temporal evolution
of PL signal of SNP2. Therefore, we will analyze the ratio
a /b. For the case ��SNP1 ,�SNP2�= �600 nm,660 nm�, a /b
�0.03. The ratio between pre-exponential amplitudes for the
case �600 nm, 660 nm� is a /b�0.33. Therefore, this looks
assessable for experimental studies. Figure 17 shows also the
straight line with a slope equal to d�ln n2�t�� / �dt�t=0. We can
see in Fig. 17 that the functions ln n2�t� decrease more rap-
idly than the straight lines. In this way, one can see the effect
of FT. We note that similar dynamics was observed, for ex-
ample, in Ref. 3 for an ensemble of SNPs. We also note that
the FT enhancement factors for the data in Fig. 17 are large
��8,17�.

VII. DISCUSSION AND CONCLUSIONS

The FT process is qualitatively different to the process of
energy transfer in plasmonic waveguides.28,29 The main dif-
ference is that the FT process can appear without excitation
of plasmons. Moreover, direct plasmon excitation leads to
dissipation and makes it difficult to observe the FT process.
In other words, energy transfer through virtual plasmons is
the best. In contrast, energy transfer in plasmonic
waveguides comes from excitation and propagation of real
plasmons; experimentally such transfer was realized in Ref.
28. The ideal situation for plasmon-assisted FT is energy
channeling without excitation of real plasmons. This trend
can be well seen using an idealized Drude model with very
small plasmon damping. We now assume that MNP has the
following dielectric constant: �m���=�
�1−�p

2 / ����
− i	p���. For the parameters of the model, we take �p

=2.6 eV, �
=12, and 	p=0.005 eV. The last parameter is
the plasmon damping. Of course, the realistic damping fre-
quencies in metals are much larger. Figure 18 describes the
FT process assisted by a metal NP with very small plasmon
damping. The ratio 	Förster,1z /	metal,1 is minimal in the plas-
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mon resonance because of strong energy losses during the
FT process. As the exciton energy moves away the plasmon
resonance, the ratio 	Förster,1z /	metal,1 increases and FT be-
comes more efficient.

Plasmons in optical experiments with metals represent os-
cillators with strong damping and, therefore, plasmon-
assisted FT of excitons should appear together with strong
energy relaxation. This tells us that the conditions for experi-
mental observation of plasmon-enhanced FT are peculiar: the
enhanced FT process should be studied in the regime of rela-
tively weak dissipation. In other words, the exciton energy of
donor SNP1 should be chosen not so close to the plasmon
peak. Yet, it should not be very far since the desired
plasmon-enhancement effect will be gone. On example is
given in Fig. 17�a�. In Fig. 17�a�, SNPs are taken with the
exciton wavelengths 600 and 660 nm. The metal dissipation
for 600 nm is not that strong since this wavelength is lower
than the plasmon peak �see Fig. 15�b��. At the same time, the
plasmon enhancement of FT remains strong �f =16.7�. Then,
accelerated transfer can be observed by analyzing the time-
resolved PL spectra �Fig. 17�a��. Above, we considered an
ideal material with small plasmon broadening and strong
plasmon resonance. Most commonly used metals, Au and
Ag, are far from this ideal material. Possibly, some metals
other than Au and Ag can be used in the future.

In this paper, we describe several examples of SNP pairs:
��SNP1 ,�SNP2�= �400,500�, �440, 500�, �600, 660�, and
�800 nm, 900 nm�. CdTe SNP pair can be used for the case
600/660. InGaN can be used for all above pairs as this ma-
terial has the unique compositional tunability; the band gap
of InGaN can be tuned from 0.7 to 3.45 eV.30 PbSe NPs also

offer the exciton energies from about 0.2 to 1.6 eV.31 PbSe
NPs can be used for the pair �800, 900�. A disadvantage of
PbSe NPs is a relatively high background dielectric constant
��s=23�; this will reduce the FT rate. Simultaneously, the
dielectric constants of CdTe and InGaN are not very large.
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For CdTe �s=7.2 and, for InGaN, the dielectric constant is in
the range 5.15��s�8.4.

To summarize our results, we developed a theory of
plasmon-assisted energy transfer between SNPs. For NP
complexes with relatively large dimensions �Lcomplex�RNP�,
we derived convenient analytical formulas based on the di-
pole approximation. In the general case, the energy transfer
rates should be calculated numerically. We performed our

calculations for both Ag- and Au-based nanocomplexes. Our
theory can be applied to a variety of semiconductor and
metal nanocrystal structures.
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