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We examine transport through a quantum dot coupled to three ferromagnetic leads in the regime of weak
tunnel coupling. A finite source-drain voltage generates a nonequilibrium spin on the otherwise nonmagnetic
quantum dot. This spin accumulation leads to magnetoresistance. A ferromagnetic but current-free base elec-
trode influences the quantum-dot spin via incoherent spin-flip processes and coherent spin precession. As the
dot spin determines the conductance of the device, this allows for a purely magnetic transistorlike operation.
We analyze the effect of both types of processes on the electric current in different geometries.
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I. INTRODUCTION

Electric transport properties depend on magnetic system
degrees of freedom as demonstrated by, e.g., the giant-
�GMR� and tunnel- �TMR� magnetoresistance effects. In
these it is used that charge currents can be tuned by changing
the relative orientation of magnetic moments in magnetic
heterostructures.1,2 For example, the transmission through an
interface between two ferromagnetic electrodes decreases as
the relative angle between the electrodes’ magnetization di-
rections increases, which is known as the spin-valve effect.3

If a nonmagnetic spacer region is inserted between source
and drain, the information about the relative spin orientation
is mediated between source and drain by spin accumulation
in the intermediate region.4–10 Scattering at the interfaces
may also contribute significantly to transport.11 Manipulation
of the accumulated spin opens the possibility to modify the
source-drain current. Such manipulation was suggested to be
achieved electrically with the help of spin-orbit coupling as
proposed by Datta and Das.12 It may also be accomplished
magnetically, e.g., by external magnetic fields13–16 or by ad-
ditional leads.17–19 In addition, in low-dimensional systems
the significant charging energy also affects transport, giving
rise to the well-known Coulomb staircase,3,20 but also affect-
ing the spin-dependence of transport.21–24

In this paper we study a magnetically controlled quantum-
dot spin transistor, in which the transport behavior is affected
by the interplay of spin accumulation and Coulomb charging.
We consider a single-level quantum dot with strong Coulomb
interaction that is connected to three ferromagnetic leads.
The base lead is kept charge-current-free, so that the source-
drain current is magnetically affected by the base lead only
via manipulation of the accumulated dot spin.

There are two qualitatively different ways in which the
current-free base lead affects the quantum-dot spin. One is
that the base electrode offers a channel of spin relaxation. An
electron with, say, spin up tunnels out of the dot and an
electron with spin down tunnels in. Such spin-flip processes,
which are accompanied by a spin but no charge current in the
base electrode, reduce the spin accumulation on the dot. The
strength of this relaxation depends on the orientation of the
base electrode’s magnetization direction relative to the spin
accumulation. This scheme has been proposed to realize a
“spin-flip transistor” with metallic islands in the absence of

Coulomb interaction.19 In quantum dots, however, there will
also be a second contribution, related to spin precession due
to the exchange interaction between the quantum-dot level
and ferromagnetic base electrode.22 In general, both types of
processes play a role. The main objective of this paper is to
identify and discuss the effect of both of them on the trans-
port characteristics.

In Sec. II, we define the model Hamiltonian and the ki-
netic equations for the quantum dot’s degrees of freedom,
and derive the conductance of the spin transistor, which is
discussed in Sec. III. In Sec. IV we discuss the special situ-
ation when the three magnetizations of the leads are chosen
pairwise orthogonal. In this case, the spin-related resistance
change is dominated by the exchange effect. We close with a
summary in Sec. V.

II. MODEL HAMILTONIAN, KINETIC EQUATIONS,
AND CURRENT

We study a single-level quantum dot with contacts to
three ferromagnetic leads �source �left�, drain �right�, base
�middle�� by tunnel junctions, described by the Hamiltonian

H = Hdot + HL + HM + HR + HT. �1�

The first part Hdot=���c�
†c�+Un↑n↓ models the quantum dot

as an Anderson impurity with a spin-degenerate electronic
level � and charging energy U for double occupancy. Each of
the three leads is described as a reservoir of itinerant elec-
trons in thermal equilibrium Hr=�k��r,k�ar,k�

† ar,k� with r
� �L ,M ,R�. Here �= + �−� denotes the majority �minority�
spin states which have the density of states �r

�. The lead
magnetization direction is characterized by the direction of
the magnetization vector pr, while the strength of the polar-
ization is given by its magnitude �pr � = ��r

+−�r
−� / ��r

++�r
−�.

The last part of the Hamiltonian HT=�r=L,M,RHT,r con-
nects the four subsystems by spin-conserving tunneling be-
tween dot and leads,

HT,r = �
k�,�

Vk�,�
r ar,k�

† c� + H.c. �2�

The tunnel matrix elements V�,�
r = tr	� �e−i�z�r/2e−i�y�r/2 ��


consist of the �spin-independent� tunnel amplitude tr, which
is a measure of the barrier height and thickness, times an
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SU�2� rotation about the relative polar angles �r and �r be-
tween the lead’s magnetization direction and the dot’s spin
quantization axis. The tunneling rate for electrons from lead
r with spin ± is quantified by �r

± /	=2
 � tr
2 ��r

± /	, and we
define �r= ��r

++�r
−� /2. The system considered in this paper

extends the quantum-dot spin valve studied in Ref. 22 by the
addition of a third �base� electrode. We choose this lead to be
floating, i.e., to carry no electric charge current. Instead, it
influences the quantum-dot spin, and thus the source-drain
current, only by magnetic interactions.

The state of the quantum dot is characterized by the prob-
abilities P� to find the dot empty ��=0�, singly ��=1�, or
doubly ��=d� occupied, as well as the average spin 	S with
S= �Sx ,Sy ,Sz�. We restrict ourselves to the limit of weak tun-
nel coupling, for which each tunnel event can be uniquely
attributed to one lead. Therefore the kinetic equations of a
quantum dot with three connecting leads appears identical to
the two-lead case,22 whereby the sum over the leads has to be
extended to include also the base �middle� lead. In lowest
order in the tunnel coupling �r, the kinetic equations read

d

dt�P0

P1

Pd
� = �

r=L,R,M

�r

	 �− 2fr
+��� fr

−��� 0

2fr
+��� − fr

−��� − fr
+�� + U� 2fr

−�� + U�
0 fr

+�� + U� − 2fr
−�� + U�

��P0

P1

Pd
� + 2� fr

−���
− fr

−��� + fr
+�� + U�

− fr
+�� + U�

�S · pr� , �3�

for the occupation probabilities of the different charge states,
while the spin degrees of freedom are determined by

dS

dt
= �

r=L,M,R

�r

	
� fr

+���P0 +
− fr

−��� + fr
+�� + U�

2
P1

− fr
−�� + U�Pd�pr −

�r

	
�fr

−��� + fr
+�� + U��S + S � Br,

�4�

where fr
+�� labels the Fermi function of lead r, and fr

−��
=1− fr

+��. The kinetic equation �4� contains a term describ-
ing coherent spin precession about an effective magnetic
field, mediated by tunneling between dot and leads,

Br =
1

	
pr

1



��

d �r��� fr
+��

	 − � − U
+

fr
−��

	 − �
� , �5�

where the prime on the integral symbolizes Cauchy’s princi-
pal value. In this paper we consider the case of flat bands
such that �r is independent of  and the exchange field Eq.
�5� vanishes in the absence of charging energy.

By solving the system of kinetic equations �3� and �4� in
the stationary limit �under the constraint of probability nor-
malization� we obtain the charge and spin occupation prob-
abilities. The stationary charge current into lead r is then
given by

Ir =
2�− e��r

	
� fr

+���P0 +
− fr

−��� + fr
+�� + U�

2
P1 − fr

−�� + U�Pd

− �fr
−��� + fr

+�� + U��S · pr� . �6�

We see that the quantum-dot charge and spin degrees of
freedom are coupled to each other, and both enter the expres-
sion for the stationary current. In particular, an accumulation

of spin in the quantum dot due to a finite source-drain volt-
age will reduce electric transport, which constitutes the spin-
valve effect.

The goal of this paper is to study how transport through
this spin valve can be controlled in a purely magnetic way by
means of the third lead. In order for this control to be purely
magnetic we keep the base electrode floating, i.e., it does not
carry any net charge current, IM =0.

The base lead influences the quantum-dot spin in two
qualitatively different ways. First, the base electrode can act
as �incoherent� sink for spin currents, thus offering a channel
of spin relaxation. Second, the exchange field originating
from the tunnel contact can give rise to coherent precession
of the quantum-dot spin. Both effects could lead to a transis-
torlike behavior as discussed in the next section.

III. QUANTUM-DOT SPIN TRANSISTOR

In this section we concentrate on the quantum-dot spin
transistor as shown in Fig. 1. Source and drain electrodes are
magnetized antiparallel to each other. This maximizes the

θ

QD

V
2− V

2+

I I

FIG. 1. Spin transistor consisting of a quantum dot connected to
source and drain leads by tunnel contacts. Source and drain have
antiparallel magnetizations so that a nonequilibrium spin is accu-
mulated on the dot, which modifies the conductance of the device.
A floating base lead can be used to influence the dot state solely by
spin currents, i.e., the source-drain conductance can be modified by
the alignment of the magnetization alone.
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magnitude of the accumulated spin on the quantum dot. The
magnetization direction of the base electrode encloses an
angle � with the source electrode. We are interested in the
dependence of the source-drain current on the angle �.

For simplicity we assume equal tunnel couplings �L=�R
=� and polarizations pL= pR= p of the source and drain elec-
trodes. Furthermore, we apply the transport voltage V sym-
metrically, VL=−VR=V /2, and focus on the linear-response
conductance G=�I /�V�V=0 for source-drain voltages
eV�kBT much smaller than the temperature.

In this case, the conductance can be expressed in terms of
typical time scales that determine the quantum-dot charge
and spin dynamics. The characteristic time scale of charge
transport, �c, is the lifetime of the singly occupied charge
state, limited by tunneling out of the dot or tunneling in of a
second electron to or from the source or drain lead,

1

�c
=

2�

	
�f−��� + f+�� + U�� . �7�

This time scale directly reflects the electrical current through
the quantum dot: in the absence of a source and drain lead
polarization we would obtain the linear conductance G
=�I /�V�V=0 as

G0 =
e2

	

1

kBT

P1
�0�

�c
. �8�

The conductance is directly proportional to 1/�c times the
equilibrium probability to find the dot singly occupied, P1

�0�

=2f+���f−��+U� / �f+���+ f−��+U��.
The time scale for spin transfer or spin coherence is some-

what more subtle. Tunneling processes from or to ferromag-
netic leads generate a finite spin accumulation as well as
offering relaxation channels, which limit the spin lifetime. In
Ref. 22 we chose to call the first and second terms in Eq. �4�
the accumulation and relaxation terms, respectively. For the
source and drain leads we keep this interpretation. The sepa-
ration of the tunneling processes into spin accumulation and
relaxation terms is to some degree arbitrary. To define a
proper spin lifetime, boundary conditions need to be speci-
fied. In the case of the base lead, the condition IM =0 allows
us to rewrite the contribution of the middle �base� lead M to
the spin kinetic equation �4� as

�dS

dt
�

M
= −

�M

	
�f−��� + f+�� + U���S − �S · pM�pM� + S � BM .

�9�

By removing the spin-accumulation term from the kinetic
equation we observe that the damping becomes anisotropic.
Putting these pieces together leads to the definition of a spin
lifetime

1

�s�

=
2� + �1 − pM

2 ��M

	
�f−��� + f+�� + U�� �10�

for the case when the magnetization of the base lead is par-
allel to source and drain leads. For orthogonal alignment the
spin lifetime becomes

1

�s�

=
2� + �M

	
�f−��� + f+�� + U�� . �11�

If the source and drain have a finite polarization p, an
average spin accumulates on the dot, giving rise to a magne-
toresistive effect which reduces the conductance proportional
to p2. In the case of parallel source and base magnetizations
��=0� the base magnetization is also parallel to the accumu-
lated spin. Due to this collinearity the precession term in Eq.
�4� vanishes and the conductance �8� is reduced to

G� = G0�1 −
�s�

�c
p2� . �12�

The characteristic charge transport time �c is independent of
the base lead as it is floating. In contrast, the base lead may
carry spin currents and thus reduce the spin lifetime, �s��c.

In the case of perpendicular magnetization alignment �
=
 /2, the intrinsic coherent spin precession also becomes
important. In the stationary situation the electrical currents
through source and drain interface are equal, therefore we
may focus on the dot-drain interface only. This interface can
be seen as a tunnel magnetoresistance element of its own,
i.e., its conductance depends on the relative angle between
dot spin S and lead magnetization pR. Since the exchange
field originating from the base lead modifies the dot-spin
direction, it also modifies the conductance of the device.25 In
the orthogonal magnetization alignment the spin precession
effect is maximally pronounced, and the magnetoresistance
of the total device is reduced by the factor 1 / �BM

2 �s�

2 +1� to

G� = G0�1 −
�s�

�c
p2 1

BM
2 �s�

2 + 1� . �13�

In Fig. 2 we plot the normalized conductance change �
= �G���−G�� /G� of the transistor structure as a function of
the base lead magnetization direction. For �=
 /2, the device
conductance is maximal, since in this alignment both the
spin relaxation due to the base lead and the spin-precession
effect maximally suppress the magnetoresistance caused by
spin accumulation. By comparison with the dashed curve, for
which the exchange field was set to zero manually, it can be

0 π/2π/4 3π/4
θ

0

0.05

0.1

0.15

0.2

0.25

G
(θ

)-
G

||
/G

||

w/o exch. field

FIG. 2. Angular dependence of the normalized conductance
change �= �G���−G�� /G� of the spin transistor �solid line�. Com-
parison to the case where the exchange field was artificially set to
zero �dashed� reveals that the transistor effect is significantly en-
hanced by exchange interaction. The parameters are �=0.6U, pL

= pM = pR=0.6, �L=�M =�R, and U=10kBT.
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seen that the transistor shows significant influence of the
exchange interaction, which is caused by electron-electron
interaction.

In Fig. 3�a�, the maximum value of ���=
 /2� is plotted
as a function of gate voltage. � shows strong variations,
which arise only due to the gate-voltage dependence of the
exchange field from the base lead �Fig. 3�b��. Without the
exchange interaction, no gate-voltage dependence is ex-
pected �see dashed line�. Due to its strong gate-voltage de-
pendence, the exchange interaction contribution can be sepa-
rated from the influence of the anisotropic spin-flip
relaxation, which does not depend as strongly on the gate
voltage.

IV. ORTHOGONAL MAGNETIZATION

In the quantum-dot spin transistor geometry shown in Fig.
1 and discussed in the previous section, both spin-flip and
spin-precession processes contribute at the same time. In the
last part of this paper, we want to isolate the exchange-field
contribution in a purely magnetic way.

For this, we consider a geometry of the quantum-dot spin
transistor with pairwise orthogonal magnetization directions
in the nonlinear response regime �see Fig. 4�. There are two
realizations of such a system, defined by pL · �pM �pR��0.
They are related by reversal of the base magnetization or
reversal of the voltage �and thus current direction�. For these

systems the anisotropic damping is equal, as it gives rise
only to factors 1−pM

2 . Any difference in the transport behav-
ior of the two systems can thus be attributed entirely to ex-
change effects.

The exchange field now always has contributions from all
three leads, as source and drain contributions never cancel
each other. Correspondingly, the axis and angle of precession
of the dot spin depend on all three lead potentials and are not
easily visualized, in particular in the case of finite bias volt-
ages.

In the linear-response regime the conductances of the left-
�LHS� and right-handed systems �RHS� are equal to each
other. This is a consequence of the symmetry of the system
for equal source and drain parameters �pL= pR, �L=�R� �see
Fig. 5�.

In order to observe a difference in the conductances of the
LHS and RHS, the symmetry of source and drain has to be
broken, which is best done by application of finite bias volt-
ages �Fig. 6�. If the exchange fields are set to zero manually
in the kinetic equations, a mechanism similar to the one de-
scribed in Ref. 22 leads, for p→1, to complete spin blockade
between � and �+U: driven by the current, the accumulated
spin tends to align antiparallel to the drain electrode and thus
blocks transport �dot-dashed line�. In the presence of an ex-
change field this blockade is lifted due to precession of the
accumulated spin. This process differs for the left- and right-
handed systems due to the different precession directions,
which are reflected in different conductances.

V. CONCLUSION

We analyzed electron transport through a magnetically
controlled quantum-dot spin transistor in the regime of weak
dot-lead tunnel coupling. The presence of Coulomb interac-
tion on the dot gives rise to an exchange interaction of the
accumulated dot spin with the ferromagnetic leads, giving
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FIG. 3. �a� Gate-voltage dependence of �= �G���−G�� /G� with
�solid� and without �dashed� exchange field for �=
 /2. The level
position is at �=0, and charging energy is U=10kBT. �b� Absolute
value of the exchange field of the middle lead for pM =1. �c� Spin
lifetime in the parallel case �s�

. The product BM�s�
determines the

conductance change. Other parameters as in Fig. 2.
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FIG. 4. Two realizations of a system with pairwise orthogonally
magnetized leads connected by reversal of the base magnetization.
Their different symmetry can be reflected in the symmetry of the
conductances.
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FIG. 5. Rotation shows that the right-handed system is symmet-
ric with the left-handed system with reversed current and voltage.
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rise to spin precession. Furthermore, the tunnel coupling to a
current-free ferromagnetic base electrode leads to an aniso-
tropic spin relaxation: dot spins oriented along this lead’s
magnetization experience a weakened damping, i.e., an in-
creased spin lifetime relative to other spin orientations.

These two effects allow for a purely magnetic control of
the source-drain current. We demonstrated this for two set-
ups. In the first, with source and drain magnetized antiparal-
lel to each other, we found a dependence of the source-drain
voltage on the magnetization direction of the base lead. The
influence of the exchange field becomes clearly visible in the
gate-voltage dependence of the conductances, allowing for
the possibility of separating the two effects in experiments.
As a second possibility to isolate the exchange-field contri-
bution we propose a setup with all three leads’ magnetiza-
tions being pairwise orthogonal to each other. In this case the
difference of the currents for the left- and right-handed sys-
tems is purely due to the exchange field.
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APPENDIX: EXCHANGE FIELD AND SPIN-MIXING
CONDUCTANCE

The accumulated spin S on the quantum dot is coupled to
the magnetization of the ferromagnetic lead via virtual tunnel
processes. This coupling leads to a precession of the dot spin
around the lead magnetization direction, described by the
exchange field B in Eq. �5�. In terms of angular momentum
transfer the precession is equivalent to a spin current trans-
verse to both lead magnetization and dot spin-accumulation
direction. The transversality is directly reflected in the cross-
product structure �S�B� in Eq. �4�.

For noninteracting systems, spin transport though inter-
faces has been studied extensively in terms of a scattering-
wave approach.26 Brataas et al. found19,27 that spin transport
can be characterized by three parameters: the conductance

for spin-up electrons, that for spin-down electrons, and the
complex spin-mixing conductance

G↑↓�� =
e

h
�1 − r↑↑�r↓↓��� , �A1�

where r�� are the reflection amplitudes of electrons with spin
� and energy . Electrons entering the junction from the
normal side and being reflected at the interface acquire a
spin-dependent phase shift, equivalent to a rotation of the
spin state about the magnetization direction of the ferromag-
net. This mechanism, also discussed in the context of singlet-
triplet mixing in ferromagnet-superconductor hetero-
structures,28 is described by the imaginary part of the spin-
mixing conductance and leads to a transverse component of
the spin current through an interface.

We now show how the exchange field that we calculate in
terms of Green’s functions can, for the noninteracting limit
U=0, be matched to the imaginary part of the spin-mixing
conductance. For this we consider an electron arriving from
the ferromagnet, which scatters back at the ferromagnet–
quantum-dot interface.31 By means of the Fisher-Lee
relations,29,30 we can relate the reflection amplitude

r���� = − 1 + i����G��
ret �� �A2�

to the retarded Green’s function Gret�� of the quantum dot
and the spin-dependent tunnel coupling ��, which yields

G↑↓�� =
ie

h
��↑G↑↑

ret − �↓G↓↓
adv�

=
e

h
��↑ + �↓��− Im Gret + ip Re Gret� �A3�

plus terms of higher order in �. In the last line, we dropped
the spin indices on the Green’s functions, as in the limit of
zeroth order in �, the diagonal Green’s functions G��

ret ��
=1/ �−�+ i0+� are independent of spin.32

At this point, we can identify two conceptually different
contributions to the spin-mixing conductance: the real part of
the conductance is proportional to the spectral density of the
quantum dot, associated with a real particle transfer between
lead and dot. On the other hand, the imaginary part of the
mixing conductance is proportional to the polarization p
= ��↑−�↓� / ��↑+�↓� and to Re Gret. To get the total transfer
of angular momentum between dot and lead, we need to
integrate over all frequencies , which gives rise to a prin-
cipal value integral with integrand 1/ �−��, in agreement
with a full Green’s function formulation of the spin current
through a tunnel barrier.33

Eventually, we find the resulting integral equal to the ex-
pression of the exchange field Br in Eq. �5� in the noninter-
acting limit U=0,

� d Im G↑↓�� = 2e�Br� . �A4�

This result complements the scattering picture,19,26,27

within which the spin-mixing conductance emerges from the
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FIG. 6. Current-voltage characteristic for the orthogonal con-
figuration with pL= pR= pM =0.6, �L=�R=�M =�, �=10kBT, U
=30kBT.
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shape of the interface barriers. Such structural aspects are not
accessible within the Green’s function formalism employed
in this paper, since the underlying Hamiltonian describes
high and narrow barriers. The scattering wave approach, on

the other hand, is unable to describe many-particle effects
such as the exchange field. While both contributions are
present in the spin-mixing conductance, it depends on the
specific system which one dominates.
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