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Adjusting calculated spectra of the imaginary part �2 of the dielectric function to experimental ones in a
spectral region close to and above the fundamental absorption edge, we determined the conduction-band
dispersion relation for 12 III-V and II-VI semiconductors with zinc-blende crystal structure and deduced the
corresponding nonparabolicity coefficients. This yields an experimental determination of the conduction-band
nonparabolicity and momentum electron effective mass as a function of the wave vector and free electron
concentration. For most of the semiconductors, we present experimental data extended to electron energies
between 0.6 and 2.2 eV, which are significantly higher than those achievable by doping or in magnetic fields.
In addition, examination of experimental dielectric functions reported by various authors showed that the
magnitude of �2 is overestimated in the existing literature data for GaSb, ZnTe, ZnS, and CdSe, probably due
to the neglect or incorrect treatment of possible overlayers.
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I. INTRODUCTION

It is now well established that both the three highest va-
lence bands �VBs� and the lowest conduction band �CB� of
III-V and II-VI zinc-blende semiconductors are nonpara-
bolic, nonspherical, and spin split. Details of the band struc-
ture in the vicinity of the � point of the Brillouin zone �BZ�
are needed to correctly interpret optical and transport phe-
nomena in three-dimensional and low-dimensional systems
and remain the subject of numerous experiments and theo-
retical works. In early investigations of InSb, InAs, GaAs,
and InP, the CB was commonly assumed to be isotropic but
not parabolic. Studies of the nonparabolicity were greatly
stimulated by the famous paper of Kane,1 who derived an
explicit dispersion relation for the CB in InSb. Infrared �ir�
absorption and reflectance, Faraday rotation, and thermoelec-
tric power in a high magnetic field were among the most
popular experimental methods used. Experiments yielded the
electron effective mass as a function of carrier density in
qualitative agreement with Kane’s description. It should be
noted, however, that great dispersion of experimental data
and, hence, considerable uncertainty regarding precise values
of the electron effective mass have existed. A comprehensive
review of early results for the nonparabolicity and its effects
on transport phenomena in small-gap semiconductors can be
found in Ref. 2. Now, it seems that the values of the electron
effective mass at the bottom of the CB are well known for
most of the III-V and II-VI zinc-blende semiconductors from
cyclotron resonance �CR� and optically detected CR
measurements.3–7 In addition, CR investigations demon-
strated the CB nonparabolicity, anisotropy and spin splitting
in a number of semiconductors.8–11 Effective masses in
heavily doped n-GaAs �Ref. 12� and n-InP �Ref. 13� were
obtained from Shubnikov–de Haas experiments and shown
to match well the CR data at lower electron concentrations.
Cardona and co-workers14,15 used the technique of resonant
Raman scattering by phonons in a magnetic field to deter-
mine the effective mass and dispersion relation in GaAs in

the region from 0.1 to about 0.3 eV above the CB minimum.
For a nonparabolic CB, the nonparabolicity ENP=Ecp�k�

−Ec�k� can be defined,16 where k and Ec�k� are the electron
wave vector and the dispersion relation for the CB, respec-
tively, while Ecp�k� would be the electron energy assuming a
parabolic band. The lowest CB of zinc-blende semiconduc-
tors is both nonparabolic and nonspherical �warped�, which
is related to the wave function mixing due to coupling to
other valence and conduction bands.1,16,17 In addition, owing
to a lack of inversion symmetry of the crystal lattice, the
lowest CB is also spin split �except for k parallel to the �100�
and �111� directions�.16 The CB spin splitting has a maxi-
mum value for k � �110� and varies as k3 for sufficiently small
k.17,18 As a result, the CB nonparabolicity depends on the
direction of k being the smallest for k � �100� and the largest
for k � �111�, as revealed by calculations.16,17 Generally, the
nonsphericity and spin splitting of the CB close to the BZ
center are small compared with the nonparabolicity. For ex-
ample, in GaAs, provided that the wave vector corresponds
to electron states at the Fermi level in a strongly degenerate
semiconductor with an electron concentration ne=1019 cm−3,
the average of ENP is about 45 meV, while the difference
between ENP values for the two principal directions is only
about 10 meV �Refs. 16 and 17� and the spin splitting is less
than 5 meV.17,18 In this paper, we will neglect the nonsphe-
ricity and spin splitting of the CB. We will assume a spheri-
cal CB and concentrate exclusively on the study of nonpara-
bolicity effects.

Currently, experimental data for the CB nonparabolicity
are primarily limited by obtainable doping levels, magnetic
fields, and sample quality. For the most studied small-gap
�InSb, InAs� and medium-gap �GaAs, InP� semiconductors,
they are restricted to an electron energy of about 0.5 eV
�Ref. 2� and 0.3 eV,15,17 respectively. Quantitative experi-
mental data for other III-V and II-VI binary compounds are
rather scarce and will be reviewed in Sec. IV. Recently, we
have shown that the CB nonparabolicity can be derived from
a comparison between the experimental and calculated
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imaginary parts �2 of the dielectric function �DF�.19,20 The
goal of this work is the determination of the CB dispersion
relation in altogether 12 III-V and II-VI zinc-blende semi-
conductors. Our approach is based upon analyzing excitonic
and direct band-to-band optical transitions between the three
highest VBs and the lowest CB in a spectral region close to
and above the fundamental absorption edge. Electron ener-
gies which can be studied in this way are expected to be
significantly higher than those achievable by doping or in
magnetic fields.

In our investigation, GaAs and InP serve as model mate-
rials to test the validity of the method used. We demonstrate
that our results are in excellent agreement with those avail-
able in the literature. In addition, we expand the experimen-
tal data on the nonparabolicity in these semiconductors to
significantly higher electron energies. For completeness,
InSb and InAs were also included into the analysis, although
the accessible energy range is relatively narrow in this case.
As for other semiconductors, we obtained experimental data
for the CB nonparabolicity and effective mass in the region
from the bottom of the CB up to electron energies between
0.6 and 2.2 eV depending on the semiconductor of interest.

The paper is organized as follows. In the next section, the
method we used is described. Section III addresses effects
caused by the complex VB structure. We investigate how the
uncertainty of Luttinger parameters influences the accuracy
of the method. In Sec. IV, the determined CB nonparabolicity
and effective mass as a function of the wave vector and free
electron concentration are reported and compared with data
available in the literature. In Sec. V, experimental results of
the present study are analyzed in terms of correspondence to
simple models of the CB structure based on the kp theory. In
particular, we can conclude that the magnitude of �2 is over-
estimated in existing experimental data for some semicon-
ductors. A summary is given in Sec. VI.

II. METHOD: FORMULATION AND GENERAL
REMARKS

In the present work, we obtain data on the CB nonpara-
bolicity by adjusting the calculated imaginary part �2 of the
DF to the experimental one. Experimental �2 data were taken
from the literature �see Secs. IV and V for references and
discussion of the choice made�. An explicit description of the
model for �2 and calculation procedure is given in our pre-
vious paper,20 where the intensity of excitonic absorption in
III-V semiconductors was studied. We showed that, in order
to achieve the quantitative agreement with experiment, the
excitonic contribution to �2 has to be weighted in favor of
the band-to-band transitions by a factor fx that lies between
zero and unity. Data points for various semiconductors and
temperatures are well described by a fitting function

fx =
��p/ax�b0

b1 + ��p/ax�b0
, �1�

where �p and ax are the phonon mean free path and exciton
Bohr radius, respectively, b0=1.32 and b1=0.764. Then, the
expression for calculating �2 is as follows:

�2�E� = fx�2
DX�E� +

A0m0EP

16�2E2 �
v
�

BZ

�1 + fxSv�Fv�k���Ec�k�

− Ev�k� − E�dk , �2�

with

�2
DX�E� =

A0m0EP

2E2 �8��0�s

e2 	3

�
v

�
n=1

�

Fv
DX�Eb

n
	3

���E − Egv +
Eb

n2 	 �3�

and

Sv = �2�
�v�/�1 − exp�− 2�/
�v�� , �4�

where E is the photon energy, the first and the second terms
in Eq. �2� describe contributions due to discrete excitonic
states and Coulomb-enhanced band-to-band transitions, re-
spectively, A0=�2e2 /�0m0

2, � is the Planck constant, e and m0
are the free electron charge and mass, respectively, �0 is the
electric constant, EP is the momentum matrix element in
energy units, v denotes the heavy-hole �HH�, light-hole
�LH�, or split-off hole �SH� VB, Sv is the Sommerfeld factor,
Fv�k� is a dimensionless wave-vector-dependent quantity
proportional to the transition probability between the VB v
and the CB, Ev�k� is the dispersion relation in the VB v, �s is
the static dielectric constant, Fv

DX specifies the oscillator
strength of the exciton series belonging to the VB
v �Fv

DX=2/3 for an unstrained zinc-blende crystal20�, Eb is
the exciton binding energy which is assumed to be identical
for all three exciton series belonging to the HH, LH, and SH
VBs, Egv is the energy gap between the CB and the VB v at
k=0, and �v= �E−Egv� /Eb. The VB structure and transition
probabilities are calculated making use of Luttinger param-
eters 	1, 	2, and 	3 and spin-orbit splitting 
so by solving the
6�6 Hamiltonian for eigenfunctions and eigenvalues. The
CB dispersion relation in Eq. �2� is taken in the form

Ec�k� =
�2

2m0

k2

me0
* + �

i=1

i0

Ni� k2

me0
* 	i+1

, �5�

where me0
* is the electron effective mass at the CB bottom in

units of the free electron mass, Ni are the nonparabolicity
coefficients, and the electron energy is counted from the CB
bottom. To compare a calculated �2�E� with an experimental
spectrum, the broadening has to be incorporated. We use the
Gaussian line-shape function with � as the broadening pa-
rameter. Arguments in favor of the Gaussian broadening as
compared with the Lorentzian one have been given
previously.20

For a spherical band, the nonparabolicity coefficients Ni
do not depend on the direction of k, and the CB dispersion
relation expressed by Eq. �5� can equivalently be written as
follows:

Ec = �2k2/�2m0me
*� , �6�

where the quantity
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me
* = me0

* �1 + �
j=1

j0

MjEc
j	 �7�

has a meaning of the energy-dependent �or wave-vector-
dependent� effective mass, with Mj representing a new �but
equivalent to Ni� set of nonparabolicity coefficients. In the
description of many transport and optical phenomena, the
momentum �or dynamical� effective mass mp arises,2 which
is defined as 1/mp= �1/�2k��dEc /dk�. From Eqs. �6� and �7�,
we have

mp
* = me0

* �1 + �
j=1

j0

�j + 1�MjEc
j� , �8�

where mp
* is the electron momentum effective mass in units

of the free electron mass. In the limiting case of a strong
degeneracy of a semiconductor, there is a simple relation2

kF
2 = �3�2ne�2/3 �9�

between the Fermi wave vector kF and the electron concen-
tration ne. Introducing it in Eq. �5� yields the dependence of
the Fermi level on the carrier density. Finally, combining
Eqs. �5�–�9�, the momentum effective mass can be obtained
as a function of electron concentration, provided that the
semiconductor is strongly degenerate.

Assuming only the first coefficient M1 to be nonzero in
Eq. �7�, the simplest dispersion relation for a nonparabolic
spherical band is obtained, which can be written as follows:

�2k2/�2m0me0
* � = Ec�1 + Ec/E

*� , �10�

where E* is a constant. This leads to a linear dependence of
the momentum effective mass on electron energy:

mp
* = me0

* �1 + 2Ec/E
*� . �11�

Equation �10� and �11� are frequently used to account for
nonparabolicity effects observed in various
experiments.2,12,17

Now, we briefly address the procedures used. Values of
input parameters �me0

* , EP, Eb, �s, and fx� to calculate �2 for
III-V semiconductors are identical to those presented in Ref.
20. The only exception is GaN �see Sec. IV A for more de-
tails�. Varying coefficients Ni in Eq. �5� and the broadening
parameter � to adjust the calculated �2 spectrum to the ex-
perimental one over a wide spectral region, we obtain the CB
dispersion relation Ec�k�, which is then fitted by Eqs. �6� and
�7� to determine the coefficients Mj. Terms up to i0=8 and
j0=4 were included in Eqs. �5� and �7�, respectively. The
results are presented and discussed in Secs. IV and V.

The problem is more complicated if we consider II-VI
semiconductors. First of all, the momentum matrix element
EP is known with great uncertainty for these materials, and
we cannot obtain reliable data for the factor fx by a direct
comparison of the calculated �2 with experiment, as it was
done for III-V semiconductors in Ref. 20. In addition, sets of
Luttinger parameters are not established yet. Therefore, we
estimate fx using Eq. �1� and present composite Luttinger
parameter sets deduced from existing literature data. Details
of the procedure are given in Sec. IV B. Then, the values of

EP and the CB dispersion relation are determined from com-
parison of calculated and experimental �2 spectra.

For the sake of understanding how much details of the VB
structure can affect the determined CB dispersion relation,
different sets of Luttinger parameters proposed for GaAs and
InP are compared in the next section.

III. EFFECTS OF THE COMPLEX VALENCE-BAND
STRUCTURE

For most of III-V and II-VI zinc-blende semiconductors,
numerous sets of Luttinger parameters have been obtained
from various experiments and calculations. In general, use of
different sets leads to somewhat differing results for the CB
dispersion relation. In this situation, a composite set of Lut-
tinger parameters can benefit. Arguments for and procedure
to introduce it will be given below. To study possible effects
of the VB structure, we compare sets proposed for GaAs and
InP �see Table I�. Note that other important input parameters
are known with great precision for these semiconductors. To
illustrate the differences between the sets, we calculated the
effective mass of holes mv

*�k� defined by

�2k2

2m0mv
*�k�

= Ev��k� , �12�

where Ev��k� is the dispersion relation in the VB v and the
hole energy is counted down from the top of the VB v.
Effective masses given by Eq. �12� at k=0 for the three prin-
cipal directions are the same ones which can be directly cal-
culated using the expressions involving Luttinger
parameters.3 One can find that, for most sets, the HH VB
exhibits a significant anisotropy but is only slightly nonpara-
bolic, while the LH and SH bands are both nonparabolic and
nonspherical. Table I lists the HH effective mass at k=0 in
the �100� and �111� directions, as well as the LH effective
mass in the �111� direction for k=0 and k=k0, with k0
=0.84 nm−1, to demonstrate the anisotropy and nonparabo-
licity of the VB. Note that conduction-band states described
by a wave vector k0 would be those of electrons at the Fermi
level in a strongly degenerate semiconductor with ne=2
�1019 cm−3. It can be seen in Table I that discrepancies
occur between different sets regarding the resulting effective
masses, anisotropy, and nonparabolicity. Sometimes, this is
quite significant �compare, e.g., sets proposed by Bimberg et
al.132 as well as by Pfeffer and Zawadzki17�b� for InP� mean-
ing that the shape of the constant-energy surface over which
the integration in Eq. �2� is carried out can greatly vary from
set to set. Note that the transition probability described by
the quantity Fv�k� also changes.

To study the effects of details of the VB structure, we
adopted the following procedure. The factor fx that deter-
mines excitonic contributions to �2 was fixed at 0.67 and
0.78 �Ref. 20� and experimental �2 from Refs. 21 and 22
were taken for GaAs and InP, respectively. Other input pa-
rameters are quoted in Ref. 20. Composite sets of Luttinger
parameters for GaAs and InP were derived by averaging the
spherical parameter �, the cubic parameter �, and the HH
effective mass mHH

* along the �100� direction at k=0. The
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above quantities were calculated from the reported Luttinger
parameters as follows:23

� =
6	3 + 4	2

5	1
, � =

	3 − 	2

	1
, mHH

* =
1

	1 − 2	2
. �13�

The resulting sets of Luttinger parameters are close to those
of Vurgaftman et al.3 �see Table I�, who also averaged litera-
ture data but did not specify explicitly the details of the
procedure. For each set of Luttinger parameters shown in
Table I, the �2 spectrum was calculated. To adjust it to the
experimental one, the momentum matrix element EP and
nonparabolicity coefficients Ni were varied.

Figure 1 shows fits �solid lines� to experimental �2 spectra
�circles� for GaAs and InP using the composite sets of Lut-
tinger parameters. In Fig. 2, the resulting CB dispersion re-
lations are presented �solid lines�. For comparison, calculated
�2 spectra and dispersion relations assuming a parabolic CB
are also shown by dotted lines to demonstrate that deviations
from a parabolic approximation are not small and can be
detected starting at low electron energies. Use of other sets
of Luttinger parameters results in fitting curves which are
practically indistinguishable from those in Fig. 1. However,
the adjusted values of EP and Ni differ. The EP values are
collected in Table I, while CB dispersion relations mostly
deviating from that obtained using the composite sets are
shown in Fig. 2 by dotted and dashed lines. These occur

TABLE I. Luttinger parameters for GaAs and InP obtained from experiments or calculations by various authors as well as the resulting
effective masses of heavy holes at k=0 in the �100� and �111� directions and of light holes in the �111� direction for k=0 and k=k0. For a
detailed explanation of k0, EP, E*, and Xs values, see Eqs. �2�, �10�, and �14� and related paragraphs.

Reference 	1 	2 	3

mHH
* at k=0 mLH

* for �111�
EP

�eV�
E*

�eV� Xs�100� �111� k=0 k=k0

GaAs

117 7.2 2.5 2.5 0.455 0.455 0.082 0.125 28.2 1.18 1.25

118 6.77 2.28 2.88 0.452 0.990 0.080 0.140 27.2 1.35 1.31

70 7.65 2.41 3.28 0.353 0.917 0.070 0.133 28.9 1.26 1.25

119 7.10 2.32 2.54 0.407 0.495 0.082 0.127 28.4 1.22 1.26

120 6.98 2.25 2.88 0.403 0.820 0.079 0.136 27.4 1.30 1.29

121 6.85 2.10 2.90 0.377 0.952 0.079 0.139 27.4 1.33 1.29

122 7.05 2.35 3.00 0.426 0.952 0.077 0.137 27.4 1.33 1.29

123 7.06 2.22 3.01 0.382 0.962 0.077 0.137 27.6 1.33 1.29

75 7.17 2.88 2.91 0.709 0.741 0.077 0.133 27.2 1.36 1.30

124 6.790 1.924 2.681 0.340 0.700 0.082 0.135 27.8 1.27 1.28

125 6.80 1.90 2.73 0.333 0.746 0.082 0.136 27.8 1.29 1.28

76 7.20 2.15 3.05 0.345 0.909 0.075 0.136 27.8 1.33 1.27

126 7.10 2.02 2.91 0.327 0.781 0.077 0.134 28.1 1.30 1.27

17�b� 7.80 2.46 3.30 0.347 0.833 0.070 0.131 28.4 1.30 1.24

127 6.67 1.87 2.67 0.341 0.752 0.083 0.137 27.7 1.29 1.29

3 6.98 2.06 2.93 0.350 0.893 0.078 0.137 27.6 1.30 1.28

128 7.18 2.23 2.99 0.368 0.833 0.076 0.135 27.9 1.30 1.27

This worka 6.85 2.16 2.79 0.353 0.917 0.070 0.133 27.6 1.31 1.29

InP

129 5.75 1.39 2.05 0.337 0.606 0.102 0.249 22.4 1.47 1.25

70 6.28 2.08 2.76 0.472 1.32 0.085 0.312 21.1 1.61 1.27

130 5.04 1.56 1.73 0.521 0.633 0.118 0.258 21.2 1.50 1.31

131 5.15 0.94 1.62 0.306 0.524 0.119 0.239 22.1 1.38 1.27

132 4.95 1.65 2.35 0.606 4.00 0.104 0.377 19.8 1.76 1.37

133 5.22 1.83 2.34 0.641 1.85 0.101 0.340 20.2 1.72 1.34

17�b� 6.56 1.75 2.32 0.327 0.521 0.089 0.232 22.7 1.27 1.19

134 5.05 1.60 1.73 0.541 0.629 0.118 0.257 21.1 1.50 1.32

25 4.94 1.50 1.99 0.515 1.04 0.112 0.302 20.3 1.54 1.34

3 5.08 1.60 2.10 0.532 1.14 0.108 0.308 20.7 1.62 1.34

This worka 5.09 1.50 1.98 0.480 0.886 0.111 0.288 21.2 1.59 1.32

aComposite set; see Eq. �13� and text.
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when sets of Vrehen117 and Neumann et al.75 for GaAs, as
well as sets of Bimberg et al.132 and of Pfeffer and
Zawadzki17�b� for InP, are used.

To obtain a simple quantitative measure of the nonpara-
bolicity, we employed Eq. �10� and calculated the value E* to
match the determined dispersion relation Ec�k� at a given k.
The inset of Fig. 2 shows that E* deduced in this way de-
pends on the wave vector. Values of E* related to k=k0 are
presented in Table I. As seen, EP and E* are not very sensi-

tive to details of the VB structure. This can be understood as
follows. For parabolic conduction and valence bands with
effective masses me and mh, respectively, the imaginary part
�2 of the DF is proportional to EP�mr�3/2, where mr

=memh / �me+mh�.24 Considering the HH and LH VBs to con-
tribute to �2 close to the band gap and using the spherical
approximation for the VB,23,25 we can expect that a relation
EP1/Xs should be approximately satisfied, where

Xs = � mhs
*

me0
* + mhs

* 	3/2

+ � mls
*

me0
* + mls

* 	3/2

, �14�

mhs
* = 1/�	1 − 2	�, mls

* = 1/�	1 + 2	�, 	 = �3	3 + 2	2�/5.

�15�

Values Xs calculated using me0
* =0.0624 and me0

* =0.0752 for
GaAs and InP,20 respectively, are presented in Table I. Their
deviations from the average are relatively small, which ex-
plains why the determined EP values are weakly sensitive to
different sets of Luttinger parameters. In addition, as seen in
Fig. 3�a�, the relationship EP=C /Xs is indeed well fulfilled,
with C being 35.4 and 27.5 eV for GaAs and InP, respec-
tively. As for the quantity E*, one can expect its dependence
not only on hole masses at k=0 but also on the nonparabo-
licity and anisotropy of the VBs. However, we did not carry
out a detailed analysis. As shown in Fig. 3�b�, a trend of E*

to grow with increasing Xs is observed. Linear fit by E*

=C0Xs−C1 yields C0=1.38 eV, C1=0.466 eV for GaAs and
C0=2.27 eV, C1=1.42 eV for InP, respectively. Scattering of
data points indicates that E* is more sensitive to details of the
VB structure than EP.

From a practical point of view, data of Table I and Fig. 3
can be used to estimate the error of the method caused by

FIG. 1. Fits �solid lines� to experimental �2 data �circles� for
GaAs and InP considering the conduction-band nonparabolicity. For
comparison, calculated �2 spectra assuming a parabolic conduction
band are shown by dotted lines.

FIG. 2. Conduction-band dispersion relations determined from
fits to �2 spectra for GaAs and InP using different Luttinger param-
eter sets: solid lines for composite sets �see Table I�; dashed lines
for sets by Vrehen117 �GaAs� and Bimberg et al.132 �InP�; and long-
dashed lines for sets by Neumann et al.75 �GaAs� and Pfeffer and
Zawadzki17�b� �InP�. For comparison, parabolic dispersions are in-
dicated by dotted lines. The inset shows E* values �see Eq. �10� and
text� with dependence on wave vector calculated from the
conduction-band dispersion relations for GaAs and InP, which were
determined using the composite Luttinger parameter sets.

FIG. 3. �a� Momentum matrix element and �b� E* value at k
=k0 in dependence on 1/Xs and Xs, respectively, for GaAs �circles�
and InP �squares�. For the meaning of Xs and k0, see Eq. �14� and
text. Data points resulting from the composite sets of Luttinger
parameters are shown by filled triangles.
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uncertainty of Luttinger parameters. With this in mind, we
introduce a quantity

DLP =
1

Xc
� 1

N
�
i=1

N

�Xsi − Xc�2�1/2

, �16�

where N is the number of Luttinger parameter sets to be
considered, and Xsi and Xc correspond to a set i and the
composite set, respectively, and are calculated by Eq. �14�.
Considering linear dependences in Fig. 3 and using Eq. �10�,
we have


EP

EP
= DLP, �17�


E*

E* = �1 +
C1

E*	DLP,

Ec

Ec
= �1 +

C1

E*	 Ec

E* + 2Ec
DLP,

where 
EP, 
E*, and 
Ec are errors of values for EP, E*,
and Ec determined. Estimates using Eqs. �17� and data in
Table I as well as in Fig. 3 yield the error of EP of about
1.9% and 4.2% for GaAs and InP, respectively, and a some-
what larger error of E*. The error in the determination of Ec
increases with increasing electron energy. At k=k0, it
amounts to about 0.4% and 1.0% for GaAs and InP, respec-
tively.

Results of Secs. II and III can be summarized as follows.
Differences between sets of Luttinger parameters have no
dramatic effect on the determined CB dispersion relation. It
allows a composite set to be used in analyzing experimental
�2 data. The expected error in determination of the momen-
tum matrix element and CB dispersion relation caused by
uncertainty of Luttinger parameters is within several percent.
In addition, it follows from Eqs. �2� and �3� that the value of
EP will be directly affected by experimental uncertainty in
me0

* , Eb, and �s, which is also about several percent. How-
ever, the influence on the determined nonparabolicity is
small, provided EP is treated as an adjusted parameter, as
revealed by tests using different values of the above input
parameters in the calculations. Another important factor is
the reliability of experimental data for �2. This question is
discussed in Sec. V, where data from various sources for the
DF of several semiconductors are analyzed.

IV. RESULTS AND COMPARISON WITH LITERATURE
DATA

In this section, the CB dispersion relation, nonparabolic-
ity, and effective mass are reported and compared with data
from literature. Assuming a strongly degenerate semiconduc-
tor and combining Eqs. �5�–�9�, the momentum electron ef-
fective mass is presented as a function of free electron con-
centration. Such dependence is most frequently deduced
from experiments. Experimental �2 spectra, which we com-
pare with calculations, have been measured at room tempera-
ture. Therefore, room-temperature values of input parameters
are used in the calculations. For GaN and II-VI semiconduc-
tors, we present an explicit description regarding the deriva-
tion of composite Luttinger parameter sets and other input

parameters. Since procedures for III-V and II-VI compounds
are somewhat different, as briefly mentioned in Sec. II, the
results are collected in two separate subsections.

A. III-V compounds

To calculate �2, we used our composite sets of Luttinger
parameter for GaAs and InP �see Table I� and sets proposed
by Vurgaftman et al.3 for InSb, InAs, and GaSb. A composite
set for GaN was derived considering overall nine Luttinger
parameter sets from Refs. 26–34, as described in Sec. III �see
Eqs. �13��. The result is as follows: 	1=2.77, 	2=0.796, and
	3=1.12. An electron effective mass of 0.15m0 for zinc-
blende GaN obtained from electron spin resonance
measurements35 is the only experimental result at present.
However, the above value seems to be underestimated, be-
cause a considerably overestimated value of EP=28 eV �see
Sec. V for a more detailed discussion� was used to calculate
it from the measured g factor. The average value of bare
electron effective mass derived from calculations26–34,36–38 is
about 0.165m0. Note that the polaron electron and hole
masses have been shown to be effective in excitonic and
interband optical transitions close to the band gap.39,40 Since
the polaronic correction amounts to about 10% in GaN,39 we
adopt a value of me0

* =0.18 for the polaron electron effective
mass in GaN. For other III-V compounds studied in this
work, polaronic corrections are small10 and were neglected.
Other input parameters used to calculate �2 spectra of III-V
compounds are quoted in Ref. 20 and will not be repeated
here.

The calculated �2’s were adjusted to the experimental
ones reported for GaAs,21 InP,22 GaN,41 GaSb,42 as well as
InAs and InSb.43 In these studies, �2 data were measured on
bulk crystals21,22,42,43 and relaxed epitaxial GaN films grown
on GaAs substrates.41 The resulting nonparabolicity coeffi-
cients Ni and Mj �see Eqs. �5� and �6�� are presented in
Tables II and III, respectively. The last columns of the tables
indicate limiting values of the wave vector klim and electron
energy Ec,lim, respectively, up to which the nonparabolicity
coefficients are valid. Figure 4 presents the determined CB
dispersion relations and relative electron momentum effec-
tive masses mp /me0 with dependence on electron concentra-
tion, where me0=me0

* m0 is the electron effective mass at the
CB bottom. Note that our data for InSb and InAs are re-
stricted to relatively low electron concentrations. This is
caused by limitations of the numerical procedure due to rap-
idly rising nonparabolicity coefficients. Expansion of the dis-
persion relation in powers of k2, as in Eq. �5�, appears to be
computationally ineffective in describing electronic states far
from the zone center in narrow-gap semiconductors. How-
ever, as seen in Fig. 4�a�, for compounds with a larger elec-
tron effective mass, accessible energies are well above those
obtainable by conventional doping.

Surprisingly little detailed quantitative data for the CB
dispersion relation in III-V semiconductors close to the �
point have been published. Only GaAs is an exception. Com-
parison of our results with existing literature data for GaAs
�Refs. 15–17� is presented in Fig. 5�a�. Since somewhat dif-
fering values of the electron effective mass at the CB bottom
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were used, we compare deviations from a parabolic CB, i.e.,
the nonparabolicity ENP �see Sec. I�. Rössler16 calculated the
CB dispersion relation using a five-band 14�14 kp model.
Squares on Fig. 5�a� are the average of the deduced nonpa-
rabolicity in the �100� and �111� directions. The circles have
the same meaning and show data reported by Pfeffer and
Zawadzki,17 who calculated the band structure using a five-
level kp model and including far-level contributions as well
as polaron effects. Ruf and Cardona15 studied resonant Ra-
man scattering by phonons in a magnetic field. Their result is
shown by the dotted line on Fig. 5�a�. It is seen that our data
�the solid line� are in good agreement with those of Refs. 15
and 16. In addition, we were able to measure the CB disper-
sion relation up to considerably higher electron energies of
about 0.65 eV �see also Fig. 4�a��. Calculations by Pfeffer
and Zawadzki17 seem to slightly overestimate the CB nonpa-
rabolicity in GaAs. In case of InP, no detailed quantitative
data for the CB nonparabolicity near the � point have been
reported. We obtained the CB dispersion relation for InP up
to electron energies of about 1 eV �see Fig. 4�a��. The result-
ant CB nonparabolicity of InP is shown in Fig. 6�a� by the
solid line.

As reviewed in Sec. I, numerous experiments have been
carried out to study the electron effective mass as a function
of carrier density. Among them, low-temperature CR and op-
tically detected CR measurements of high-quality GaAs and
InP samples with low electron concentration, as well as
Shubnikov–de Haas experiments at medium doping, yielded
the most reliable data. In Figs. 5�b� and 6�b�, these are shown
by open symbols. For GaAs, also included are data of Ref.
14 derived from measurements of resonant Raman scattering

by phonons in a magnetic field at 10 K. The solid lines in
Figs. 5�b� and 6�b� represent our results calculated by Eqs.
�5�–�9� with nonparabolicity coefficients from Tables II and
III. For the sake of comparison, we have scaled our data
using low-temperature values of the electron effective mass
at the CB bottom of me0

* =0.0665 and me0
* =0.0803 for GaAs

and InP, respectively, instead of the room-temperature ones
given in Sec. II after Eq. �15�. The above low-temperature
effective masses practically coincide with those recom-
mended by Vurgaftman et al.3 It can be seen in Figs. 5�b� and
6�b� that our results are in excellent agreement with all low-
temperature data from the literature. However, CR and
Shubnikov–de Haas experiments are limited to medium elec-
tron concentrations by the requirement of high mobility of
free charge carriers.44 Extremely high carrier densities were
studied by ir reflectance and thermoelectric power in a high
magnetic field. Usually, such measurements are carried out at
room temperature. Note that the effective masses deduced
from optical and transport experiments are mean values av-
eraged over the participating electrons. If the degeneracy is
not complete, the mean values derived from different mea-
surements can be quite different �see, e.g., Ref. 2 for a more
detailed discussion�. Therefore, only room-temperature data
for ne2�1018 cm−3 available in the literature are shown in
Figs. 5�b� and 6�b� �filled symbols�. These are more scattered
as compared to the low-temperature ones for lower electron
concentrations, which can, at least partially, be related to an
overall deterioration of crystal quality at higher doping levels
as well as to a possible inaccurate determination of the elec-
tron concentration. In addition, it is not clear whether effects
of impurities on the band structure can be neglected at ex-

TABLE II. Nonparabolicity coefficients Ni �see Eq. �5�� for the conduction band of III-V semiconductors derived from fits to �2 spectra.
The units are 1010�i+1� eV/m. klim denotes electron wave vectors up to which the nonparabolicity coefficients are valid.

N1 N2 N3 N4 N5 N6 N7 N8

klim

�nm−1�

InSb −23.0 87.0 −115 340 −3150 7300 −21500 65000 0.45

InAs −13.8 25.0 −25.0 840 −5100 9200 −4300 7500 0.75

InP −7.50 12.1 −12.0 2.90 2.00 0.95 0.95 −0.05 2.0

GaSb −12.8 32.5 −41.0 17.0 −11.5 29.5 −17.5 10.5 1.1

GaAs −7.95 4.90 40.0 −75.0 500 −3700 4150 7700 1.4

GaN −2.53 0.85 −0.10 0.048 −0.01 0.005 −0.006 0 4.5

TABLE III. Nonparabolicity coefficients Mj �see Eq. �6�� for the conduction band of III-V semiconductors
derived from fits to �2 spectra. The units are �eV�−j. Ec,lim denotes electron energies up to which the
nonparabolicity coefficients are valid.

M1 M2 M3 M4

Ec,lim

�eV�

InSb 1.65 0.811 34.9 −58.0 0.32

InAs 0.928 1.33 5.01 −6.52 0.48

InP 0.451 0.883 −1.23 1.16 0.98

GaSb 0.837 1.25 1.30 −1.38 0.67

GaAs 0.496 1.14 −1.67 1.69 0.63

GaN 0.187 0.00584 0.0417 0.00313 2.2
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tremely high doping. Note that in our method, experimental
data obtained from measurements of high-quality samples
with low defect concentrations are analyzed. A similar way
has been used in Refs. 14 and 15 as well.

As for InSb and InAs, in a range of electron concentra-
tions up to about 3�1018 and 1�1019 cm−3, respectively,
which is accessible to the method used in this work, our
results for the effective mass �see Fig. 4�b�� are in good
agreement with data available in the literature for both ma-
terials �see, e.g., Refs. 2 and 6 and references therein�. In
GaSb, owing to the small energy separation between the �
and L minima �about 0.08 and 0.03 eV at low and room
temperatures, respectively� and the much larger density of
states at the L minimum,45,46 a significant fraction of the
electrons occupy L-valley states, and electron energies
achievable by doping are not high. It was demonstrated that,
in very high magnetic fields, CR signals arising from the �
and L valleys can be observed separately.47 Both valleys
were shown to be nonparabolic in that work. Ghezzi et al.48

interpreted absorption spectra close to the band gap of GaSb
in terms of the nonparabolicity of the CB and the LH VB.
However, to our knowledge, neither the CB dispersion rela-
tion nor the effective mass with dependence on electron con-
centration has been reported up to now for GaSb. Such data
for cubic GaN are also absent.

B. II-VI compounds

Input parameters we used in calculating �2 spectra of
II-VI compounds are given in Tables IV and V. Below, some
remarks are provided in the explanation of the content of the

tables. We need room-temperature values, while the electron
effective mass and exciton binding energy are much accu-
rately derived from low-temperature experiments. The pro-
cedure of estimating room-temperature values of me0

* and Eb
from those at low temperatures is described in Ref. 20. It
uses Eq. �2.15� of Ref. 3 and temperature dependence of the
effective Rydberg energy. Besides which, both low- and
room-temperature values of �s are required.

Low-temperature values of me0
* quoted in Table IV were

obtained by averaging literature data4,5,7 from CR and opti-
cally detected CR measurements. Note that the CR masses
contain the polaronic contribution, which is not negligible in
II-VI semiconductors. Low-temperature Eb values given in
Table IV are also an average of literature data. In addition to
the compilation of Ref. 7, recent data for ZnTe and ZnSe,49,50

ZnS,51,52 as well as CdTe �Ref. 53� were taken into account.

FIG. 4. �a� Conduction-band dispersion relation and �b� relative
electron momentum effective mass with dependence on electron
concentration for III-V semiconductors determined from fits to ex-
perimental �2 spectra. The arrows indicate the Fermi level position
in the limiting case of a strong degeneracy for electron concentra-
tions of 1018, 3�1018, 1019, and 3�1019 cm−3 from left to right,
respectively. In �b�, the upper x axis relates the wave vector from �a�
with the free electron concentration from �b�.

FIG. 5. �top� Nonparabolicity of the conduction band in GaAs as
a function of wave vector. Squares and circles indicate averaged
values for the �100� and �111� directions calculated in Refs. 16 and
17, respectively. Results of Ref. 15 �resonant Raman scattering in a
magnetic field� and of this work are shown by dotted and solid
lines, respectively. �bottom� Electron momentum effective mass of
GaAs as a function of electron concentration. The upper x axis
relates the free electron concentration with the wave vector. Data
have been obtained by cyclotron resonance and optically detected
cyclotron resonance measurements �Refs. 135–139 and 10�,
Shubnikov–de Haas experiments �Ref. 12�, resonant Raman scatter-
ing in a magnetic field �Ref. 14�, and ir reflectance �Refs. 140–142�.
Low-temperature and room-temperature data are shown by open
and filled symbols, respectively. The result of this work �solid line�
is calculated using nonparabolicity coefficients of Tables II and III
and Eqs. �5�–�9� with a low-temperature value of the electron ef-
fective mass at the conduction-band bottom of me0

* =0.0665. �a� Ref.
135; �b� Ref. 136; �c� Ref. 137; �d� Ref. 10; �e� Ref. 138; �f� Ref.
139; �g� Ref.12; �h� Ref. 14; �i� Ref. 140; �j� Ref. 141; �k� 142; —,
this work.
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Experimental data for cubic CdSe and CdS are few and in-
complete. Parameters of these two compounds given in Table
IV were compiled using the results derived from studies of
their wurtzite modifications.

Practically, there is no way to measure independently the
static dielectric constant �s suitable for analyzing interband
optical and magneto-optical experiments. Capacitance mea-

surements at low frequencies usually overestimate �s value.
On the other hand, the high-frequency dielectric constant ��

and frequencies �LO and �TO of the LO and TO phonons,
respectively, can be measured with high precision. Therefore,
we used the Lyddane-Sachs-Teller relation54 �s /��

= ��LO /�TO�2 to deduce �s. The high-frequency dielectric
constant is the strict electronic contribution to �s, i.e., the
dielectric constant in the absence of lattice vibrations. Most
reliable data for �� are obtained if the frequency-dependent
refractive index, measured well above the LO frequency but
below the optical absorption edge, is extrapolated to zero
frequency. In Table IV, room-temperature values of �� from
prism method are presented for ZnTe, ZnSe, and CdTe,55 as
well as ZnS.56,57 To obtain �� for CdSe and CdS, we aver-
aged the data derived from ir reflectance measurements of
wurtzite crystals,58–60 with �� for cubic compounds being
calculated by ��=
������, where ��� and ��� are the ordi-
nary and extraordinary high-frequency dielectric constants,
respectively, observed in the wurtzite modification. This av-
eraging procedure can be justified by noting that the value
�s=
�s��s� determines the exciton binding energy in wurtz-
ite semiconductors �see, e.g., Ref. 39 and references therein�.
Phonon frequencies were taken from Refs. 7 and 61. Then,
the static dielectric constant at room temperature was calcu-
lated using the Lyddane-Sachs-Teller relation. Low-
temperature �s values were obtained using temperature de-
pendencies reported in Refs. 62–66. Low- and room-
temperature values of �s deduced in this way are given in
Table IV. Note the very good agreement with recent results
obtained from the terahertz absorption and refractive index
measurements62,67,68 for ZnTe, CdTe, and ZnS.

FIG. 6. �a� Nonparabolicity of the conduction band in InP as a
function of wave vector determined in this work. �b� Electron mo-
mentum effective mass of InP with dependence on electron concen-
tration. The upper x axis relates the free electron concentration with
the wave vector. Data have been obtained by cyclotron resonance
and optically detected cyclotron resonance measurements �Refs. 10,
135, and 143–145�, Shubnikov–de Haas experiments �Ref. 13 and
146�, thermoelectric power measurements �Ref. 147�, and ir reflec-
tance �Refs. 148 and 149�. Low-temperature and room-temperature
data are shown by open and filled symbols, respectively. The result
of this work �solid line� is calculated using nonparabolicity coeffi-
cients of Tables II and III and Eqs. �5�–�9� with a low-temperature
value of the electron effective mass at the conduction-band bottom
of me0

* =0.0803. �a� Ref. 136; �b� Ref. 143; �c� Ref. 144; �d� Ref. 10;
�e� Ref. 145; �f� Ref. 146; �g� Ref. 13; �h� Ref. 147; �i� Ref. 148; �j�
Ref. 149;—, this work.

TABLE IV. Input parameters used for calculating �2 spectra of II-VI semiconductors.

T=0 K T=300 K

me0
* Eb �meV� �s me0

* Eb �meV� �� �s �p �nm� fx

ZnTe 0.124 13.2 9.43 0.120 12.0 7.28 9.78 10.1 0.72

ZnSe 0.145 20.1 8.38 0.141 18.1 5.90 8.73 7.3 0.71

ZnS 0.217 37.5 7.53 0.212 30.7 5.10 8.26 7.5 0.83

CdTe 0.0960 10.6 9.73 0.0915 9.2 7.21 10.3 5.7 0.47

CdSe 0.121 15.4 9.14 0.114 13.4 6.17 9.60 5.0 0.53

CdS 0.173 29.1 8.42 0.166 25.7 5.42 8.82 6.7 0.78

TABLE V. Composite sets of Luttinger parameters for II-VI
semiconductors. For the meaning of related quantities N and DLP,
see Eq. �16�.

	1 	2 	3 N
DLP

�%�

ZnTe 3.81 0.838 1.34 11 3.0

ZnSe 3.35 0.767 1.24 11 9.2

ZnS 2.53 0.681 1.05 2 1.8

CdTe 4.64 1.46 1.92 7 3.7

CdSe 1.91 0.560 0.560 5 3.7

CdS 1.44 0.510 0.510 6 8.7
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In the two last columns of Table IV, the phonon mean free
path �p and the factor fx �see Eq. �1�� are presented. The
former quantity was derived as described in Ref. 20. All
necessary experimental data were taken from Ref. 7. The
exciton Bohr radius was calculated by ax=e2 / �8��0�sEb�.

Table V shows composite sets of Luttinger parameters
obtained as described in Sec. III using data reported for
ZnTe,49,50,69–77 ZnSe,49,50,70,78–85 ZnS,70,28 CdTe,70,75,76,53,86–88

CdSe,25,89–92 and CdS.91–96 Note that the VB structure param-
eters for CdSe and CdS are mostly known in the spherical
approximation from investigations of the energy spectrum of
quantum dots, which are usually assumed to be in the zinc-
blende crystal structure.25 Hence, for these two compounds,
we considered only those Luttinger parameter sets, and the
resulting composite sets are also in the spherical approxima-

tion, i.e., 	2=	3. For the meaning of related parameters, see
Eq. �16�.

Calculated �2 spectra were adjusted to experimental ones
taken from Refs. 97–102 for the six studied semiconductors,
respectively. The samples used in these studies were epitax-
ial ZnTe,97 ZnSe,98 and CdSe �Ref. 101� films grown on
GaAs substrates, epitaxial CdTe films grown on Si,100 epitax-
ial CdS films grown on InP,102 as well as ZnS single crystals
grown by a vapor-phase method.99 There were many other
measurements of the DF for II-VI compounds. More detailed
discussion of the choice made is given in Sec. V. Figure 7
presents fits �solid lines� to experimental �2 data �circles� for
CdTe, ZnTe, and ZnSe. For comparison, calculated �2’s as-
suming a parabolic CB are shown by dotted lines. A remark
should be made concerning ZnSe. The fit shown in Fig. 7
results in the exciton binding energy Eb=22.3 meV, which is
higher than that derived from literature data �see Table IV�.
When fitting �2 data reported by Kvietkova et al.,103 even
slightly larger Eb �22.8 meV� as well as a lower band gap
energy by about 15 meV are needed. A possible explanation
might be that the measured epitaxial films were strained,
which can give rise to increased exciton binding energy and
oscillator strength. Note that use of a lower Eb value quoted
in Table IV does not significantly alter the determined CB
dispersion relation, while the magnitude of the excitonic
peak in the calculated �2 spectrum becomes underestimated.

The nonparabolicity coefficients and limits of their valid-
ity obtained from fits to experimental �2 spectra of II-VI
semiconductors are presented in Tables VI and VII. Figure 8
is an overview of the determined CB dispersion relations and
relative electron momentum effective masses with depen-
dence on electron concentration. Many CR and optically de-
tected CR experiments indicated a significant CB nonpara-
bolicity in ZnTe, ZnSe, and CdTe.4,5,11,104,105 Reported
quantitative data, however, are few. In Figs. 9–12, our results
�solid lines� for the CB nonparabolicity and momentum ef-
fective mass as a function of the wave vector and free elec-
tron concentration for ZnTe, ZnSe, ZnS, and CdTe are pre-
sented and compared with existing literature data �symbols�
derived from CR and optically detected CR studies,
magneto-optical experiments, as well as ir reflectance and
Faraday rotation measurements. It can be seen from Fig. 9�a�
that the determined CB nonparabolicity for ZnTe is in good
agreement with calculations by Mayer and Rössler.106 Since
high-purity ZnTe and CdTe usually are of p type, light illu-
mination was used to create the nonequilibrium carriers dur-
ing CR, optically detected CR, and magneto-optical mea-

FIG. 7. Fits �solid lines� to experimental �2 data �circles� for
CdTe, ZnTe, and ZnSe. Dotted lines show calculated �2 spectra
assuming a parabolic conduction band.

TABLE VI. The same as in Table II but for II-VI semiconductors.

N1 N2 N3 N4 N5 N6 N7 N8

klim

�nm−1�

ZnTe −7.2 7.3 −3.5 2.5 −6.5 5.8 −15.5 16.8 2.1

ZnSe −7.05 9.8 −6.5 2.3 −5.5 2.1 1.8 2.5 2.7

ZnS −3.5 1.8 −4.0 6.2 −1.8 1.5 −1.5 1.0 3.6

CdTe −6.8 5.5 −1.5 7.8 −16.5 13.5 −11.2 7.0 2.4

CdSe −3.8 2.6 −1.6 0.80 −0.10 0.30 −0.49 0.164 3.6

CdS −3.1 1.30 −0.40 0.45 −0.10 0.20 0.15 −0.55 3.8
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surements. Hence, the determined electron effective mass is
restricted to relatively low free electron concentrations �see
Figs. 9�b� and 12�b��. The electron effective mass of ZnSe
and ZnS, which are usually of n type, has been measured in
a larger range of electron concentrations �see Figs. 10�b� and
11�b��. However, as is seen, in all cases, our data are ex-
tended to significantly higher electron energies than those
achievable by doping. There were no reports on investigation
of effects of doping in cubic CdSe and CdS, and our results
for the CB nonparabolicity and wave-vector-dependent �or
electron-concentration-dependent� effective mass �which can
be calculated using Eqs. �5�–�9� and nonparabolicity coeffi-
cients of Tables VI and VII, see also Fig. 8� are the only
ones.

V. COMPARISON TO kp MODELS AND DISCUSSION

The kp perturbation theory connects the dispersion rela-
tion in the vicinity of extremum points of energy bands to
energy gaps and momentum matrix elements at these
points.1,109 Based on eight-band kp theory, a simple model of
the conduction-band structure close to the � point in zinc-
blende semiconductors can be developed, with C* parameter
accounting for effects of higher conduction bands and remote

bands.15,109 In this model, the CB dispersion relation reduces
to

Ec�k� =
�2k2

2m0
�1 + C*� −

Eg

2
+

Eg

2
�1 +

4EP
*

3Eg
� 2

Eg

+
1

Eg + 
so
	�2k2

2m0
�1/2

, �18�

where Eg is the energy gap between the CB and the HH
valence band at k=0 and the momentum matrix element is
denoted by EP

* to distinguish it from that derived from ex-

TABLE VII. The same as in Table III but for II-VI semiconductors.

M1 M2 M3 M4

Ec,lim

�eV�

ZnTe 0.434 1.09 −2.21 3.03 0.71

ZnSe 0.450 0.543 −0.293 0.290 1.0

ZnS 0.250 0.0396 0.0799 0.0703 1.2

CdTe 0.552 −0.267 1.30 0.187 0.93

CdSe 0.254 0.151 −0.0967 0.107 1.7

CdS 0.219 0.0408 0.0542 0.00876 1.7

FIG. 8. The same as in Fig. 4 but for II-VI semiconductors.

FIG. 9. �top� Nonparabolicity of the conduction band in ZnTe.
Squares denote averaged values for the �100� and �111� directions
calculated in Ref. 106. The result of this work is shown by the solid
line. �bottom� Electron momentum effective mass of ZnTe with
dependence on electron concentration. The upper x axis relates the
free electron concentration with the wave vector. Data have been
obtained by cyclotron resonance and optically detected cyclotron
resonance �Refs. 4, 11, and 150� as well as magnetoluminescence
�Refs. 77 and 151� measurements at low temperatures. The result of
this work �solid line� is calculated using nonparabolicity coeffi-
cients of Tables VI and VII and Eqs. �5�–�9� with a low-temperature
value of the electron effective mass at the conduction-band bottom
of me0

* =0.124. �a� Ref. 150; �b� Ref. 11; �c� Ref. 4; �d� Ref. 151; �e�
Ref. 77;—, this work.
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perimental �2 data. The electron effective mass at the bottom
of the CB is given by

1

me0
* = 1 + C* +

EP
*

3
� 2

Eg
+

1

Eg + 
so
	 . �19�

It was observed by Ruf and Cardona15 that a similar model is
in excellent agreement with CB dispersions for GaAs ob-
tained from a 16�16 Hamiltonian and from a local empiri-
cal pseudopotential calculation for energies up to 0.6 eV
above the CB bottom.

Considering the electron effective mass at the bottom of
the CB and the energy gaps to be known, we have only one
adjusted parameter, EP

* , for instance, to fit the determined CB
dispersion relation by Eq. �18�. The resultant EP

* values are
presented in Table VIII. Spin-orbit splitting energies 
so
taken from Refs. 3, 6, and 7 as well as Eg, �, and EP values
derived from fits to experimental �2 spectra are also collected
in the same table. In Fig. 13, we compare the determined
Ec�k� for several semiconductors �solid lines�, which can be
calculated using Eq. �5� and nonparabolicity coefficients of
Table VI, to that calculated by Eq. �18� employing EP

* values
from Table VIII �dotted lines�. For more clarity, curves for
different semiconductors are vertically shifted. As can be
seen in Fig. 13, Eq. �18� provides a good description of ex-
perimental data for GaAs and ZnSe. Note, however, that a
systematic deviation from experimental data is observed,

which becomes more pronounced when a larger wave-vector
range is considered, as seen in Fig. 13 for GaN and CdSe. In
general, one might not expect that Eq. �18� should be equiva-
lently valid for all semiconductors, because effects of higher

FIG. 11. The same as in Fig. 10 but for ZnS. Data shown by
symbols in �bottom� of the figure have been obtained by cyclotron
resonance and optically detected cyclotron resonance measurements
at low temperatures. The result of this work �solid line� is calculated
using me0

* =0.217. �a� Ref. 152; �b� Ref. 4; �c� Ref. 5; �d� this work.

FIG. 12. The same as Fig. 10 but for CdTe. Data shown by
symbols in �bottom� of the figure have been obtained by cyclotron
resonance and optically detected cyclotron resonance �Refs. 4, 5,
87, 144, and 153–156� measurements at low temperatures, as well
as by Faraday rotation at room temperature �Ref. 157�. The result of
this work �solid line� is deduced by using me0

* =0.096. �a� Ref. 153;
�b� Ref. 154; �c� Ref. 155; �d� Ref. 156; �e� Ref. 87; �f� Ref. 144; �g�
Ref.4; �h� Ref. 5; �i� Ref. 157; —, this work.

FIG. 10. �top� Nonparabolicity of the conduction band in ZnSe
determined in this work. �bottom� Electron momentum effective
mass of ZnSe with dependence on electron concentration. The up-
per x axis relates the free electron concentration with the wave
vector. Data have been obtained by cyclotron resonance and opti-
cally detected cyclotron resonance �Refs. 4, 5, 104, and 105� mea-
surements at low temperatures, as well as by Faraday rotation and ir
reflectance at room temperature �Refs. 107 and 108�. The result of
this work �solid line� is calculated using nonparabolicity coeffi-
cients of Tables VI and VII and Eqs. �5�–�9� with a low-temperature
value of the electron effective mass at the conduction-band bottom
of me0

* =0.145. �a� Ref. 104; �b� Ref. 105; �c� Ref. 4; �d� Ref. 5; �e�
Ref. 107; �f� Ref. 108; —, this work.
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bands are taken into account only up to k2 terms. For ex-
ample, Pfeffer and Zawadzki17 argued in favor of explicit
accounting for higher conduction levels �8

c and �7
c within a

five-level kp model for GaAs and InP. Note also that the
experimentally observed behavior of Ec�k�, i.e., a superlinear
dependence on k at small k and a sublinear one at larger k,
qualitatively agrees with ab initio band structure calculations
�see, e.g., Refs. 15, 25, 27, 32, 33, 36, and 101�. However, as
is well known,18 despite a qualitatively correct band structure
over a whole Brillouin zone, important band parameters de-
rived from ab initio calculations, such as the band gap and

electron effective mass, have an insufficient degree of accu-
racy �e.g., me0

* can deviate from experiment as much as
10%–30%�. In view of this, a direct comparison of ab initio
results to the CB dispersion relation determined in the
present work in a relatively narrow region near the � point
seems to be not reasonable. A more detailed discussion is out
of the scope of this paper and can be found elsewhere.18,25 As
for values EP

* and EP �see Table VIII�, they coincide for most
semiconductors within experimental accuracy, which is
about several percent. However, for GaSb, ZnTe, ZnS, and
CdSe, the discrepancy is obviously too large. This is illus-
trated in Fig. 13�b� for ZnTe and CdSe by dashed lines cal-
culated using Eq. �18� with EP

* taken to be equal to EP. Such
a large discrepancy implies that EP values of 37.3 and
23.8 eV for ZnTe and CdSe derived from fits to �2 data of
Refs. 97 and 101, respectively, are too high, indicating an
overestimated magnitude of the experimental �2. The same
conclusion is also valid to �2 sets for GaSb �Ref. 42� and
ZnS.99

In order to confirm this assumption, we have examined �2
data reported by various authors. All of them were obtained
by reflectance spectroscopic ellipsometry �SE�, sometimes in
combination with other experimental techniques. In measur-
ing the intrinsic bulk DF above the absorption edge, a gen-
eral problem of SE is that the result is highly sensitive to a
possible overlayer caused by roughness, native oxides, and
contaminations of the sample surface. Effects of an overlayer
can be minimized by proper chemical surface treatments
and/or mathematically correcting �2 data by calculations
within the bulk-overlayer-ambient model. It seems, however,
that no perfect way exists to do it, and, usually, there are
discrepancies between �2 data from different sources. Ex-
amples to follow illustrate effects of overlayers. Data of Ref.
41 for cubic GaN shown by circles in Fig. 14�a� were ob-
tained from SE and reflectance investigations of many
samples by multiple-sample fit considering the presence of a

TABLE VIII. Spin-orbit splitting energies 
so taken from Refs. 3, 6, and 7 as well as values of Eg, �, and
EP derived from fits to experimental �2 data referred to in the second column of this table. EP

* values are from
fit of the determined conduction-band dispersion relations by Eq. �18�, while E* ones are obtained in a way
that Eq. �10� matches the determined conduction-band dispersion relations at k=k0.

Reference
for �2


so

�eV�
Eg

�eV�
�

�meV�
EP

�eV�
EP

*

�eV�
E*

�eV�

InSb 43 0.81 0.171 9.0 23.3 21.8 0.16a

InAs 43 0.39 0.354 8.2 21.5 19.0 0.36a

InP 22 0.108 1.344 8.0 21.2 19.6 1.59

GaSb 42 0.76 0.710 18 34.5 25.8 0.65

GaAs 21 0.341 1.418 8.9 27.6 26.3 1.31

GaN 41 0.017 3.241 25.0 18.7 18.5 5.53

ZnTe 97 0.97 2.290 8.0 37.3 28.0 1.72

ZnSe 98 0.42 2.725 13.0 25.3 26.7 1.85

ZnS 99 0.068 3.725 50 28.5 21.0 3.97

CdTe 100 0.95 1.524 7.0 20.0 22.2 1.73

CdSe 101 0.42 1.680 8.0 23.8 15.8 3.53

CdS 102 0.067 2.465 30 18.4 14.9 4.46

aExtrapolated from lower electron concentrations.

FIG. 13. Comparison of the determined conduction-band disper-
sion relation for several semiconductors �solid lines� to calculation
by Eq. �18� with EP

* values from Table VIII �dotted lines�. Dashed
lines show the calculated result for ZnTe and CdSe when EP

* is
taken to be equal to EP �see Table VIII�. For more clarity, curves for
ZnSe as well as those for GaAs and ZnTe are vertically shifted by
0.5 and 1 eV, respectively.
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thin surface layer. On the contrary, Muñoz et al. �triangles�110

analyzed SE spectra of their sample assuming sharp bound-
ary to ambient. Fits to both data sets �solid lines in Fig.
14�a�� yield noticeably differing EP values �18.7 and
29.7 eV, respectively� but very close results for the CB non-
parabolicity, as seen in Fig. 14�b�. Note also that the broad-
ening and the band gap energy should be treated as adjusted
parameters to obtain good fits. Data for GaSb are shown in
Fig. 15. SE studies by Muñoz et al.42 and Ferrini et al.111

yielded nearly identical �2 spectra shown in Fig. 15�a� by
circles and triangles, respectively. Somewhat different data

were deduced from transmission measurements close to the
band gap by Ghezzi et al.112 �squares in Fig. 15�a��. Satis-
factory fits �solid lines, Fig. 15�a�� to the data sets can be
obtained using the same nonparabolicity coefficients �which
are presented in Table VI and result in the CB nonparabolic-
ity shown in Fig. 15�b�� but different EP �34.5 and 27.9 eV,
respectively�. The latter EP value is close to EP

* obtained
from fit of the determined CB dispersion relation by Eq. �18�
�see Table VIII�, indicating that transmission measurements
could be very helpful in deducing a correct magnitude of �2.
However, such measurements require very thin samples and
can be performed only in a narrow spectral region close to
the band gap where the absorption coefficient is not too high.
Fitting �2 data for II-VI semiconductors reported by various
authors, we obtained the following values of EP: 43 eV for
ZnTe;113 25.0 eV,103 31.3 eV,114 and 40 eV �Ref. 115� for
ZnSe; and 35 eV for CdTe.116 All of them, except for Ref.
103, are higher than those presented in Table VIII. However,
similar to GaN and GaSb, variations in nonparabolicity co-
efficients were found to be much less important than those in
EP. Calculations also show that especially the magnitude of
�2 is affected by a thin overlayer. Its influence on the spectral
course of �2 is of less importance considering a relatively
narrow spectral range studied in this work. Thus, the deter-
mined CB nonparabolicity is expected to be roughly inde-
pendent of the presence of an overlayer, while the magnitude
of �2 will be absorbed by EP, as it can be seen from Eqs. �2�
and �3�. Consequently, the observed EP value depends on
whether surface properties of samples were correctly taken
into account in determining �2 from SE measurements.

From the above, it follows that our method provides a
unique possibility to check the reliability of experimental �2
data, as well as to conclude about the value of EP which
would be consistent with the kp theory. In particular, we see
that the magnitude of �2 for GaSb, ZnTe, ZnS, and CdSe is
overestimated in existing literature data, probably due to the
neglect or incorrect treatment of possible overlayers. Further
studies are needed to establish the DF of these compounds in
a spectral range close to the absorption edge.

Finally, we briefly discuss a simple model of the CB
structure given by Eq. �10�. It is clear from the inset of Fig.
2 that an attempt to fit the determined CB dispersion relation
by this equation will yield a value of E* which depends quite
strongly on the range of wave vectors to be considered.
Comparison of fits by Eqs. �10� and �18� shows that, in gen-
eral, the latter provides a better description of the CB disper-
sion relation over a whole range of electron energies. How-
ever, the advantage of Eq. �10� is that the quantity E* can
immediately be interpreted as a measure of the nonparabo-
licity. For example, E*=� would imply a parabolic band,
while decreasing E* corresponds to increasing nonparabolic-
ity. In Table VIII, E* values are presented, which were ob-
tained in a way that Eq. �10� matches the determined CB
dispersion relation at k=k0, where the wave vector k0 corre-
sponds to an electron concentration ne=2�1019 cm−3. In
Fig. 16, the same data are shown with dependence on the
band gap energy �circles and squares for III-V and II-VI
semiconductors, respectively�. The solid straight line is cal-
culated from E*=0.93Eg. A general trend is that the nonpa-
rabolicity scales approximately proportional to Eg, a fact

FIG. 14. �a� Fits �solid lines� to experimental �2 data for GaN
from Ref. 41 �circles� and Ref. 110 �triangles�. The resultant
conduction-band nonparabolicity is shown in part �b� of the figure
by solid and dotted lines, respectively.

FIG. 15. �top� Fits �solid lines� to �2 data for GaSb from Refs.
42 and 111 �circles and triangles, respectively� and from Ref. 112
�squares�. The fits result in different EP values �see text� but the
same conduction-band nonparabolicity presented in �bottom� of the
figure.
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generally understood on the basis of Kane’s theory. It is in-
teresting to remark that three semiconductors �GaN, CdSe,
and CdS�, for which the zinc-blende crystal structure is a
metastable one, deviate from the general trend toward the
side of lower nonparabolicity.

VI. SUMMARY

In the present work, the conduction-band dispersion rela-
tion was determined by a comparison of the calculated and
experimental imaginary part �2 of the dielectric function in a
spectral region close to and above the fundamental absorp-
tion edge. Investigating GaAs and InP, which served as
model materials, we observed that differences between sets
of Luttinger parameters proposed by various authors have
little effect on the determined dispersion relation for the con-
duction band. It allows a composite set to be introduced to
analyze experimental �2 spectra. In this work, we deduced
composite Luttinger parameter sets for GaN and II-VI semi-

conductors based on available literature data. Adjusting cal-
culated �2 spectra to experimental ones, we determined the
conduction-band dispersion relation for 12 III-V and II-VI
zinc-blende semiconductors and deduced the corresponding
nonparabolicity coefficients. This yielded an experimental
determination of the conduction-band nonparabolicity and
effective mass. The results were compared to those available
in the literature from experiments and calculations and found
to be in very good agreement. With the exception of small-
gap semiconductors InSb and InAs, we presented experimen-
tal data for the electron momentum effective mass with de-
pendence on the wave vector and free electron concentration,
as well as the conduction-band dispersion relation and non-
parabolicity extended to electron energies between 0.6 and
2.2 eV depending on the semiconductor of interest, which
are significantly higher than those achievable by doping or in
magnetic fields.

The results obtained were also analyzed in terms of cor-
respondence to models of the conduction-band structure
based on the kp theory. We observed that a simple model
with only one adjusted parameter provides a good descrip-
tion of the determined conduction-band dispersion relations,
especially for GaAs and ZnSe. There are, however, system-
atic deviations from experimental data, which become more
pronounced if a larger wave-vector range is considered, as,
e.g., in the case of wide band gap semiconductors. In addi-
tion, examining experimental �2 data reported by various au-
thors, we were able to conclude that the magnitude of �2 for
GaSb, ZnTe, ZnS, and CdSe is overestimated in the existing
literature data, probably due to the neglect or incorrect treat-
ment of possible overlayers.
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