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Magnetocaloric effect in the frustrated square lattice J,-J, model
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We investigate the magnetocaloric properties of the two-dimensional frustrated J;-J, model on a square
lattice. This model describes well the magnetic behavior of two classes of quasi-two-dimensional S=1/2
vanadates, namely, the Li,VOXO, (X=Si,Ge) and AA’VO(PO,), (A,A’=Pb,Zn,Sr,Ba) compounds. The
magnetocaloric effect (MCE) consists of the adiabatic temperature change upon changing the external mag-
netic field. In frustrated systems, the MCE can be enhanced close to the saturation field because of massive
degeneracies among low-lying excitations. We discuss results for the MCE in the two distinct antiferromag-
netic regimes of the phase diagram. The numerical finite temperature Lanczos method as well as analytical
methods based on the spin-wave expansion are employed and results are compared. We give explicit values for
the saturation fields of the vanadium compounds. We predict that at subcritical fields there is first a (positive)

maximum followed by a sign change of the MCE, characteristic of all magnetically ordered phases.
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I. INTRODUCTION

Two-dimensional (2D) magnetic systems are favorite
models to study the influence of quantum fluctuations on
magnetic order. Depending on the model they may both pro-
hibit an ordered ground state or select a specific order among
classically degenerate states. These phenomena have been
studied in great detail for geometrically frustrated systems
such as trigonal, Kagomé, and checkerboard lattice.! How-
ever, they are also present in magnets, where the frustration
is not the result of lattice geometry but of competition be-
tween different (for example, nearest- and next-nearest
neighbor) magnetic bonds. A prime example is the frustrated
J1-J, model on a square lattice. Its ground state and thermo-
dynamic properties in zero field have been well studied (see
Refs. 1-3, and references therein).

Classically the model predicts three magnetic phases de-
pending on the frustration ratio J,/J;: The ferromagnet
(FM), (77, ) Néel antiferromagnet (NAF), and (77,0) collin-
ear antiferromagnet (CAF). However, it is known that close
to the classical CAF/NAF and CAF/FM boundary quantum
fluctuations destroy magnetic order and presumably stabilize
nonmagnetic order parameters.

The discovery of two classes of layered vanadium oxides
Li,VOXO, (X=Si,Ge) (Refs. 4-6) and AA'VO(PO,),
(A,A’=Pb,Zn,Sr,Ba) (Refs. 7 and 8) which are well de-
scribed by this model has further raised interest in the J;-J,
model. One advantage of the new vanadium compounds is a
comparatively low-energy scale for the exchange constants
of order 10 K. Therefore, high-field experiments might be a
promising way to learn more about their physical properties,
indeed the saturation field for these compounds where the
fully polarized state is achieved seems within experimental
reach.

Therefore, in this work we study the high-field magnetic
effect and especially the magnetocaloric effects (MCE) in the
Ji-J, model exhaustively. We use a variety of analytical and
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numerical techniques to investigate the dependence of mag-
netization, susceptibility, entropy specific heat, and adiabatic
cooling rate on magnetic field, temperature, and frustration
ratio. The variation of the saturation field with the frustration
ratio is calculated and predictions for the abovementioned
compounds are made. We show that the low-temperature
specific heat is strongly enhanced around the classical phase
boundaries where large quantum fluctuations occur.

Our special focus is on the magnetocaloric effect. We will
show that the cooling rate normalized to its paramagnetic
value, is strongly enhanced above the saturation field and
depends on the frustration angle. We also predict that for
subcritical fields the cooling rate is first positive with a maxi-
mum at moderate fields and subsequently changes sign at a
larger subcritical field. This behavior is common to all AF
phases of the model and can be understood quantitatively
from calculations of contours of constant entropy in the
(h,T) plane. The dependence of corresponding characteristic
fields on the frustration ratio are also calculated.

In Sec. I we give a brief description of the magnetoca-
loric effect in magnets. In Sec. III the basic properties and
phase diagram of the J;-J, model are introduced. In Sec. IV
we discuss extensively results of the finite temperature Lanc-
zos method (FTLM) for finite two-dimensional (2D) J,-J,
clusters. In Sec. V we use analytical methods within mean-
field or spin-wave approximation as an alternative way to
study the magnetocaloric properties. In Sec. VI we discuss
and compare the results obtained by the various methods.
Finally, Sec. VII gives the summary and conclusion.

II. THE MAGNETOCALORIC EFFECT IN
MAGNETICALLY ORDERED COMPOUNDS

When a crystal containing magnetic ions is placed in a
magnetic field the adiabatic or isentropic change of this ex-
ternal parameter causes a temperature change in the sample.
This is called the magnetocaloric effect (MCE) which was
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first discovered by Warburg.’ It is nowadays interesting in
several aspects. First, suitable compounds, such as paramag-
netic salts where demagnetization leads to cooling may be
used technically.!®!" Secondly at high (pulsed) fields the
magnetocaloric anomalies at a magnetic phase transition may
be used to map out the H-T phase diagrams which are not
accessible otherwise. Finally it has recently gained special
attention in frustrated magnets. There the behavior around
the saturation field may be described by the condensation of
a macroscopic number of local magnons'>~'* which leads to
a giant enhancement of the magnetocaloric cooling rate. The
latter is defined as the rate of change of temperature 7' with
magnetic field H at fixed entropy S. Using a Maxwell rela-

tion one can write this as
oH T (oM
L= —(—) : (1)
H

(1)
" \oH /s (a_s) T Cy\ T
ar /)

where Cy is the heat capacity and M the magnetization of the
sample. The integrated adiabatic temperature change along
an isentropic line with S(T, H)=const which is caused by the
variation of magnetic field is then given by

—
i

H
AT, (Hy,H) =T =T, = f T (H' . T)dH' . 2)

Hy

Here T, and H,, are the starting values of temperature and
field, respectively. We take the adiabatic cooling rate for free
paramagnetic ions as a reference quantity. As shown later it
is simply given by Fomc=(T/ H). The dimensionless magneto-
caloric enhancement factor due to interaction effects is then
defined by the ratio

Lo = Do T0 = (HIT)T . (3)

In the present work we study the MCE on a Heisenberg
square lattice J,-J, model which incorporates a frustration of
nearest- and next-nearest-neighbor exchange interactions. It
is a suitable model to analyze the magnetic properties of two
classes of quasi-two-dimensional vanadates, namely, the
Li,VOXO, (X=Si,Ge) (Refs. 4-6) and AA'VO(PO,),
(A,A’=Pb,Zn,Sr,Ba) compounds.7’8 We investigate several
aspects of magnetocaloric properties. We show that it may
indeed be used to identify the saturation field and the asso-
ciated H,(T) phase boundary between the fully polarized and
AF ordered states. We also discuss whether it may be used as
a diagnostic for the appropriate frustration angle (or J,/J,
ratio). Finally we will study whether the frustration effect
leads to a visible signature in the anomalies of the magneto-
caloric cooling rates, especially close to the saturation fields.
We will employ both numerical FTLM methods as well as
approximate analytical methods based on mean-field and
spin-wave approximations.

II1. THE J,-J, HEISENBERG MODEL AND EXAMPLES

We first give a brief characterization of the 2D square
lattice J;-J, model in an external field which is defined by
the Hamiltonian
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FIG. 1. Phases of the spin-1/2 2D square lattice J;-J, model.
The CAF and NAF order is indicated by arrows, the associated
wave vectors are Q=(0,1) or (1,0) and (1,1) (in units of 7/a),
respectively. The boundary between FM and NAF phase is the line
J1=0, J,<0. Values of J,/J; in parentheses indicate where zero
point fluctuations destroy the CAF order parameter (Ref. 3). Dashed
lines correspond to the experimental ®cw=(J;+J,)/kg and refer to
the known J;-J, compounds (Refs. 7 and 8). Two solutions ¢,
(CAF) and ¢_ (NAF) are compatible with the thermodynamic prop-
erties. Here we choose the former since they are confirmed by neu-
tron diffraction for the Li and Pb compounds.

H=J, 28-S+, 2 8;-S;-h>, S (4)
(i (i i

with the convention that each bond is counted only once.
Here J; is the nearest-neighbor exchange coupling along the
edges and J, the next-nearest-neighbor exchange coupling
along the diagonals of each square. Furthermore, h=gugH,
where H is the applied magnetic field. Here g is the gyro-
magnetic ratio and up the Bohr magneton. The zero-field
phase diagram may best be characterized by introducing the
equivalent parameter set

J.=+1)": ¢=tan™' (1)) (5)

The “frustration angle” ¢ is a convenient quantity to char-
acterize the amount of exchange frustration in the model and
J. gives the energy scale at which thermodynamic anomalies
in specific-heat susceptibility, etc., are to be expected. For
spin-1/2, as a function of ¢ three main phases (FM, NAF,
CAF) already appear on the classical level (Fig. 1).> How-
ever, for ¢~0.157 (J,/J,~0.5) and ¢$~0.857 (J,/J,
~—0.5), where CAF meets NAF and FM, respectively, a
large degeneracy of the classical ground state appears and
quantum fluctuations lead to nonmagnetic “hidden order”
phases shown as the shaded sectors in Fig. 1. These phases
have been extensively discussed in Refs. 1-3, and references
cited therein.

For the compounds mentioned above generally J,
=10 K. In addition, from the high-temperature expansion of
the susceptibility the Curie-Weiss temperature is obtained as
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Ocw=(J;+J,)/kg. Both quantities can be obtained from ex-
periment and the appropriate pair of exchange constants (J;,
J,) then has to lie on the intersect of a circle (J.) and a
straight line (@¢yw) as shown in Fig. 1. Obviously there are
always two solutions lying in the NAF (¢_) and CAF (¢,)
sectors. This observation is unchanged by a more detailed
analysis of susceptibility and specific heat.>!3

Various other methods have been proposed to resolve the
ambiguity of frustration angles such as measurement of the
spin structure factor,” nonlinear susceptibility,'® and the satu-
ration field of the magnetization.!” Only the former has been
tried so far for Li,VO(SiO4) and Pb,VO(PO,),.'"® In both
cases the ground state clearly has CAF order. For this reason
we have assigned the other known family members of J;-J,
vanadates to the same sector in Fig. 1 although a confirma-
tion for this conjecture is still lacking. We believe that high-
field investigations are a further promising method to shed
light on these compounds, especially because the compara-
tively low J,. (~10 K) will lead to saturation fields relatively
easy to access.

Therefore in this work we study the J;-J, model in an
external field as given by Eq. (4). Thereby we focus on the
theory of the saturation field and the magnetocaloric anoma-
lies both around the saturation field and for smaller fields
within the ordered phase. We will use both numerical analy-
sis of finite clusters based on the FTLM method as well as
analytical methods based on mean-field or linear spin-wave
approximations for comparison. In the latter we focus on the
three main phases with magnetic order. The analytical treat-
ment of the magnetocaloric effect in the hidden order phases
warrants a separate treatment which takes into account the
proper nonmagnetic order parameter.

IV. EXACT DIAGONALIZATION FOR FINITE CLUSTERS
AT FINITE TEMPERATURES AND FINITE FIELD

We have performed numerical exact-diagonalization cal-
culations for three different clusters; squares with 16 and 20
sites and a 24-site rectangle. All of these tile the lattice in
such a way as to be compatible with both the (7, 7) NAF
and(7,0) CAF states, once periodic boundary conditions are
imposed. Our main focus is on the finite-temperature, finite-
field properties of the J;-J, model. We therefore use the
finite-temperature Lanczos method to evaluate the partition
function of the model, together with thermodynamic aver-
ages of the form

(A(T,H)) = % Tr(Ae T/%sD), (6)

Z=Tre kD), (7)

Here A is an operator, H is the Hamiltonian of the J;-J,
model including the Zeeman term [Eq. (4)], and Z(T,H) its
(field-dependent) partition function. For each frustration
angle ¢, we perform between 100 and 500 Lanczos iterations
with different starting vectors in each symmetry sector of the
Hilbert space. We keep between 1 and 100 eigenvalues and
eigenvectors of the tridiagonal Lanczos matrix per iteration
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FIG. 2. Energy levels as a function of the applied magnetic field
for two different frustration angles ¢=0 (Néel antiferromagnet, J,
>0, top) and ¢/7m=0.84 (collinear antiferromagnet, J; <0, bot-
tom). For each sector of the Hilbert space with total S ,=const, the
field dependence of the respective ground state is plotted. The ar-
rows point to the energy-field values where a jump in the ground-
state magnetization of the full system occurs.

in order to evaluate the thermodynamic traces discussed in
the following. Details of the method can be found in Ref. 19.

A. Level crossings, spin-wave instabilities, and saturation
fields

Before addressing the finite-temperature results, let us ex-
amine certain general features of the model at zero tempera-
ture. Applying a magnetic field H leads to a Zeeman splitting
of the energy levels, and therefore level crossings occur
when increasing the field. These level crossings correspond
to jumps in the magnetization at zero temperature, until the
fully polarized state is reached at a certain critical value of
the magnetic field. Figure 2 illustrates this behavior for two
different values of the frustration angle ¢:

As an example for positive (antiferromagnetic) J;, we
show the field dependence of the energy levels for the pure
Néel antiferromagnet (J,=0) on the top side of the figure. In
the whole “right half” of the phase diagram (J, >0, J, arbi-
trary), the field dependence of the energy levels is qualita-
tively similar. For the 24-site cluster considered, 12 spin flips
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with AS =1, indicated by the small arrows, occur at the
points where the magnetic field is given by

Quag(S) = {ES) - By(Sc- D (8)

Here, Ey(S.) denotes the ground-state energy for the sub-
space with constant S, at zero field where N is the cluster
size. The saturation field Hy, is reached when S,=N/2. Be-
cause the fully polarized state is an eigenstate of the Hamil-
tonian, the numerical values for H, from the equation above
are exactly identical to what one finds within linear-spin-
wave theory for the infinite system

1
%Hﬁ“jw = zS[cos ¢<1 - E(COS O, + cos Qy))

+ sin ¢(1 — cos Q,cos Qy)] 9)

with z=4, S=1/2, and Q=(r,m) or one of (,0), (0,7) is
the antiferromagnetic ordering vector.

In contrast, for ferromagnetic J, <0 (but ¢ outside the
ferromagnetic regime in the phase diagram), we see a quali-
tatively different behavior of the energy levels. The bottom
of Fig. 2 shows an example for the frustration angle ¢/
=0.84. Instead of 12 level crossings, there are only six, each
corresponding to a jump AS,=2 occurring at fields

1
gusHiny =~ TES) ~Eo(S.= K] k=2.  (10)

The saturation field is now given by an instability criterion of
the fully polarized state towards a two-magnon excitation

1 N N
gipH = m[%(z) —Eo(z —k)]’ k=2. (11)

For J,<0, this field is larger than the field of the one-
magnon instability given by the above equation with k=1
and therefore determines the predominant instability when
lowering the field in the fully polarized state.

A necessary condition for a AS_=1 level crossing to occur
is that the lower bound E(S,) of the energy spectrum at zero
field for a fixed value S, is a convex function of §, i.e., the
condition

Ey(S.+1)= %[EO(SZ) +Ey(S.+2)] (12)

must be fulfilled at H=0. At the special point J;=0, J,>0
(¢p=m/4), the J,-J, lattice decouples into two independent
Néel sublattices, and equality holds above. For the finite size
clusters which we consider, enlarging ¢ further (i.e., making
J; ferromagnetic) stabilizes two-magnon bound states, and
Eq. (12) no longer holds. Level crossings are characterized
by AS?=2, and the saturation field H., is given by Eq. (11)
with k=2. This is exactly what would be expected where a
spin nematic state is selected by quantum fluctuations in ap-
plied magnetic field.?

However, these are finite size results, and must be ap-
proached with a little caution. The critical fields associated
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FIG. 3. Top: Scaling plot of the difference between the one- and
two-magnon instability fields, as defined by Eq. (11), for cluster
sizes N=16, 20, and 24 sites. The different symbols denote different
positions in the phase diagram, corresponding to the values of ¢
listed on the right-hand side. Note that the size of the field differ-
ence is nonmonotonous in ¢. Bottom: One-magnon (solid line) and
two-magnon (dashed-line) instability fields for the 24-site cluster as
a function of the frustration angle. In this and in subsequent plots of
¢-dependent quantities, the thin vertical lines denote the classical
phase boundaries of the J;-J, model (Ref. 2).

with one- and two-magnon excitations show quite different
finite-size scaling properties as a function of ¢, as illustrated
in Fig. 3. From the three different cluster sizes studied here,
the following observations can be made: First, AH.. is a non-
monotonic function of the frustration angle; it has a mini-
mum AH_.=0 at the crossover between the NAF and CAF
phases for J,=2J, (¢/7=0.15). Secondly, AH,. changes
sign at J;=0 in the CAF phase (¢/7=1/2) in favor of a
AS_=2 instability as above. Thirdly, for —1/2=¢/7=<0.8,
|AH,| is a monotonically decreasing function of 1/N and
seems to extrapolate to zero for N—oc. This means that the
one-magnon instability (and conventional canted AF order)
is restored in the thermodynamic limit for FM J; and all J,
=0.6|J,|. Only close to the classical CAF/FM boundary at
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J,=0.5|J;| does a two-magnon instability (with associated
nematic order) prevail. These results are in complete agree-
ment with previous exact analytic calculations for two-
magnon bound states in the thermodynamic limit, and nu-
merical exact diagonalizations of larger clusters.?

Using the two values ¢=¢, for the frustration angle to-
gether with the experimental energy scale J. determined
from zero-field susceptibility and heat capacity
measurements,>’%20 we can extract the expected values for
the two different saturation fields Hg,,=H, from the bottom
plot of Fig. 3. Assuming a value g=2 for the average gyro-
magnetic ratio, we arrive at field values between 13 and
24 T, low enough to be reached experimentally. In Fig. 4 we
have plotted the predicted values for H, as a function of the
frustration angles ¢, for the known compounds (Fig. 1), us-
ing the corresponding values of J. from zero-field measure-
ments. H, can be determined, for example, by a magnetiza-
tion measurement at sufficiently large fields. For the
PO,-based compounds, the saturation field together with the
zero-field data for the susceptibility and the heat capacity
would provide a direct way to determine the exchange con-
stants J; and J, individually and hence the region of the
phase diagram to which the compound belongs, without the
need to measure the magnetic ordering vector directly.

B. Magnetization and susceptibility

We have calculated the magnetization m(T,H) and the
magnetic susceptibility x(T,H)=Nxuoldm(T,H)/oH] by
evaluating the following thermodynamic traces:

1
m(T,H) = ]—VguB<S;°t>, (13)
1 J.
ey =~ (50— (s, (14)

Napog* g NkgT

where we have explicitly included a factor 1/N to account
for the volume dependence of these extensive quantities. In
the definition of the susceptibility, we also include the mag-
netic permeability uy and the Avogadro number N,. In order
to make x(7',H) a dimensionless quantity, we need to multi-
ply it with the characteristic energy scale J..

At T=0, the magnetization m(T=0,H) of any finite size
system evolves as a series of discrete steps. For a generic AF
system with a singlet ground state, m(T=0,H) takes on all
possible (integer) spin values as a function of H, up to the
field H. at which the system saturates. Generally, in the ther-
modynamic limit, m(T=0,H<H,) is a smooth curve, and
singular features occur only where there is a magnetic phase
transition. However in the case of the spin-1/2 J;-J, model, a
“step” at exactly half the saturation magnetization m(T
=0,H)=1/2 survives in the thermodynamic limit for J,
~J,/2, ie., where a nonmagnetic ground state separates
NAF and CAF order. This half-magnetization “plateau” is
believed to be associated with the formation of localized
magnon excitations.?!

Temperature acts to smear jumps in magnetization. For
the small clusters which we consider, the steplike behavior in
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FIG. 4. Predicted values for the saturation fields of the experi-
mentally known compounds. ¢, labels the frustration angle corre-
sponding to the collinear phase and ¢_ denotes the frustration angle
for the Néel phase. The values for ¢, are determined from zero-
field susceptibility and heat capacity measurements (Refs. 7, 8, and
20).

m(T,H) has already disappeared for kzT=0.2J.. At the same
time, all trace of the half-magnetization plateau is also lost.
The magnetic susceptibility therefore shows a smooth and
nearly constant field dependence, see Fig. 5. It drops to zero
upon reaching the saturation field. Only at the borders of the
ferromagnetic regime for 2=0 do anomalies related to spon-
taneous magnetization appear.

C. Entropy and heat capacity
The entropy and heat capacity are defined through

1 1 1
NAkBS(T’H) = X,<ln Z(T,H) + kB_T<H(H)>)’ (15)
11 2 2
NAkBCV(T’H)_N(kBT)2[<H (H)) - (H(H))"], (16)

again using the definition for the thermal averages given in
Egs. (6) and (7). £ and H are the partition function and the
Hamiltonian of Eq. (4), respectively. The bottom of Fig. 5
shows a contour plot of the entropy S(T',H) at fixed tempera-
ture kzg7=0.2J. as a function of the frustration angle ¢ and
the magnetic field H. In the ordered phases, the entropy is a
smooth and almost constant function of the magnetic field,
dropping to O for fields higher than the saturation field H,.
Characteristic anomalies can be observed at both edges of
the collinear phase, where the entropy crosses a broad maxi-
mum as a function of field before again vanishing when
crossing the saturation field.

Figure 6 shows contour plots of the entropy (top) and heat
capacity (bottom) as a function of magnetic field and tem-
perature for a fixed value of ¢»=0.7477. We have chosen this
particular frustration angle for the plots because it is believed
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FIG. 5. (Color) Contour plots of the magnetic susceptibility
x(T,H) (top) and the entropy S(T,H) (bottom) at a fixed tempera-
ture T=0.2J./kg as a function of the frustration angle ¢ and the
magnetic field H. The plot was made using a 24-site cluster on a
grid of 200 X 300 data points.

to belong to ¢=¢, for the compound SrZnVO(PO,),. The
wiggly contour lines at low temperatures kz7 < J,. are finite-
size effects, where each temperature minimum corresponds
to a Zeeman level crossing at 7=0 as discussed in Sec. IV A.

The lines of constant entropy (Fig. 6, top) are almost field
independent or even have a slightly negative slope as a func-
tion of field for low temperatures 7<J./kp and fields
H< Hg,. This implies that a sample cools down slightly
when increasing H. The behavior of a paramagnet is oppo-
site: Here, isentropic lines are straight lines crossing the ori-
gin, and a sample always heats up when increasing the ap-
plied field. Of course, for high enough fields and
temperatures, the behavior of the entropy of the J;-J, model
is the same as that of a paramagnet. At the saturation field,
which is Hg, ~1.64J./(gug) for ¢/m=0.747, the tempera-
ture reaches a minimum when adiabatically changing the
field at low temperatures, and rises steeply when increasing
the field to higher values H> H,. In this area of the phase
diagram, a J;-J, compound is a good system for magnetic
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FIG. 6. Contour plots of the entropy S(7,H) (top) and the heat
capacity Cy(T,H) (bottom) at a fixed frustration angle ¢=0.74 as
a function of the magnetic field H and temperature T for a cluster of
24 sites. For the entropy plot, the contour line starting at H=0 and
kgT=0.15J, corresponds to S=0.05N,kg, the highest contour line
starting at H=0 and kgT= 1.15J, corresponds to S=0.6Nkp. In the
plot of the heat capacity on the bottom, the lowest contour starting
at H=0 and kz=0.1J. has a value of Cy=0.05N kg, while the
highest contour starts at H=0, kg7~ 0.4/, and has Cy=0.45N4kp.

cooling, especially in view of the low values for the satura-
tion fields (in T) for the experimentally known compounds
(see Fig. 4 and its discussion above).

The heat capacity Cy(T,H) is characterized by two
maxima as shown in the bottom panel of Fig. 6. One maxi-
mum occurs at H=0 and kzT=0.5J., which is the broad
anomaly occurring at the crossover to the 1/7>-temperature
dependence for high temperatures: We have

1
Nykg

J 2
CAT,H=0 C), T : 17
W )H(kBT — © (17)

This maximum has already been discussed in Ref. 2. A sec-
ond maximum can be observed at high temperatures
T>>J./kp and magnetic fields H> H,. Here, a field-induced
gap opens, leading to a Schottky-type anomaly of an effec-
tive two-level system, see also Sec. V A and Fig. 12 (center).
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FIG. 7. (Color) Contour plots of the heat capacity (top) and the
normalized magnetocaloric effect I'y,./(T/H) (bottom) for the 24-
site cluster at a fixed temperature 7=0.2J./kp as a function of the
frustration angle ¢ and the magnetic field H.

D. The magnetocaloric effect

For the numerical calculation of the magnetocaloric effect
we express Eq. (1) as the cumulant

r _(8_T> - en, (HS) - (HXS) (18)
N

me =\ oH (H2) — (H)>

and normalize the results to the magnetocaloric effect of a

paramagnet. The top of Fig. 7 shows a contour plot of fmc
=I",../(T/H) as a function of the frustration angle ¢ and the
magnetic field H. For small fields H< Hg, I'../(T/H) is
small, nearly zero or even slightly negative, apart from
finite-size effects showing up, in particular, in the collinear
phase. It is only at the saturation field where I',./(T/H)
develops a large anomaly peaked slightly above H, (com-
pare with the bottom plot of Fig. 3). For magnetic fields
H>Hg,, we eventually reach I',./(T/H)— 1.

PHYSICAL REVIEW B 76, 125113 (2007)

05 v
FM NAF CAF FM]

04L 4

0.3} _

0.2}

0
210 ) 0.0 05~ %o
o/

FIG. 8. Specific heat at k3T/J.=0.2 and constant ¢-independent
field gugH/J.=2.5 as a function of frustration angle. The double
peak structure at the classical NAF/CAF boundary corresponds to
the two ridges in the contour plot of Fig. 7.

Apart from a factor 7, the magnetocaloric effect is given
by the ratio of two quantities, see Eq. (1). (a) In the numera-
tor, we have (dM/dT)y or, equivalently, (dS/JH). The en-
tropy S(T,H) at constant temperature is plotted on the bot-
tom of Fig. 5. Its field dependence, corresponding to the
density of contour lines in the plot, is weak apart from the
nonmagnetic regions at the edges of the collinear phase. (b)
The denominator is the heat capacity C\(T,H). Here, small
values give rise to a large magnetocaloric effect. Figure 7
(top) holds a plot of the heat capacity at constant temperature
T=0.2J./kg as a function of the frustration angle ¢ and the
magnetic field H. The heat capacity is large in the disordered
regions, reflecting the high number of quasidegenerate states.
Around J,/J,=1/2 ($/7=0.148), a two-peak structure
evolves when increasing the field, see also Fig. 8. Due to the
smallness of the saturation field, we currently cannot say
whether such a structure also exists at the “mirrored” (J,—
—J,) position in the phase diagram at J,/J,=-1/2. When
reaching the saturation field, the heat capacity drops and
eventually vanishes.

Taken together, it appears naturally that the magnetoca-
loric effect is peaked around the saturation field. The drop in
magnitude inside the nonmagnetic regions can be under-
stood, too, as a consequence of their large specific heat. And
since the entropy rises inside these regions when turning on
the magnetic field, the magnetocaloric effect must be nega-
tive, indicating a cooling of a sample before reaching the
entropy maximum. We note that we also observe a change of
sign in (dS/JH)y as a function of field in the magnetically
ordered regions, and return to this point in the context of
spin-wave theory below.

On the bottom of Fig. 9, we have plotted the values of
I',.o(T,H) at the saturation field as a function of the frustra-
tion angle ¢, again for 7=0.2J./kg. The open circles denote
the absolute values, while the filled circles denote the values
relative to a paramagnet. In accordance with the discussion
in the previous paragraph, the absolute values of I',,.(T,H)
in the ordered phases are larger than in the nonmagnetic
regions. The deviation from the average value is less than a
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FIG. 9. In this figure the field is kept at the saturation field for
every ¢, i.e., Cy and I',,. are plotted along the curve in Fig. 3
(bottom). Top: Value of the heat capacity Cy(T,H) at the saturation
field as a function of the frustration angle ¢ for a fixed temperature
T=0.2J./kg. Bottom: Values of the magnetocaloric effect
I'wo(T,H)=(dT/0H)g at the saturation field as a function of the
frustration angle ¢ using a fixed temperature 7=0.2J./ k. The open
circles denote the absolute value of I, their scale is given at the
left ordinate. The filled circles denote the normalized values
I/ (T/H), indicating the enhancement relative to a paramagnet.
Scale is on the right ordinate. Both plots were made using a 24-site
cluster.

factor 2. In contrast, the normalization to the magnetocaloric
effect of the paramagnet (filled circles in the bottom panel of
Fig. 9) introduces a strong influence of the saturation field,
compare the bottom plot in Fig. 3. Therefore, the highest
enhancement of I',,. with respect to a paramagnet occurs
deep inside the magnetically ordered phases, where the satu-
ration field reaches its maximum values.

The heat capacity Cy(T,H,,) as a function of the satura-
tion field at constant temperature 7=0.2J./kp is plotted on
the top of Fig. 9. It is strongly enhanced in the nonmagnetic
regions, while roughly constant as a function of the frustra-
tion angle ¢ in the magnetically ordered phases, giving rise
to the comparatively weak ¢ dependence of I',..As dis-
cussed above, the enhancement inside the disordered regions
is responsible for the suppression of the magnetocaloric ef-
fect.

PHYSICAL REVIEW B 76, 125113 (2007)

0.2

o
e
o1

S /Nakg, Cy/Nakg
o
AT/OH / TH

0.05[

0 0.5 1 1.5 2 2.5
(a) gusH /Je
15—
10[
: |
T 5F
-
g} L
of
_5-||||I||||||||I||||
0 0.5 1 1.5 2
(b) H /Hgat

FIG. 10. Top: Entropy S(T,H) (solid line, left scale), heat ca-
pacity Cy(T,H) (dashed line, left scale), and magnetocaloric effect
(6T/0H)/(T/H) (solid line, right scale) as functions of the magnetic
field H at constant temperature 7=0.2J./kp for a frustration angle
¢$=0.74m. Data were generated using a 24-site cluster. Bottom:
Normalized MCE for various temperatures. The anomaly at H, is
suppressed with increasing 7, see also Fig. 18. At the lowest tem-
perature a negative MCE is possible.

To clarify the field dependence of I',, (T, H) further, Fig.
10 holds a comparison of the three relevant quantities
' o(T,H)/(T/H)=(dT/3H)/(T/H), C,(T,H), and S(T,H) as
a function of the magnetic field H for a fixed frustration
angle ¢=0.7477 and a temperature 7=0.2J./kp: Disregard-
ing possible finite-size effects, the entropy (solid line, left
scale) and the heat capacity (dotted line, left scale) are
slowly varying functions of H, see also Sec. V A, dropping
sharply above the saturation field Hg,, =~ 1.64J./(gug). Taken
together, this leads to a pronounced maximum of
(oT10H)/(T/H) slightly above the saturation field. Other-
wise, (dT/0H)/(T/H) is small and negative for fields
H< Hg, [because (4S/3dH)7=0 in this field range] and ap-
proaches 1 for H>H,.

V. APPROXIMATE ANALYTICAL TREATMENTS OF THE
MODEL

To better understand the exact numerical results for finite
clusters it is useful to have approximate analytical results
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available for comparison. We consider two approaches: First,
a mean-field treatment which provides a reference point for
the global behavior of entropy and specific heat in the or-
dered phase, and the magnetocaloric effect above the satura-
tion field. Secondly, we use a linear spin-wave (LSW) ap-
proximation to investigate the anomalous enhancement of
the magnetocaloric effect around the saturation field, which
turns out to be due to a softening of spin excitations at char-
acteristic wave vectors. In this approximation, in contrast to
mean-field theory, the MCE below the saturation field is non-
zero. The spin-wave approximation also allows us to study
subtle effects for subcritical fields which lead to a sign
change of the MCE.

The existence of long range order at finite temperatures,
i.e., a nonvanishing transition temperature 7. associated with
magnetic order, is implicit in both treatments. In reality, for
the layered vanadates which we wish to describe, 7, will be
determined by low-energy scales which are not present in
our model, notably the interlayer magnetic exchange J, and
magnetic anisotropy &J.

Formally, we cannot break a continuous symmetry such as
spin rotation at any finite temperature in 2D, and to be “cor-
rect” we should generalize our model to higher dimension
and finite anisotropy. However these details make little quali-
tative (or quantitative) difference for a wide range of tem-
peratures 6J,J | K T<KT,, so we suppress them below. Fur-
thermore, in these calculations we neglect the consequence
of interactions between spin waves (see, e.g., Ref. 22) and
the breakdown of magnetic order at zero temperature on the
borders of the CAF phase.>?* These effects can be expected
to modify the details of critical behavior as a function of
magnetic field, but not its broad features, and are left for
future investigation.

As discussed in the previous section, the size of the mag-
netocaloric cooling rate in Eq. (1) is determined by the ratio
of the rate of change of entropy with field (9S/JH)ry and its
rate of change with temperature (9S/dT)yy=Cy/T. On ap-
proaching the critical field both quantities tend to increase
sharply, and the resulting increase in I',,.(H) is a tradeoff
between them. It is not immediately obvious for which frus-
tration angle ¢ the enhancement in I',.(H,, ) should be
largest. At modest temperatures, the simple spin-wave ap-
proximation described below gives considerable insight into
this question, and the critical anomalies of the MCE around
the saturation field.

A. Calculation of mean-field order parameters and
thermodynamics

In this section the magnetothermal properties will be in-
vestigated in the mean-field approximation to have a refer-
ence for the spin-wave and numerical exact-diagonalization
methods. The results of the former are, however, not ex-
pected to give a realistic description of the MCE. For a uni-
fied treatment of AF phases it is advisable to use a four-
sublattice description («,8=A,B,C,D) with each sublattice
having N/4 sites for both NAF and CAF. Since we consider
only isotropic exchange we may assume without loss of gen-
erality that the field is perpendicular to the (xy) plane of the
square lattice, i.e., h=hz.
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In this and the following subsection we refer all extensive
quantities such as entropy, specific heat, etc., to a single site
for convenience. The exchange field h®* and total molecular

field h due to Eq. (4) is then given by

hy=- E JZMSB),
kp

A

h,=h+h, (19)

where the exchange constants JZ‘B are defined per bond. The
components of the exchange field 4™ and AT which are par-
allel and perpendicular to the field direction z are related to
the respective spin expectation values {S;) and (S, ) via the
equations

1 1
Ehﬁx =—a(Sy; Ehix =a,(S,), (20)

where the prefactors for the AF and the FM or fully polarized
phases (h>h, for any ¢) are given by

Z Z
NAF: a= E(Jl +Jy), a,= 5(11 =),

Z Z
CAF: a||=5(.]1+]2), aJ_=EJz,

FM: auzg(ll+J2), a, =0. 1)

Then the mean-field approximation of the Hamiltonian in
Eq. (4) may be written as

HMF=E

a,l

1
- (h+h)S, + ShESa |- (22)

This also self-consistently defines the mean-field averages
via  (A)=Tr{A exp(-BHyp)}/ Tr{exp(-BHyp)} with B
=1/(kgT). From the above equation the corresponding total
mean-field internal energy per site Uyp=(1/N){Hyp) is ob-
tained as

UMF(T’H) == iE (h + %hzx><sa>' (23)

Explicitly, using Eq. (21) one obtains
NAF,CAF: Uyp=—h(S)) + a(S)> —a (S, ),

FM: Uy = = B(S)) + ai(S)). (24)

To calculate thermodynamic quantities the expectation
values (S)) and (S ) and their temperature derivatives have
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to be obtained self-consistently. This is done by diagonaliz-
ing Hypr which leads to local eigenstates |+)=u.|T)
+v.| ) where | 1), |]) are the degenerate free S=1/2 states.
The |+) states have energies E,=E_ +¢€, given by

E.= aJ_<SJ_>2 - aH<S”>2,

1 . N A A
€. = ia[hﬁ+h2l]l/2 with ]’l||=l’l+ ‘TX, hl:h?~ (25)

Defining 2ey=A =€, — €_ as the splitting due to the molecular
field h their coefficients are then obtained as

1. 1 A
S 5(260’—“ hp'?
Upy=————F——, V.=F ——p . (26)
[50(260 + hH)]l/z 6(1)

Using these coefficients and the difference of thermal oc-
cupation numbers p_—p,=tanh %,BA of eigenstates |+) one
finally obtains self-consistent equations for the spin expecta-
tion values

1h, 1
= ——= tanh —BA
<SJ_> 2 A an 2B )
1k 1
= —— tanh —BA. 2
Sy 7A tan 2,3 (27)

The self-consistency is implied via the molecular field ex-
pressions

hy=h-2as),
ﬁL = 2aL<SL>’

A= (hf +0h7)". (28)

The canting angle 6./2 of magnetic moments is obtained
from minimizing Uy in Eq. (24). The angle is counted from
the field or ¢ direction and given by

0\ (5
an( 5 ) = 5 (29)
or
[ —— 0
N2 )T uSayra, b )

where 1, =2(S)(a)+a ). Inserting this into Eqgs. (27) and (28)
leads to the simple and general result

1 1
(S)= tanh ZBA  with A=2(S)]a,]. (31)

This means that in the ordered phase the molecular field
splitting A of spins is field independent up to /. and hence
the total moment (S) is also field independent, i.e., the
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FIG. 11. Field dependence of staggered order parameter (S,) and
uniform magnetization (S,) for two different temperatures (left and
center panel). The total moment {S)=({S,)?+(S,)?)""* is field inde-
pendent in the ordered regime. The field dependence of the canting
angle 6./2 (counted from the field direction) is also shown. Right
panel: Susceptibility y for three different temperatures. Its value in
the ordered regime is 7 independent. In all cases the frustration
angle is ¢=0.74 corresponding to the CAF choice.

moment can only be rotated by the field as long as the trans-
verse staggered order exists. This fact has striking conse-
quences for the thermodynamic quantities below #,.. For the
thermodynamics we also need the temperature derivatives
HS) dT=—kyB*(KS;)/3B) (i=Il, L). They are obtained
from Eq. (27) in a straightforward but lengthy calculation
and the resulting explicit expressions are given in Appendix
A.

The mean-field solution for a CAF value of ¢=0.747 is
shown in Fig. 11. On the left panel the decrease of the stag-
gered OP (S,) with increasing field and the concomitant in-
crease of the uniform moment (S.) are shown for small tem-
perature. The total moment (S) is constant as predicted and
practically equal to S=1/2 in the whole field range. This
confirms that the moment is simply rotated (canted) by the
field without changing its size. The relevant canting angle
6,/2 is also shown in the figure. For moderate temperatures
(center panel) the zero field value of (S,) is already reduced
somewhat. As required by Eq. (31) the field still only reori-
ents the moment, i.e., (§) is a constant less than 1/2 for fields
h<h,. Finally for h>h, when the moment is aligned with
the field (6,/2=0), the total moment {S)=(S,) will be polar-
ized, i.e., increases with field until it reaches the asymptotic
value of S=1/2. The right panel shows the susceptibility xyg
for various temperatures. It is constant and 7" independent in
the ordered regime. These results are qualitatively unchanged
for different angles ¢.

The desired thermodynamic quantities may now be con-
veniently obtained from the free energy Fy; and internal
energy Uyp [Eq. (24)] of the S=1/2 system split by the

molecular field by an energy A(ﬁu,}; ). The former is given
by
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Fye(T,H) =E,.— /lg ln[Z cosh %(,BA)} (32)

per site and the entropy Syp=—(dFug/dT), specific heat
CY¥'=(dUyp/ 9T) and susceptibility per site are then obtained
as

SME= k3[1n<2 cosh %BA) - %,BA tanh %BA},
CV" = kB (h = 2a(SP)(S))’ +2a,(S,)'],

xur = (gup)? 9 (S/h,

where (S))’, (S )" are given in Eq. (A1) of Appendix A. For
uncoupled spins @y=a, =0 and (SH)’=:-‘h cosh™ %,Bh which
leads to the Schottky specific heat of the two level system.
For the magnetocaloric cooling rate I',,. we need in addition
the temperature gradient of the magnetization myp
=gup(S)) which is simply given by

ﬁmMF
aT

== kB(glLB)ﬂ2<SH>’ . (33)

Then the mean-field expression for the cooling rate I, may
be obtained from the definition in Eq. (1) using the expres-
sions for Cy in Eq. (33) and the temperature gradient in Eq.
(33). Thus the solution of the self-consistent Eqs. (27) for
(S and (S| ) and their temperature gradients (S;)" and (S )’
in Eq. (A1) provide all the necessary input for obtaining the
magnetocaloric ~ quantities  Syp(7T, H), CI“,/IF(T,H) and
I'o(T,H) from the above equations.

In Fig. 12 we show the field dependence of mean field
entropy, specific heat, and cooling rate as function of field for
various temperatures. Obviously S and Cy (left and center
panel) are field independent below £, caused by the fact that
A is constant according to Eq. (31). Consequently, since the
cooling rate is proportional to the field gradient of S [Eq.
(1)], it suddenly drops to zero below the saturation field .. as
seen in the right panel of Fig. 12. In addition it shows that
above £, the cooling rate is only slightly enhanced from the
paramagnetic value. Although the mean-field results are far
from realistic, the two main aspects, field independence of S
and Cy below &, and steplike anomaly in '}, at &, still leave
their signature in the more advanced spin-wave and numeri-
cal treatment to be discussed below.

B. The magnetocaloric effect in the linear spin-wave
approximation

1. Statistical mechanics and general expressions

In the mean-field approximation the elementary excita-
tions are local dispersionless spin flips whose energy is de-
termined by the molecular field. This is far from reality es-
pecially close to the saturation field when the order
parameter breaks down, associated with a softening of the
spin excitations at some k point or even line in the Brillouin
zone (BZ). The linear spin-wave approximation takes this
effect into account and gives a much more realistic descrip-
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FIG. 12. Thermodynamic properties in the mean-field approxi-
mation for ¢=0.747 (CAF) as a function of applied field for three
subcritical temperatures kz7/J.=0.3 (a), 0.5 (b), and 0.7 (c). Left:
Entropy dependence on /4. Below the saturation field 4, it is field
independent because (S) (see Fig. 11) and also A is field indepen-
dent in the ordered regime. Center: specific-heat dependence on 4.
For larger temperatures when k. is sufficiently suppressed a
Schottky peak evolves above h.. Right: Magnetocaloric enhance-
ment factor. In the MF approximation almost no enhancement is
visible above h.(T). Below the critical field the entropy is field
independent and hence ", drops to zero suddenly according to Eq.

(1).

tion of the MCE. Since spin wave interactions are left out in
our approach, however, the singular behavior around /. may
be overestimated.

To calculate the magnetocaloric effect of Eq. (1) in spin-
wave approximation we start from the partition function

Z=Ti[e k8T, (34)

where the Hamiltonian H is expanded in spin-wave coordi-
nates using the Holstein-Primakoff approximation

H=NEy+NEzp+ 2, & (hK)a) ay + O(E/S?). (35)
Ak

Here Ey=Uyp(T=0) is the classical (mean-field) ground-
state energy per spin, €,(%,k) the spin-wave dispersion in
applied field &, and the sum over Kk runs over the appropriate
magnetic BZ, while N counts the different spin wave
branches within that BZ. The operator ], creates magnons

with commutation relations
t
[anks a}\,k,] = O\ Ok -

In addition to the classical (mean-field) ground-state energy
per spin E there is zero point energy contribution

1
Ep= gv% [e\(hk) —A(hK)], (36)

where A(h,Kk) is the on-sublattice coupling between spins,
defined below. For CAF and NAF phases the Ep is always
negative; in the FM, where the ground state and spin waves
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are eigenstates with a single dispersion e(h,k)=A(h,Kk), Ezp
vanishes identically.

The partition function is essentially that of a set of inde-
pendent simple harmonic oscillators

7= e—[Eo(h)+Ezp(h)]/(kBT) X H [1 _
Ak

e—e}\(h,k)/(kBT)]—l. (37)

From this we find the internal and free energy per site, using
ng(e, T)=[e“*“sD—17]! for the Bose factor

1
U= Ey+— 2 ngle(h.K) e (hK),
Nk

1
F=-—k;TInZ
N

1
=E0(l’l) + EZP(h) + ]T]kBTE ln[l - e_E}‘(h’k)/(kBT)]. (38)
Ak

The entropy per site S=—(JF/JT) follows directly:
E)\(h,k) €, (h,k)

_k ,
BE —In sinh —~——= |. (39)
NS 2kB kT 2UegT

We can also find the uniform magnetization

JEy(h)  9Egp(h) 1

R hK),T
R L CXCU R ey

&6)\(1’1 k)

(40)
In the FM phase, where €(/1,k)=w;+h and there is no zero-
point term, this simply reduces to

1
m=m0—]v2 ng(e,+ h,T) (41)
Ak

Quite generally, we can calculate the MCE as the ratio in
Eq. (1) where the magnetization gradient is given by

de\(h.k
e (k) 2 UK)
oh
ﬁ_ N% ) “42)
4(kgT)? sinh?| ———
2kyT

and the specific heat Cy,=T(3S/dT)=(aU/IT) by

Q/ _ _b 6)\(]191()2 J . (43)

oW W 4 (kyTy? sinh?| SR
2kyT

From Egs. (42) and (43), I',,,. is obtained using Eq. (1). This
reduces the problem to one of evaluating two-dimensional
integrals on k for the appropriate spin-wave dispersion
&.(h,k).

We note that in the special noninteracting case e(/,k)
=h, these expressions reduce to those for an ideal quantum
paramagnet, with the associated magnetocaloric effect
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aT T
The = (—) =—. (44)
oH); H

Incidentally this is a general property of any system for
which the partition function Z depends only on H/T, i.e., F
=—kgTIn Z(H/T).

2. Spin-wave dispersion in the ferromagnet/saturated
paramagnet

Since spin-wave theory assumes broken spin rotation
symmetry, we can treat the spontaneously polarized FM
phase for h=0 and the saturated paramagnet for 2> h.(¢) on

an equal footing. Expanding about the maximally polarized
state to O(1/S) we find

H=NEy+ 2, epp(h.K)ajay + 0(1/5?), (45)
k

where
EO = 2(]1 + Jz)Sz - hS (46)

is the classical ground-state energy per spin, which is equal
to Uyp(T=0) in Eq. (24). The spin-wave dispersion has a
single branch given by

erm(h,k) =h —4J,S[1 - (k)] - 41,81 - yk)], (47)

where
1
y(k) = E(COS k,+ cos ky) (48)
and
¥(k) = cos k, cos k. (49)
We then simply have
d hk
erm(h,k) -1, (50)
oh

i.e., a rigid shift of the entire dispersion with change in mag-
netic field.
The dispersion will have a single (parabolic) minimum at
=(0,0) in the FM phase (i.e., for J, <0, J,<|J,|/2). How-
ever, in the saturated paramagnetic state, above the critical
field h.(¢,J,), the minimum of the dispersion will be at k
=(ar, ), where there is a NAF ground state, and at k
=(,0) (and symmetry points) where there is a CAF ground
state. At the classical critical point J;=2J,>0 separating
NAF from the CAF, there are line zeros around the zone
boundary k,=+7 and k,== . At the classical critical point
—J1=2J,>0 separating FM from the CAF, there are line
zeros for k,=0 and k,=0. Note that these line zeros connect
the different minima of the dispersions between which this
state must interpolate.

3. Spin-wave dispersion in the canted NAF

Expanding about a canted NAF with ordering vector
(7r,7) and canting angle 6. we find
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H=NEy+ >, [A(h.K)(afay + biby) + B(hK)(alb!, + ayb_y)
k

+ C(h,K)(agby + biay )]+ O(Ey/S?). (51)
The classical ground-state energy per site is given by
Ey=2J,5%cos 0, +2J,5% — hS cos(0,/2) (52)

which is identical to Uyp(T=0) of Eq. (24). Minimizing this
energy fixes the canting angle [Eq. (30)]

6. h
—L=cos_1(—), (53)
2 8,5

where (6./2) is measured relative to the magnetic field di-
rection z (i.e., the FM has 6.=0, the NAF 6, = 7/2). Exactly
the same expression follows from the requirement that the
spin-wave expansion contains no terms linear in bosons.
Eliminating the magnetic field through Eq. (53), we find

A(hK) + C(h,K) =4J,S[1 + cos*(6,/2) ¥(k)]
—4J,8[1 - ¥(k)],

B(h,k) = —4J,Sy(k)sin*(6,/2). (54)

These expressions still depend on the applied magnetic field
through the canting angle 6,(h). The bilinear form of Egq.
(51) (Appendix B) may be diagonalized by a Bogoliubov
transformation to give

H=NEy+NEgp+ >, &(hk)al an+0(1/5?), (55)
Kk A=+

where

e.(h.k) = \[A(h.k) £ C(h.k)]* - B(h,k)>. (56)

The twofold degeneracy of the spin-wave dispersion of the
NAF is lifted by the applied magnetic field. In the (physical)
magnetic Brillouin zone centered on k=(,), the Gold-
stone mode is €,(h,k)=0, while e_(h,k)=F has a finite gap.
Since spin waves are not eigenstates, there is now a zero-
point energy term in the energy Ep.

In order to calculate the rate of change of magnetization
with magnetic field in Eq. (42), we also need the field de-
rivative of the dispersion. Considering explicitly €,(/,k), we
obtain

de,(hk) 12

— = G—ETk(Alﬁ Ci=By). (57)
As far as the periodicity of dispersions is concerned, note
that translation by Q=(r, ) leads to

A(hk+ Q)+ C(hk+Q)=A(hk) - C(hk),

B(h,k + Q) =-B(h,k), (58)

therefore the two €, modes are simply interchanged by trans-
lation through the NAF ordering vector Q=(sr,). This
means that in simple thermodynamic averages one can work
with a single mode in the full square lattice BZ—e.g.,
€,(h,k)—rather than with the two (physically distinct)
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FIG. 13. (Color) Spin wave dispersions in the NAF and CAF
phase. Only the €.(h,k) modes are shown. The corresponding
€_(h,k) modes are obtained by translation with (7r,7) or (47,0) in
the NAF and CAF case, respectively. Top panel: canted NAF dis-
persion €,(h,k) for J,=0 and a canting angle of §,=7/8. Note
that €,(h,Kk) is gapless at (m,7r) and gapped at (0,0) while the
opposite holds for e_(h,k). Bottom panel: canted CAF dispersion
€.(h,k) for J;=1, J,=1,5=1/2 and a canting angle of §,=77/8. In
this case €,(h,k) is gapless at (7,0) and gapped at (0,0) and vice
versa for e_(h,Kk).

modes in the smaller magnetic BZ. The €,(h,k) spin-wave
dispersion for NAF in the full paramagnetic BZ is shown in
Fig. 13 (top panel).

4. Spin-wave dispersion in the canted CAF
The ground-state energy per spin is now given by
Eo=J,5[1 +cos 6.]+2J,5% cos 6, — hS cos(6,/2)
(59)

which again is equal to Uyp(7=0) in Eq. (32). Minimizing
this energy leads to a canting angle [cf. Eq. (30)]

6, » h
—=cos | ——|. (60)
2 47,8 + 87,8

Once again we obtain spin waves with a dispersion of the
form Eq. (56). After elimination of the field using Eq. (60),
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the coefficients of the spin-wave expansion are given by

A(h,k) =28[2], +J, cos k],
B(h,k) =—258[J; +2J, cos k,]cos k, sin%(6,/2),

C(h,k) = 2S8[J; + 2J; cos k]cos k, cos2(0./2).  (61)

These coefficients once again satisfy the relation (58) with
Q=(,0), i.e., the €, modes are interchanged under transla-
tion through the magnetic ordering vector. Therefore simple
averages can again be calculated for a single mode in the full
paramagnetic (square lattice) BZ. As in the NAF case, the
field gradient of spin-wave energies is given by Eq. (57). The
€,(h,k) spin-wave dispersion for the CAF in the full para-
magnetic BZ is shown in Fig. 13 (bottom panel).

VI. DISCUSSION OF THE ANALYTICAL RESULTS AND
COMPARISON WITH THE NUMERICAL FINDINGS

The typical field dependence of entropy, specific heat, and
MCE in the linear spin-wave approximation as calculated
from Eqgs. (1), (39), (42), (43) are shown in Fig. 14. Entropy,
specific heat, and MCE are all smooth functions of magnetic
field except at the critical field &, at which there is a (second-
order) phase transition between the paramagnet and canted
Néel phases.

The most striking feature of these predictions is the
double spike in the MCE at 4. This is a generic feature of a
second order phase transition between paramagnetic and or-
dered phases in applied field®* and has previously been seen
in Monte Carlo simulations of the classical Heisenberg
model.'? This sudden and sharp change in sign of the MCE
can easily be understood in terms of the contours of fixed
entropy (adiabats), discussed below. It is accompanied by
closely related cusps in the entropy and heat capacity, peaked
at h,.

In general, as we would expect, entropy and specific heat
have a much weaker field dependence in the ordered phase
below £, than in the disordered phase above it. The entropy
of the (gapped) paramagnetic phase falls rapidly in applied
magnetic field, while the Néel phase responds to magnetic
field by canting, at nearly constant entropy. As a result the
typical (absolute) value of the MCE is much larger above #,
than below. These features of the LSW predictions are remi-
niscent of the mean-field theory, as illustrated in Fig. 12.

For sufficiently large h>>T,J,. we must (and do) recover
the response of an isolated paramagnetic spin in either ap-
proximation. Where the LSW predictions differ from those
of mean-field theory is in the singular features at A, and in
the presence of a finite MCE in the ordered phase. This is
positive for #— 0, exhibits a shallow maximum at a charac-
teristic field h=h,,,, changes sign at another characteristic
field h=h,, before exhibiting the dramatic double spike at
h=h,—irrespective of which ordered phase is considered.
The absolute values of these critical fields, and the form of
the anomalies at A. do, however, depend on the structure of
the low-energy spin spectrum, and therefore on frustration
through ¢.
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FIG. 14. Top panel: Entropy, specific heat, and MCE for ¢ in
the CAF regime. The MCE has a maximum at h.,, and then
changes sign at hj. At the saturation field 4, another sign change
associated with a spikelike singularity appears due to the field gra-
dient of the entropy. Bottom panel: Normalized MCE cooling rate
| i Fomcz(H /T)T , for five different frustration angles in the NAF
(¢p=-0.257, 0) and CAF (¢=0.25m, 0.5, 0.75m)regime and
shown for moderate fields. The field is normalized to the saturation
field h.(¢) given in Fig. 3 (bottom). Low field maximum of the
MCE at hy,,,(¢) and sign change at h(¢) are clearly seen to occur
for all frustration angles. Pairwise equalities of the MCE are ob-
served due to the symmetries of the spin-wave spectrum with re-
spect to ¢.

The difference between mean-field and spin-wave results
becomes most obvious in a comparison contour plot of the
entropy S(7',H) shown in Fig. 15. The former (top panel) has
a temperature-dependent critical field which vanishes at the
(mean-field) transition temperature. The entropy does not
have any structure below 4. due to the field-independent mo-
lecular field splitting A in Eq. (31). In spin-wave approxima-
tion (bottom panel) the critical field is temperature indepen-
dent, but the entropy contours show a typical cusp structure
around A, with a maximum at h, further down which is
caused by the excitation of low-energy spin waves (see Refs.
25 and 26). According to the definition of I, in Eq. (1) this
immediately translates into the sign change of ', at &, and
its enhancement around #,..
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FIG. 15. Contour plots of the entropy S(T,H) for ¢=0.74 in
mean-field approximation (top panel) and spin-wave approximation
(bottom panel) in steps of AS=0.02N kg and 0.05N,kp, respec-
tively. The former shows a temperature dependent critical field H,
but no structure of the entropy. The latter has a constant critical field
but exhibits the cusp structure around H, which is responsible for
the sign change and peaks of the MCE in Fig. 14. These contour
plots should be compared with the results from FTLM in Fig. 6 (top
panel) which qualitatively exhibit both features.

The behavior of the (normalized) MCE in the low to mod-
erate field regime is presented on an enlarged scale in Fig. 14
(bottom panel) for typical values of ¢ in the NAF/CAF re-
gion. We notice a considerable variation of the characteristic
fields hp,. () and hy(¢p) with the frustration angle. The
maximum MCE, I',,.(h.y) for kgT/J.=0.2 is of the order of
10% of the paramagnetic value I') (hy,,). Furthermore a
symmetry in the ¢ dependence is obvious. First the MCE is
invariant under reflection at the axis ¢=0.57 or J;=0 when
both values of ¢ lie in the CAF sector. This is obvious from
the spin-wave dispersion Egs. (56) and (61) in the CAF re-
gime which is invariant under the simultaneous transforma-
tion (J,J,)—(=J,,J5) and (k,,k,)— (k.+,k,+7). Since
the MCE is obtained by integration over the whole BZ, T,
is unchanged under sign reversal J;——J;. Secondly the
MCE for ¢=0 and ¢=0.57 are equal, i.e., it is invariant
under the replacement (J,,0)—(0,J,).

Finite-size effects prevent the characteristic fields 7, ()
and hy(¢) from being identified in FTLM calculations, as
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shown in Fig. 10. Nevertheless a negative MCE at moderate
fields is clearly compatible with the numerical results. In
practice, for a finite size cluster, each of the ground-state
level crossings shown in Fig. 2 shows up as a separate
“phase transition” in the FTLM results for the MCE, with
associated positive and negative spikes in Fig. 10. For this
reason, the sign of the MCE remains ambiguous. However,
for the saturated paramagnetic phase, where there is no fur-
ther level crossing in the ground state, the sign of the MCE is
correctly resolved and a pronounced enhancement is seen
approaching h.(¢) from above.

This is in good qualitative agreement with the predictions
of LSW theory, where it is clear from Fig. 14 that the largest
positive MCE is to be expected just above /(). This maxi-
mum arises from the closing of the spin-wave gap in the
fully polarized phase when h—h.. It occurs for fields
slightly above & (¢) because temperature acts to “round” the
sharp cusp in the entropy contours at the critical field — cf.
Fig. 15. Needless to say, the low-energy excitations respon-
sible for the sharply diverging peaks seen in LSW results are
not accurately described by a cluster of 24 sites, and so it
makes little sense to compare FTLM and LSW predictions at
a quantitative level.

While the structure of the MCE is generic to a (second
order) phase transition, the details depend strongly on the
amount of frustration present. If the frustration angle is
deeply within one of the ordered sectors, the softening of the
spin waves at i—h_ occurs at the wave vector of the low
field AF structure (7, ) or (0, 7). However, if the frustration
angle approaches the transition regions CAF/NAF and CAF/
FM, the softening will occur along the whole line in the BZ
connecting the wave vectors of the competing structures.
This is reminiscent of, but less dramatic than, the situation in
certain geometrically frustrated magnets where the spin gap
closes simultaneously at 4, for an entire branch of excitations
across the BZ, leading to the condensation of a macroscopic
number of localized magnon modes.!? In the present case
one should therefore expect a strong enhancement of I',,.(h
—h?) for ¢ close to one of the above boundary regions.

The same holds for the specific heat. In Fig. 16 (left
panel) we show the peak value Cy(h},¢) as a function of
frustration angle. Indeed the specific heat shows a strong
enhancement for ¢=0.157 (CAF/NAF) and ¢=0.857
(CAF/FM) of considerable width in ¢. This is in good quali-
tative agreement with the FTLM results for finite clusters
presented in Fig. 9 (top panel). The anomaly at the FM/NAF
boundary on the other hand is much smaller.

On the right panel of Fig. 16 the corresponding plot for
the MCE is shown. The dashed line shows the bare MCE
coefficient I',.(h— h) as a function of ¢. It is almost con-
stant except at the phase boundaries where again a large, but
much narrower peak appears. This is not immediately obvi-
ous since Cy enters in the denominator of the expression for
I in Eq. (1). In fact on approaching ¢/7=0.15 the MCE
slightly decreases, only very close to the value when the
spin-wave dispersion softens along the line (7,0)—(7, 7) and
equivalent ones in the BZ a very sharp spike appears. This is
due to the fact that the spin wave softening leads to a stron-
ger increase of the magnetization gradient [Eq. (42)] as com-
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FIG. 16. Thermodynamic quantities slightly above the critical
field h.(¢) as a function of ¢ for temperature kz7/J,=0.2. Here we
used A,=h—h,=10"3h,. Left: The specific heat shows enhancement
at the NAF/CAF boundary. Right: Bare (dashed line) and normal-
ized (solid line) magnetocaloric effect as a function of ¢. Giant
peak at the NAF/CAF boundary occurs due to gapless LSW modes
along lines in the BZ. The overall behavior of the normalized
T/ T =[H($)/TIT . follows the ¢ dependence of the critical
field [Fig. 3(bottom panel)].

pared to the increase of Cy from Eq. (43). The full line in
Fig. 16 (right panel) shows the normalized MCE. Aside from
the phase boundaries where again sharp peaks appear it is
largely determined by the behavior of the saturation field
(Fig. 3) since the bare I',.(h— h}) is roughly constant in ¢.

Deep within the ordered phases the degree of enhance-
ment of the MCE relative to an ideal paramagnet is chiefly
controlled by the saturation field 4.(¢). The FTLM and LSW
predictions are therefore in excellent qualitative agreement
(cf. Figs. 9 and 16). However, once again, finite-size effects
prevent the FTLM method from capturing the full extent of
the anomalous enhancement of the MCE in the highly frus-
trated regions at the borders of the CAF phase. These may in
practice be overestimated by LSW theory, since it takes no
account of new nonmagnetic phases stabilized by fluctua-
tions.

Nonetheless we can gain further insight into the strong
enhancement of I',.(h—h,) and the singular peak at ¢, in
Fig. 16 within the LSW approach by expanding the spin-
wave energies of the fully polarized phase around the incipi-
ent ordering vector. Explicitly, for ¢ in the classical NAF
sector we have

€=A,+ a(q> + q%) —ay(gt+ qf,) + aiqiqi, (62)

where q=k—-Q is the distance from the NAF vector Q
=(m,m) and A,=h—h, is the excitation gap with the NAF
critical field 7.=8S5J,. The expansion coefficients are given
by a,=2a,=S(J,-2J,) and a;=S8J,. This expansion may be
inserted into Egs. (42) and (43) and the integration per-
formed approximately analytically. It is assumed that only
modes with an energy €, <kgT contribute appreciably to the
integral. In performing the integration one has to distinguish
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two cases: If one is within the NAF sector the second order
coefficient a, is nonzero. If one is at the boundary to the
CAF regime a,=0 and the dispersion is determined by the
mixed fourth order coefficient ay.

Performing the integration in this (classical) limit
kgT>> A, one obtains the approximate expressions

| h, kBT>

= In| 2= 63
o (kBT) n( A, (63)
2J, < J; (NAF),

r h, \(SJ,\'"? kpT
S EATEA LN R
ch kBT Ah (SJZAh)
for 2J,=J, (NAF/CAF). In the corresponding quantum limit
kgT< A, both the heat capacity and the rate of change of
magnetization with temperature have an activated behavior.

However, this cancels in between the numerator and denomi-
nator of Eq. (1) to give

for

kT

mc=h_h (65)

regardless of the degree of frustration present in the model.
We note that this is exactly the form predicted at a quantum
critical point on the basis of scaling arguments.?*

Returning to Egs. (63) and (64)—in the first case, inside
the NAF sector, the divergence in the MCE for h— A is only
of a weak logarithmic type. However, at the classical bound-
ary to the CAF sector (which widens into the disordered
regime due to quantum fluctuations) the singularity becomes
a much stronger one essentially of inverse square root type.
This is the reason that the MCE at h=h! shows a large
anomalous peak as a function of ¢ when crossing the NAF/
CAF boundary. Because of the vanishing of the second order
term in Eq. (62) the dispersion has a saddle point at Q lead-
ing to a large DOS of low-energy spin waves for 2J,=J, and
therefore a stronger algebraic divergence of the MCE at h,
appears. The same arguments hold for the CAF/FM bound-
ary.

However, a word of caution is appropriate. In our spin-
wave calculations we assumed that the classical magnetic
phases are stable throughout the phase diagram. Strictly
speaking this is not true. As indicated in Fig. 1 in the shaded
sectors around the CAF/NAF and CAF/FM phase boundary
quantum fluctuations lead to instability of magnetic order
and select a different nonmagnetic order parameter, presum-
ably staggered dimer?’ and spin nematic.> While the broad
features of our theory can be trusted, a truly quantitative
theory for the nonmagnetic sectors would require to start
from the proper order parameter and their associated elemen-
tary excitations. In real materials, sufficiently close to h.(T),
the critical behavior of the MCE will also be sensitive to the
details of interlayer coupling and magnetic anisotropy. Both
refinements remain as an outstanding challenge.

It is also instructive to track the low- to moderate-field
anomalies in I',,.(/, @) as a function of ¢ around the phase
diagram. In Fig. 17 the maximum field /,,(¢) and the field
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FIG. 17. In this figure the subcritical fields /() and hy(¢p),
where I',,.(¢) in Fig. 14 (bottom panel) is maximal or changes its
sign, respectively, are plotted as a function of the frustration angle.
In the CAF phase the characteristic fields are symmetric with re-
spect to ¢=0.57.

ho(¢) at which the MCE changes sign are plotted as a func-
tion of frustration angle, normalized to the saturation field
h.(¢). While hy,(p)/h.(¢) is rather constant throughout
most of the range of angles, hy(¢)/h.(¢) shows considerable
variation in ¢. The two characteristic fields are again sym-
metric around ¢=0.57 or J;=0 for the same reasons as ex-
plained above. Note that the overall double-minimum struc-
ture of hy(p)/h.(¢) as a function of ¢ prevents its use as a
criteria to resolve the ambiguity of frustration angles that
appears in zero-field thermodynamic considerations men-
tioned in Sec. IIL. It is obvious from the FTLM results in Fig.
10 (bottom panel) that the temperature dependence of the
(normalized) MCE above h, is strongly suppressed as 7 in-
creases. This effect can also be understood from the LSW
calculations. Approximating Eqs. (42) and (43) for small and
large temperatures we obtain the ratio of the low and high
temperature (normalized) MCE as a function of h>h,:

X > e(hk)
I‘mc(T < Jc) _ k

FT>1) >enkS e (k)
k k

(66)

As long as the field is not too far above A, there is still a
considerable dispersion in e(k,k) and the above ratio is

larger than 1 (Fig. 10), i.e., f‘mc is T dependent. Once h>>h,.,
however, the dispersion is negligible compared to the gap
energy A, and the ratio in Eq. (66) approaches 1, i.e., we
recover the behavior of an ideal paramagnet.

A comparison between FTLM and LSW predictions of the
temperature dependence of the MCE for fields safely above
h, (in order to avoid the logarithmic singularity at &) is
given in Fig. 18. There is reasonable agreement in both mag-
nitude and qualitative T dependence. Note, however, that the
LSW approximation becomes unreliable when 7" approaches
J /kg and too many spin-wave modes are thermally excited.
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FIG. 18. Normalized MCE as a function of temperature for the
above-critical field calculated with FTLM, spin-wave (LSW)
method. Frustration angles are ¢=0 (NAF) and ¢/7=0.74 (CAF)
corresponding to the Sr compound. For 7>>J. the FTLM result
converges rapidly to 1. The LSW result for finite A/h. has an
asymptotic large temperature value different than 1, while in the
limit 42> h,. it also approaches 1.

VII. SUMMARY AND CONCLUSION

We have investigated the magnetocaloric properties of the
J1-J, model using the FTLM method for finite clusters and
spin-wave analysis starting from the classical magnetic struc-
tures. The one-magnon critical field or saturation field ob-
tained from FTLM agrees well with the spin-wave result.
Finite-size scaling results suggest that close to the CAF/FM
boundary, the true critical field is determined by a two-
magnon instability. This is consistent with the proposed ex-
istence of a spin-nematic ground state in this parameter
range.’

Both FTLM and spin-wave results predict a strong en-
hancement in the low-temperature specific heat at the satu-
ration field when the frustration angle crosses the phase
boundaries. This may be explained by the large degeneracy
of low-lying states in these regions. At a constant intermedi-
ate field the specific heat exhibits a double peak structure
around the NAF/CAF boundary. The entropy and specific
heat show only moderate field dependence below the satura-
tion field 4. This feature may already be understood in a
mean-field approach where the entropy is strictly constant
for all h<<h,.

Likewise the strong enhancement of the MCE just above
the saturation field was investigated. In the FTLM results,
the MCE was enhanced by up to a factor 10 relative to an
ideal paramagnetic (at temperatures small compared to the
energy scale J,). Surprisingly, the largest enhancement (from
FTLM, relative to an ideal paramagnet) does not occur at the
CAF/NAF boundary, but deep within the magnetically or-
dered sectors. This can be understood in terms of the anoma-
lous enhancement of the specific heat in the frustrated re-
gions, which enters into the denominator of the MCE
[cf. Eq. (1)].

The overall ¢ dependence of the MCE enhancement ratio
reflects that of the saturation field. This is also true for the
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spin wave results. There, in addition, the enhancement is
sharply peaked on the CAF/NAF boundary appears. This is
due to the change of the field-scaling behavior above the
critical field from logarithmic to inverse square root when
the boundary is crossed. This feature is due to the appearance
of Goldstone modes along a line in the BZ when ¢ has it
critical value. The MCE enhancement may also be directly
seen from the isentropics or adiabatic temperature curves
which exhibit a large slope above the saturation field.

Below the saturation field the results of the FTLM is
strongly constrained by finite-size effects, however, the spin-
wave analysis provides considerable insight into the system-
atic properties of the MCE. In absolute terms the MCE is
very small—in fact, much smaller than the paramagnetic
value. This is a direct consequence of magnetic order, and
can easily be understood from the mean-field picture of a
canted Néel state, for which entropy is constant as a function
of field. The spin-wave theory, however, predicts a flat maxi-
mum in the MCE at low fields, followed by a sign change for
subcritical fields. These features are present throughout the
phase diagram and the characteristic fields are moderately ¢
dependent with a double-minimum structure. For this reason
it is not likely that these low-field MCE features are useful in
the determination of the frustration ratio.

Considerably above the critical field the temperature de-
pendence calculated from FTLM and spin-wave theory show
reasonable agreement. At temperatures of the order of J./kg
the enhancement of the MCE is substantially reduced and the
behavior of the system crosses over to that of an ideal para-
magnet.

The most pronounced discrepancies between FTLM and
spin-wave analysis appear at the classical phase boundaries.
As explained above this may be well understood in terms of
the absence or presence of low-lying collective modes.
While the former method underestimates the MCE anomalies
at the phase boundaries, the latter overestimates them—in
fact it predicts a singular behavior. A more advanced analyti-
cal treatment would have to take into account the quantum
nature of the ground state around these boundaries, i.e.,
stacked dimer (J,>0) or spin nematic (J,<<0) and the
proper associated excitation spectrum.

The present analysis provides some interesting predictions
for the experimental investigation of the class of layered per-
ovskites discussed in the introduction. Specifically we give
detailed values for the possible saturation fields which
should be easily accessible experimentally for SiO, and PO,
vanadates. According to Fig. 4, these critical fields can be
used to resolve the ambiguity in parameterizing the model
from its low-field susceptibility and heat capacity, far more
cheaply than, e.g., neutron scattering. Furthermore we pre-
dict a genuine sign change in the MCE for subcritical fields
which should be accessible to experiment.

So far as practical applications—for example, in cryogen
free cooling—are concerned, the goal is to achieve as large a
magnetocaloric effect as possible, at as low a field as pos-
sible. Here compounds not too far from the phase boundaries
FM/NAF and CAF/FM are the most promising because they
combine a significant MCE enhancement with very moderate
saturation fields. A detailed treatment of entropy as a func-
tion of magnetic field in the nematic phase occurring on the

PHYSICAL REVIEW B 76, 125113 (2007)

CAF/FM border remains an open challenge. However, the
high density of low-energy excitations and low saturation
field of this phase means that it looks a priori very promising
for magnetothermal applications.
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APPENDIX A: MOMENT DERIVATIVES

Here we give the explicit expressions of the moment de-
rivatives ((S;)/dB) (i=Il, L) which are needed for the
mean-field calculation of the magnetocaloric coefficient

<SJ_>, = (9<SL> = [(1 _Azz)Bx"'szBz]/D’ (Al)
B
S,
(s’ = ;—; —[(1-A)B.+A.BJD,  (A2)

where the determinant D is defined by D=[(1-A,)(1-A_,)
—AA,] and the coefficients A;; (i,j=x or L, z or [|) and B;
are given by

1.
_hx
4
B, = s
coshzl,BA
2
B A
a a
AXX=—L—i+—i<—) tanh = A,
2A ,1 A\A 2
A cosh“—BA
2
h o h hh 1
A =—2t Ph.hy 4 ~ tanh —BA,  (A3)
oA o A A 2
A cosh™—BA
2
and, likewise,
1.
—h.
4k
B=——"",
h21,8A
cosh”—
2
B2 (ﬁ )2 1
a I af ny
Ap=————1— S =L tanh A,
== oA 1 ala) gk
A cosh™—BA
2
h hh 1
A=k Bl _ay tanh —BA,  (A4)
A ,1 A A 2
A cosh E'BA

where a;, a, are given in Eq. (21) and A, ki, are defined
in Eq. (28).
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APPENDIX B: MATRIX FORM OF THE HAMILTONIAN

In this appendix we give the explicit matrix form of the
Hamiltonian in Eq. (51) for the NAF structure which is bi-
linear in bosonic spin fluctuation operators. It can be written
as

1
H®=52u&ak@ﬂ*)
k

A(hK) B(hK)|C(hk) 0 ax
B(hk) A(LK)| 0  Chk) || by
c(hk) 0 [|A(Kk) BhK) || by
0  C(hK)|B(hk) AhK) |\a'\
- 2 A(h.k) (B1)
k

where the constant term (arising from spin commutation re-
lations) ensures that the zero-point energy is negative. Using
a simple coordinate rotation, we can reduce this matrix to a
block diagonal form with two 2 X 2 diagonal blocks given by

A(hK) = C(h,K) B(h,K)

B(h,k) A(hK) = ChK) | B2)

We can then solve each of the blocks using a separate, stan-
dard, Bogoliubov transformation to obtain the diagonalized
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Hamiltonian in terms of NAF spin-wave modes as used in
Eq. (55).
Explicitly the complete transformation is given by

u v +
a)\k = ’_)\,—k(bk + )\Clk) + /A—k(a_k + )\bik) > (B3)
\“’2 \112

where A==+1 is the branch index. The coefficients u,; and
Uk of the transformation may be obtained by direct insertion
and the requirement that the off-diagonal bilinear terms in
the transformed operators a,), vanish identically. Alterna-
tively the equations of motion for «,), may be set up and
required to describe free motion with spin wave energy €,y.
Both methods lead to the same condition on the coefficients
given by

2“)\kv)\k(Ak + )\Ck) = (Mik + U)zxk)Bk' (B4)

Using the representation uy,=cosh 7y, vy =sinh 7y, one
obtains the two branches (A==+1) of the solution with

1 B
/NS tanh_l(—k) .

(BS)
2 A+ \Cy

The prefactor of the remaining diagonal bilinear term in the
transformed Hamiltonian gives the spin-wave energies of Eq.
(56).
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