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In this paper, we investigate the ground-state properties of a mixture of two species of fermionic atoms in a
one-dimensional optical lattice, as described by the asymmetric Hubbard model. The quantum phase transition
from density wave to phase separation is investigated by studying both the corresponding charge order param-
eter and quantum entanglement. A rigorous proof that even for the single-hole doping case, the density wave
is unstable to the phase separation in the infinite U limit, is given. Therefore, our results are quite instructive
for both ongoing experiments on strongly correlated cold-atomic systems and traditional heavy fermion
systems.
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I. INTRODUCTION

Rapid progress in Bose-Einstein condensates in optical
lattices1–5 has opened fascinating experimental possibilities
in condensed matter physics, atomic physics, and quantum
information. For example, the experiment on neutral atoms
trapped in the periodic potential of an optical lattice has been
used to realize an array of quantum gates.4 Moreover, cold-
atomic systems are intrinsically related to many-body models
in condensed matter physics. Compared to solid state sys-
tems, cold-atomic systems could be better experimentally
controllable. Thus, the investigation of cold-atomic systems
will not only help us have a deep understanding of known
physical phenomena in many-body systems but also provide
hints in exploring new areas of physics. Such a prospect has
attracted much theoretical attention.6–11

Quite recently, experiments on fermionic atoms trapped in
optical lattices5 were carried out, which opened a door for us
to find deeper insights into some essential problems in con-
densed matter physics, such as BEC-BCS crossover, super-
fluidity, and Mott insulating phase. It was proposed that ul-
tracold fermionic atoms exposed to the periodic potential of
an optical lattice could be an ideal realization of the Bose-
Hubbard model,6 the spin-dependent Hubbard model,7 and
the antiferromagnetic states or d-wave pairing states.8 The
unique control over all relevant parameters in these systems5

allows people to carry out experiments which are not handy
with solid state systems, so they marked a milestone toward
the understanding of some fundamental concepts in quantum
many-body systems.

In this paper, we consider a system of two species of
fermionic atoms9 with equal numbers �or one type of fermi-
onic atoms with spin-dependent hopping integral7� away
from half-filling in a one-dimensional optical lattice, as de-
scribed by the asymmetric Hubbard model12–14 �AHM�. The
system is expected to have a density wave �DW� state and
phase separation �PS� of two atom species states,15 and we
investigate the quantum phase transition �QPT� from the DW
state to the PS state in this system by studying both the
quantum entanglement and traditional DW order parameter.
We show that the entanglement can help us witness critical
phenomenon and that it shows scaling behavior around the
critical point. The phase transition is also clarified by the

competition between two different modes of structure factor.
A global phase diagram as a function of the local interaction
U and the ratio of two hopping integrals is then obtained
under different filling conditions. Moreover, we give a rigor-
ous proof that even for the case of a single-hole doping away
from half-filling, the DW state is unstable to the PS state in
the infinite U limit. As will be shown below, if we regard two
regions in the PS phase as one solidlike region of heavy
atoms and another as a liquidlike region of light atoms, the
QPT is just a physical realization of the quantum solvation
process16 in the optical lattice. Therefore, our results are
quite instructive for ongoing experiments on strongly corre-
lated cold-atomic systems. The behavior of entanglement in
this system can help people have a deep understanding of the
critical phenomenon.

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of the AHM and show how to realize
the model in the quasi-one-dimensional periodic potential of
an optical lattice. We will also briefly introduce the back-
ground of the model in the condensed matter physics. In Sec.
III, we study the ground-state entanglement of the system.
We will show that a schematic phase diagram can be ob-
tained from the entanglement between a local part and the
rest of the system of a finite sample. In Sec. IV, by studying
the structure factor of the density distribution of heavy at-
oms, we can obtain a quantitative phase diagram for different
filling conditions via both the exact diagonalization �ED� and
density matrix renormalization group �DMRG� methods. In
Sec. V, we will give a rigorous proof that even for the case of
a single-hole doping away from half-filling, the DW state is
unstable to the PS state in the infinite U limit. If U is very
large, the critical point is then approached linearly with 1/U.
In Sec. VI, we will discuss the mechanism of the existence of
the PS, the possibility of the PS in high dimension, and con-
ditions for experimental realization. Finally, we summarize
our results in Sec. VII.

II. MODEL HAMILTONIAN

The one-dimensional AHM is defined as
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H = − �
j=1

L

�
�=±1

�
�

t�cj,�
† cj+�,� + U�

j=1

L

nj,�nj,�. �1�

In Eq. �1�, t� ��=� ,�� distinguishes the species of fermionic
atoms �e.g., 6Li and 40K�, cj,�

† and cj,� are creation and anni-
hilation operators for � atoms at site j, respectively, and n�

=c�
†c�, while U denotes the strength of on-site interaction. In

this model, the Hamiltonian has U�1� � U�1� symmetry for
the general t�, and the atom numbers N�=� jnj,� ,N�=� jnj,�
are conserved. The total number of atoms is given by N
=N�+N�, and the filling factor is n=N /L.

The asymmetric Hubbard model �Eq. �1�� can be used as
an effective model to describe a mixture of two species of
fermionic atoms in a one-dimensional optical lattice. In order
to have a quasi-one-dimensional system, we suggest that the
optical lattice potential takes the form

V�x,y,z� = V0 sin2�kx� + V��sin2�ky� + sin2�kz�� ,

V0 = �
�2k2

2m
,

V� = ��

�2k2

2m
. �2�

Here, k=2� /� and � is the wavelength of the laser light, and
V0 and V� denote the maximum potential depth along the x
direction and in the yz plane, respectively. The potential
depth is measured in units of the recoil energy �2k2 /2m. In
order to freeze the hopping process in the yz plane, we
should have V�	V0. For a single atom in the periodic lat-
tice, its wave function is the Bloch state, which is actually a
superposition of well localized Wannier states. Therefore, if
we restrict ourselves to a very low temperature, where the
thermal fluctuation cannot excite the atom to the second
band, the Wannier state can be approximated by the ground
state of a single atom in the potential well. For the present
case, the ground state can be written as


0�x,y,z� � �m��

��
�1/2

e−�m��/2���y2+z2�
0�x� , �3�

where


0�x� = �m�

��
�1/4

e−�m�/2��x2
,

�� =
�k2	��

m
, � =

�k2	�

m
. �4�

Then, the hopping matrix element between the two adjacent
sites i, j can be calculated as

t = −
 dr w��r − ri��−
�2�2

2m
+ V�w��r − r j� , �5�

which results in the hopping integral along the x direction,

t �
�2k2

2m
�	v + 2	v��e−�2	v. �6�

Moreover, if two atoms � and � occupy the same site,
they will repel each other. The on-site interaction can be
approximated with

U �
4��2a
	m�m�


 �w��r��2�w��r��2dr ,

where a is the scattering length. Using the wave function of
Eq. �3�, we obtain

U �
4��2a
	m�m�

kv1/4

	�

k2v�
1/2

�
. �7�

Finally, if we have a system of two species of polarized
fermionic atoms in the optical lattice, the hopping integral
and the on-site interaction will have the form �in units of t��

t�

t�

=
m�

m�

,

U

t�

=
16a	�m�/m�

�

v1/4v�
1/2

�	v + 2	v��
e�2	v. �8�

Taking Li ��� and K ���, two species of atoms, as an ex-
ample and v�=16, we have

t� � 0.15,

U �
35.87a

�

v1/4

�	v + 8�
e�2	v. �9�

In condensed matter physics, the asymmetric Hubbard
model is one of the simplest two band models which is be-
lieved to describe many essential physical properties of
strongly correlated systems. To understand the interesting
phenomena which may happen in the ground state of Hamil-
tonian �1�, it is very useful to look into the two limiting cases
of Eq. �1�. If t�= t�, the AHM becomes the Hubbard model.17

In one dimension �1D�, the Hubbard model can be solved
exactly by the Bethe ansatz method.18 The wave function and
the energy spectra can then be calculated exactly. In the large
U limit, the Hubbard model can be approximated by the
famous t-J model, in which the spin-spin interaction is of the
antiferromagnetic type. Therefore, it is widely accepted that
the ground state of the Hubbard model at half-filling shows
the spin-density wave. On the other hand, if t�=0, the AHM
becomes the Falicov-Kimball model.19–22 In 1D, it has been
pointed out that the system will segregate into an empty
lattice �with no � atoms and all � atoms� and a full lattice
�with all � atoms and no � atoms� in the large U limit when
away from half-filling. Therefore, the two limiting cases of
the AHM belong to different universality classes; a phase
transition from PS to DW is expected to appear somewhere
on the U-t� plane.

III. GROUND-STATE ENTANGLEMENT

In recent years, studies on the role of entanglement in the
quantum critical behavior23 have established a bridge be-
tween quantum information theory and statistical
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physics.24–26 It is believed that the entanglement, as a kind of
quantum correlation, can help us identify quantum phase
transition in many-body systems. To have an intuitive picture
of the global phase diagram, we must first compute the en-
tanglement between a local block and the rest of the system.
For the present model, the local states on each site have four
possible configurations, denoted by

�l = �0�, ���, ���, ����, l = 1,2,3,4.

The Hilbert space associated with the L-site system is
spanned by 4L basis vectors. If we choose the periodic
boundary conditions for N=4n+2 and antiperiodic boundary
conditions for N=4n, where n is an integer, the ground state
is nondegenerate. Considering the reduced density matrix of
a block of l successive sites of the ground state

l = trr�
�
� , �10�

the von Neumann entropy Ev�l�, i.e.,

Ev�l� = − tr�llog2�l�� , �11�

measures the entanglement between the l sites and the L-l
sites of the system. Like the well known fact in classical
optics that the three-dimensional image of one object can be
recovered from a small piece of holograph due to the inter-

ference pattern of the reflected light beams from it, the quan-
tum superposition principle also allows us to see a global
picture of the system from its local part.25,26 As was shown
for some typical models in condensed matter physics, such
as the extended Hubbard model,26 the entanglement of the
ground state can give us a global view of the phase diagram.

From this point of view, we show a three-dimensional
diagram and its contour map of the entanglement with block
size l=1,2 ,3 ,4 for a six-site system with N�=N�=2 in Fig.
1. It has been pointed out that in the extended Hubbard
model, the single-site entanglement can distinguish the three
main phases in the ground state. The reason is that the den-
sity distributions of the different modes in the reduced den-
sity matrix of a single site, such as the double occupancy, in
the extended Hubbard model are sensitive in the quantum
phase transitions. However, in Fig. 1�a�, the single-site en-
tanglement in AHM is rather trivial in the large U region. It
is not difficult to understand this phenomenon. For the
present model, the reduced density matrix of a single site has
a simple form,26,29

1 = z�0�0� + u+����� + u−����� + w������� , �12�

in which z, u+, u−, and w are the density distributions for
different local states and can be calculated as
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FIG. 1. �Color online� The changes of symmetry in the ground-state wave function are analyzed by considering the quantum correlation,
i.e., entanglement, between local block and other parts of the system. Here, L=6, N�=N�=2, l=2, and the antiperiodic boundary conditions
are assumed in order to avoid level-crossing in the ground state. Four figures correspond to different block sizes: �a� l=1, �b� l=2, �c� l
=3, and �d� l=4.
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w = n�n�� = tr�n�n�1� ,

u+ = n�� − w, u− = n�� − w ,

z = 1 − u+ − u− − w . �13�

In the large U limit, the double occupancy of two atoms on a
single site is forbidden, i.e., w�0. Then, for a finite system
with periodic or antiperiodic boundary conditions, n�� and
n�� are constants. This fact leads to a constant single-site
entanglement during the evolution of t� in the large U region
�Fig. 1�a��. For the case of n�=1/3 and n�=1/3, Ev�1� has
the value log2 3, so the single-site entanglement is insensitive
to the phase transition from DW to PS. This property is very
similar to the single-site entanglement in spin models27 and
the ionic Hubbard model.28

Clearly, the transition from DW to PS is intrinsically re-
lated to the change of density distribution of one species of
atoms on the lattice. In order to contain enough information
of the density-density correlation from the point of view of
the entanglement, more sites should be included into the
block. According to this point, we show the two-site en-
tanglement as a function of t� and U in Fig. 1�b�, from which
we immediately notice two different regions: one is an alti-
plano marked with warm color �denoted by “PS” in the con-
tour map of Fig. 1�b��, while the other is a plain with cold
color �denoted by “DW” in the contour map of Fig. 1�b��.
Taking into account the known fact of the two limiting cases
of this model, such an obvious difference shows the critical
phenomenon between two universal classes.

In order to understand this obvious difference of the two-
site entanglement in two phases, let us have a look at the
structure of the corresponding reduced density matrix. For
the AHM, the total numbers of � atoms and � atoms are
good quantum numbers, which leads to the fact that for ar-
bitrary block size l, there is no coherent superposition of
local states with different values of N� and N� in the reduced
density matrix. That is, the reduced density matrix must have
the block-diagonal form classified by both N��l� and N��l�,
i.e.,

l = diag�l�0,0�,l�1,0�,l�0,1�, . . . ,l�l,l�� , �14�

where l�na ,nb� is a matrix which has na� atoms and nb�
atoms. According to the definition of von Neumann entropy
�hence the entanglement�, its magnitude is really determined
by the distribution of the eigenvalues of the reduced density
matrix. That is, the more uniformly distributed the eigenval-
ues, the higher the entropy. In the PS phase, elements in the
reduced density matrix related to the basis ����, which de-
notes two � atoms together, are finite, while in the DW re-
gion, they are almost zero. This fact leads to a larger en-
tanglement with a block size larger than 2 in the PS phase,
but otherwise in the DW phase. So the transition introduces a
significant change into the value of the entanglement, and
vice versa. In Fig. 1�c�, we can see that Ev�3� shares similar
properties with Ev�2�. On the other hand, since the ground
state is translation invariant, the entanglement satisfies the
equation Ev�l�=Ev�L− l�. Therefore, we have the same fig-
ures of Ev�2� and Ev�4� �Fig. 1�d�� for the six-site system.

Moreover, in the region l� �0,L /2�, the entanglement is a
nondecreasing function of l, as shown in Fig. 2 for a ten-site
system with N�=N�=4 and U=200. Therefore, its first de-
rivative develops a minimum at the critical point, as we can
see in Fig. 2. Moreover, as the block size increases, the mini-
mum point becomes sharper and sharper and exhibits a scal-
ing behavior, as shown in the inset of Fig. 2, i.e.,
dEv�l� /dt��−l around the critical t�.

IV. CHARGE ORDER PARAMETER AND PHASE
DIAGRAM

Though the entanglement can give us useful information
about the phase diagram, the dominating configurations in
different phases remain unknown. So, it is important to study
the structure factor in competing phases. Taking into account
that the dominating configuration of � atoms is quite differ-
ent in two phases, we introduce the following structure factor
of DW of � atoms:
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FIG. 2. The entanglement �left� and its first derivative �right� as
a function of t� for various block sizes and a specified U=200. The
inset shows the scaling behavior of the minimum point of
dEv�l� /dt� at the critical point. Here, L=10 and N�=N�=4.
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FIG. 3. �Color online� The structure factor of DW as a function
of t� and various modes, i.e., quantized momentum. Here, L=10,
N�=N�=4, and U=200.
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SCDW�q� =
1

L
�

jl

�eiq�j−l��nj,�nl,�� − n��2�� , �15�

where q=2n� /L, n=0,1 , . . . ,L. In Figs. 3 and 4, we show
the structure factor as a function of t� for different modes for
a system with L=10 and U=50, 200. The figures show an
obvious competition between the two modes. In the small
t� limit, i.e., when the � atom has a very heavy mass,
SCDW�q=2� /L� dominates, which indicates phase separation
in this region.20 A careful scrutiny of the ground-state wave
function finds that the configuration

��,�,�,�, � , � , � , � , � , � �

of � atoms is dominant. It is not difficult to interpret this
result. In the small t� limit, the major contribution to the
ground-state energy comes from the � atoms. So, in order to
have a lower energy, they need more free space because the
energy of particles inside the Fermi surface is −2 cos�k� ,k
�1/L. Then, � atoms will be pushed by � atoms to form
clusters and phase separation occurs. For a finite-size system,
the translational symmetry is still preserved, while in the
thermodynamic limit, especially in high dimensions, the
symmetry in the ground state might be broken due to the
very high potential energy between different configurations
of � atoms. Then, the system will be separated into two
distinct regions macroscopically. One is the solidlike region
of � atoms, while the other is the liquidlike region of �
atoms. The latter can be described by a model of N� atoms
trapped in an infinite potential well with length L−N�+1.
The ground state is insulating and the energy is simply

E0 � − 2�
j=1

N�

cos� j�

L − N� + 1
� . �16�

If t�→1, SCDW�q=N� /L� exceeds SCDW�q=2� /L�, which
implies that � atoms distribute uniformly on the optical lat-
tice. Then, together with � atoms, the ground state becomes
the so called DW state, which can be regarded as a solution
of � and � atoms, as shown by the configuration

��,�, � ,�,�,�, � ,�,�,��

of � and � atoms. In its limiting case t�=1, the model goes
back to the traditional Hubbard model whose excitation
spectrum is gapless, so the system is a conductor away from
half-filling.17 Therefore, different configurations dominate in
different regions and the competition between them leads to
a critical phenomenon. According to this criterion, we can
use the intersection of the structure factor of two modes to
determine the transition point on the U-t� plane for a finite
system. We plot the phase diagram on the U-t� plane in
Fig. 5 for a ten-site system with different fillings N�=N�

=4,6 ,8.
However, the results for a finite system are rather qualita-

tive. In order to have quantitative results for a real system,
scaling analysis is crucial. For this purpose, we first estimate
the scaling behavior of the ground-state energy in the critical
region by the ED and DMRG methods.30 In Fig. 6, we show
the scaling behavior of the ground-state energy at a given
density n=2/3. Results are obtained for systems with open
boundary conditions via the DMRG method in which up to
150 states are kept in the finite algorithm. It is evident that
the limiting energy is approached linearly with 1/L. A rela-
tion of the form
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FIG. 4. �Color online� The structure factor of DW as a function
of t� and various modes, i.e., quantized momentum. Here, L=10,
N�=N�=4, and U=50.
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E0�N� = E��� + a/L , �17�

where a is a constant, holds quite accurately in a large U
region. Since the quantum critical phenomenon is related to
the singularity in ground-state energy, the 1/L correlation in
Eq. �17� actually implies that the phase boundary bears a
similar scaling behavior. Based on this consideration, we
take n=2/3 as an example to show the scaling behavior of
the phase boundary for both open and antiperiodic boundary
conditions in Fig. 7.

It has been shown that, based on the variation principles,
one can obtain the lower and upper bounds of the phase
boundary with different boundary conditions, such as peri-
odic, antiperiodic, and open boundaries. In Fig. 7, it is
clearly shown that data with antiperiodic boundary condi-
tions give a lower bound, while data with open boundary
conditions give an upper bound on the transition point.
Moreover, the extrapolated data based on the 1/L scaling of
the two approaches for an infinite system agree with each
other. This phenomenon is consistent with the fact that the
physics in a real system should be independent of the bound-
ary conditions. Moreover, we can also estimate errors in our
extrapolation. We presented a final phase diagram with error
bars smaller than the size of the symbols in Fig. 8.

In the small U region, we can see that there is a critical U
on the U axis for the density n=2/3. However, if n is re-

duced, the critical U tends to zero. In the low density limit,
the phase boundary scales like t��U2 in the small U region,
which excellently agrees with the results obtained by the
bosonization method.32

In the large U region, the critical t� increases as U in-
creases. We take a system of L=12, N�=N�=4 as an ex-
ample, and show the 1/U behavior of the phase boundary in
Fig. 9. In this figure, we can see that the critical t� is propor-
tional to 1/U in the large U limit. Moreover, Fig. 9 manifests
that U will be saturated in the infinite U limit. That is, for a
given concentration, there exists a saturation t�

s above which
the phase separation will never happen regardless of how
large the on-site U is. Based on these physical intuitions, the
boundary line satisfies the relation

t� = t�
s + C/U , �18�

where C is a constant, and both t�
s and C depend on the

filling conditions.

V. SINGLE-HOLE PROBLEM

In this section, we give a rigorous proof that even for the
case of one hole doping away from half-filling, the DW state
is unstable to the PS state in the infinite U limit. If U is very
large, the critical point is then approached linearly with 1/U.

We first consider an odd-site sample with L=2N�+1,
N�=N�, and infinite U. The space of DW is spanned by 2L
basis:

�ei� = ��1,�2, . . . ,�i, . . . ,�L−1,�L�, i � �1,L�

and

�ei� = ��1,�2, . . . ,�i−L, . . . ,�L−1,�L�, i � �L + 1,2L� ,

where �i denotes a hole at site i. Then, Hamiltonian �1� be-
comes
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FIG. 8. The ground-state phase diagram of the AHM for two
filling condtions: n=2/3 and 2/5.
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FIG. 9. 1 /U behavior of the phase boundary in the large U
region, as exemplified by a system with L=12 and N�=N�=4.
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�
0 − 1 0 0 . . . 0 − t�

− 1 0 − t� 0 . . . 0 0

0 − t� 0 − 1 . . . 0 0

0 0 − 1 0 . . . 0 0

] ] ] ] � ] ]

0 0 0 0 . . . 0 − 1

− t� 0 0 0 . . . − 1 0

� . �19�

It can be solved exactly. The whole energy spectra of the
system are given by

E± = ± 	1 + t�
2 + 2t� cos�kj� ,

kj = j�/L, j = 0,1, . . . ,L − 1. �20�

The ground-state wave function for arbitrary odd L is

�
0� =
1

	2L
�
i=1

2L

�ei� , �21�

with the eigenenergy EDW=−1− t�.
However, in the case of completely demixed phase, the

whole space is spanned by L�L−1� basis. The Hamiltonian
then describes the problem of single particle motion in peri-
odic square potential wells �see Fig. 10� with different hop-
ping integrals in different regions. Precisely, the Hamiltonian
becomes

H = − �
j,�

dj
†dj+�, �22�

where dj
† and dj are hole creation and annihilation operators

in each potential well, and

H = − t��
j,�

dj
†dj+� �23�

elsewhere. The ground state of this Hamiltonian in the ther-
modynamic limit is identical to the ground state of

H = � − 2 + p2, 0 � x � N�

− 2t� + t�p2, N� � x � N�,
� �24�

with periodic boundary conditions


�x� = 
�x + N� + N�� . �25�

For the latter, a bound state always exists for arbitrary well
depth 2−2t�. Then, if N�=N�→�, the ground-state energy
is simply −2, which is obviously smaller than EDW=−1− t�.
For a finite system except L=3, it can also be shown that
EPS�L��EDW�L�. For example, if L=5, N�=N�=2, we have

EPS�L = 5� = − 	2 + 2t�
2 . �26�

Therefore, in the infinite U limit, the DW state is unstable to
the PS state. Such a rigorous result is also valid for a system
of two species of hard-core bosonic atoms and Bose-Fermi
mixtures with different hopping integrals in optical lattices.

When the on-site U is very large but not infinite, Hamil-
tonian �1� can be approximated by13

H = − �
j=1

L

�
�=±1

�
�

t�cj,�
† cj+�,�

+ J�
j=1

L

�S j · S j+1 + �Sj
zSj+1

z − �njnj+1� , �27�

in which

J =
4t�t�

U
, � =

�t� − t��2

2t�t�

, � =
t�
2 + t�

2

8t�t�

. �28�

Clearly, if t�= t�, the above Hamiltonian becomes the t-J
model. The ground state of the t-J model with a single-hole
doping becomes the Nagaoka ferromagnetism31 if the contri-
bution from the kinetic energy in Eq. �27� exceeds that from
the spin-spin antiferromagnetic interaction. In order to study
the condition of PS, we first suppose that the ground state of
the system is phase separated. Then, the ground-state energy
can be approximated by

EPS � − 2 +
�L − 6��1 + ��J

4
. �29�

On the other hand, if the ground state is in the DW state, the
ground-state energy can be approximated by that of the XXZ
chain. For the latter, the ground-state energy per bond has the
form33

eXXZ =
1 + �

4
− sinh ��1

2
+ 2�

n=1

�
1

e2n� + 1� , �30�

where cosh �=1+�. Then, the ground-state energy of the
DW phase becomes

EDW � − 1 − t� + �L − 2�JeXXZ. �31�

Here, in both EDW and EPS, the finite-size correction to the
ground-state energy is not taken into account, so the critical
value is estimated approximately. Despite this, the qualitative
behavior of the critical point is clear, i.e.,

t� � 1 − JL sinh ��1

2
+ 2�

n=1

�
1

e2n� + 1� + O�1/U� , �32�

which means that only if U	L, the DW state is unstable to
the PS state. For a given L, the phase boundary scales like

t� = 1 − C/U , �33�

in the large U limit. Clearly, Eq. �33� is consistent with our
previous result �Eq. �18��.

FIG. 10. The periodic square potential wells used to describe the
dynamics of a hole in demixed phase.
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VI. DISCUSSIONS

Obviously, unlike the PS in the t-J model15 and the ex-
tended Hubbard model,26 which is the consequence of attrac-
tive interaction between particles, the PS in the ground state
of the AHM is driven by kinetic energy. Therefore, though
our results are based on a one-dimensional model, the under-
lying physics is quite general for systems in any dimension.
That is, in the large U limit, the dynamics of a system of two
species of atoms at zero temperature is dominated by the
light atoms. In order to have a lower energy, they need more
free space to move. This mechanism forces heavy atoms to
congregate together, so the latter becomes a solidlike object.
In experiment, two separated regions are expected to be wit-
nessed macroscopically. However, when t�→ t�, the dynam-
ics of heavy atoms is comparable to that of light atoms: the
exchange interaction drives the system into a DW state.
Therefore, if we consider the PS state as a classical phase
containing solidlike order and the DW state as a quantum
region with liquid properties in the whole system, the transi-
tion reported in our work is just an example of a crossover
from the classical region to the quantum region.

Such an interesting transition is expected to be observed
in the ongoing experiments on optical lattices. We take a
system consisting of two species of atoms �such as 6Li ���
and 40K ��� with m� /m��20/3� as an example. The typical
scattering length for alkaline atoms ranges from
40 to 100 aBohr,

34,35 and laser wavelength �=852 nm.3 Then,
from Eq. �8� we roughly estimate that the PS phase can be
observed when v�0.4 according to the phase diagram in
Fig. 8.

VII. SUMMARY

In summary, we have investigated the ground-state phase
diagram of two species of fermionic atoms trapped in a one-

dimensional optical lattice. By using the ED method, we
computed the block-block entanglement between a local
block and the rest of a small system. We obtained an intuitive
picture of phase diagram of the ground state and found that
the entanglement in the PS region is, in general, larger than
that in the DW region for a finite system. Its first derivative
develops a sharp downward peak and shows scaling behavior
at the critical point. We also analyzed the structure factor of
the DW of � atoms by the ED and DMRG methods and
found that the competition between two different configura-
tions in the ground-state wave function leads to a phase tran-
sition at the critical point. The global phase diagram was
obtained from the careful scaling analysis for various-size
systems and different boundary conditions. Therefore, we
gave a quantitative description of the ground-state phase
transition of the AHM away from half-filling. Furthermore,
we gave a rigorous proof that even for the case of a single
hole doping, the DW state is unstable to the PS in the infinite
U limit. Such a rigorous conclusion clarifies the physical
picture of the phase separation.
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