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We show that the concept of optical eigenmodes in lossless waveguide structures, which assumes the
separation into propagating and evanescent modes, fails in the case of metal-dielectric structures. In addition to
these modes, there is a sequence of new eigenstates with complex values of the propagation constant and
nonvanishing lateral energy flows. The whole eigenmode problem ceases to be Hermitian because of changing
sign of the optical dielectric constant. Particular examples of the waveguide structures include single slits,
one-dimensional photonic crystals, and circular holes. The emphasis is made on the structures with nanoholes
�whose sizes are considerably smaller than the light wavelength� possessing propagation modes and showing
an extraordinary high light transmission. The results obtained form a necessary basis for modelling of this
phenomenon.
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I. INTRODUCTION

The concept of eigenmodes lies at the center of any physi-
cal problem for optical light-transmitting systems including
waveguides and photonic crystals. This concept seems to be
complete and the general properties of the eigenvalues and
eigenfunctions seem to be fully presented in numerous text-
books and reviews.1–8

For photonic crystals �PCs�, determination of the band
structures—the eigenfrequencies and eigenfunctions versus
the quasi-wave-vector—is the most common. The eigenfre-
quencies are proven to be real for any lossless PC, i.e., for
any periodic spatial distribution of real dielectric optical per-
mittivity ��r�. A close analogy with the electronic band states
is well established.6,7

An alternative formulation of the eigenmode problem is
typical of waveguide systems, single slits and holes, one-
dimensional �1D� and two-dimensional �2D� PCs, etc., which
are uniform along the propagation coordinate z. Here one
must find all allowed values of the propagation constant �
entering the propagation factor exp�i�z� and the correspond-
ing transverse �in x and y� distributions of the optical light
fields. This formulation is important not only for description
of the propagating properties of the medium but also for
calculations of the transmission-reflection coefficients at dif-
ferent interfaces and/or junctions. Completeness of the set of
the eigenfunctions is crucial in the second case.

Among the waveguiding systems, most efforts have been
spent to investigate dielectric waveguides and dielectric
PCs.1–4 It is proven for the lossless dielectric systems ��
�0� that the admitted values of �2 are always real—positive
and negative. The corresponding eigenmodes are propagat-
ing and evanescent, respectively, and a close analogy with
quantum mechanics holds true. The same is valid for the
ideal-metal waveguiding systems, �→�.9,10

The situation with metal-dielectric systems is different. A
part of general sources, see, e.g., Refs. 3, 4, and 10, avoid the

case of real metals. Quite often, e.g., Refs. 1 and 5, the
authors refer to an analogy with the dielectric case. Some
sources, see, e.g., Refs. 8 and 11, are dealing with engineer-
ing calculations of metal-clad waveguides without consider-
ations of their general properties. The general point of view
is that the separation on the propagating and evanescent
modes and the analogy with quantum mechanics holds true
for lossless metals and �2 becomes complex only in the pres-
ence of dissipative losses ���=Im ��0�.1 At the same time,
one can find a soft general warning �without clarifications�
that the above point of view can be not quite correct.2

Among the literature, we know a couple of papers12,13 where
the authors mention, on the basis of particular model calcu-
lations, that some values of �2 cease to be real for ��=0. It
seems to be that the above warnings remain unknown and/or
not understood in the optical community.

A permanently growing interest to metal-based systems is
usually attributed to the excitation of the surface plasmons
which allow the light confinement on the subwavelength
�nano� scale.1,14,15 The necessary conditions, ��=Re ��−1,
��=Im �� ����, are fulfilled for many metals. For example,
for silver at the wavelength ��500 nm we have ���−9.6
and ���0.3.16 The limit of lossless metal ����0, ��=0� is
as actual as that of lossless dielectric.

Discovery of the extraordinarily light transmission �ELT�
through subwavelength holes and slits in metal films in
199815,17 has strongly enhanced the interest to metal-based
nanostructures. Plenty of experimental and theoretical stud-
ies on the ELT have been performed since then, see, e.g.,
Refs. 18–22 and references therein. However, the main
mechanisms and parametric dependences of this fundamental
phenomenon remain still not well understood; descriptions of
the ELT heavily rely on numerical simulations and/or over-
simplified models.

Setting aside details, outcomes, and problems of the ELT
theory, we mention only that the accepted calculation
schemes �except for direct numerical methods� imply the
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knowledge of the eigenmodes.13,23 The present notion of
eigenmodes for metal-dielectric waveguide structures �1D
and 2D PCs, arrays of holes and single holes in metals, etc.�
is insufficient not only because of the above-mentioned gen-
eral gap. Historically, the studies of metal-based waveguides
were focused mostly on slits and holes whose size is compa-
rable with or larger than the light wavelength. Surprisingly
little is known about the properties of the eigenmodes, in-
cluding those of the propagating modes, in the opposite case
of subwavelength slits and/or holes.18

The purposes of this paper are the following:
�i� To show that the generally accepted concept of eigen-

modes is insufficient for the case of lossless metal-dielectric
waveguide structures.

�ii� To establish the general properties of new
�anomalous� eigenmodes which are neither propagating nor
evanescent.

�iii� To characterize the propagating modes in the sub-
wavelength domain, including the case of slits and holes
whose sizes are much smaller than the light wavelength.

The text is structured as follows: In Sec. II, we explain in
general terms why the analogy with quantum mechanics,
which holds in the dielectric case, fails for metal-dielectric
structures. In the subsequent Secs. III–V we analyze three
basic structures. They are a single dielectric slit of thickness
xd in a metal, Fig. 1�a�; a 1D metal-dielectric PC consisting
of an alternating sequence of layers with permittivities �d,m
and thicknesses xd,m, Fig. 1�b�; and a circular hole of radius
R in a metal, Fig. 1�c�. Conclusions are drawn in Sec. VI.

II. WHY THE ANALOGY WITH QUANTUM MECHANICS
FAILS

To catch the specifics of the eigenmode problem in the
metal-dielectric case, we consider a 1D photonic crystal as-
suming that the permittivity � is a real periodic function of
the coordinate x. No more restrictions are imposed yet. The
electric and magnetic light-field amplitudes, E= �Ex ,Ey ,Ez�
and H= �Hx ,Hy ,Hz�, are superpositions of independent TE
and TM modes in the 1D case.9,10 New results in this case
refer only to the TM modes. The only nonzero component of
the magnetic field for such modes is H=Hy. It is represent-
able as H=h�x�exp�i�z�. Maxwell’s equations give for the
eigenfunction h=h�x� the following well known equation:

L̂h = �2h, L̂ = �
d

dx

1

�

d

dx
+ �k0

2, �1�

where k0=2� /� and � is the vacuum wavelength. This sets

an eigenmode problem for the differential operator L̂ with �2

being the eigenvalue. The values �= ±��2 correspond to the
propagation in the ±z directions. The nonzero components of
the light electric field, Ex and Ez, are expressed by H from
Maxwell’s equations, Ex=�H /�k0, Ez= �i /�k0��H /�x.

The conclusion about reality of the eigenvalue �2 and
about analogy with quantum mechanics is generally based on

the Hermitian character of the operator L̂, i.e., on the prop-
erty

�h2�L̂h1� = �h1�L̂h2�*, �2�

where �¯�¯� stands for the scalar product and the asterisk
means complex conjugation. The scalar product of two com-
plex functions h1�x� and h2�x�, denoted as �h2 �h1�, must meet
certain mathematical requirements �axioms�.24 One can make
sure using Eq. �1� that the most common �but not general�
definition of the scalar product,

�h2�h1� =� h2
*�x�h1�x�dx , �3�

is not compatible with Eq. �2�. To satisfy this equation, one
can redefine the scalar product as

�h2�h1�� =� �−1�x�h2
*�x�h1�x�dx , �4�

the subscript � indicates the use of the weight function
�−1�x�. In the dielectric case, ��x��0, this definition meets
all axioms of the scalar product,24 which proves reality of �2.
However, in the metal-dielectric case, where ��x� is a sign-
changing function, it contradicts to one of the axioms—the
norm squared �h �h�� ceases to be positively defined. There-

fore, the conclusions about Hermitian character of L̂ and
about reality of �2 cannot be made in this case.25

It is useful to supplement the general considerations by a
simple remark. The direct check of the Hermitian property
for PCs includes an integration by parts and implies vanish-
ing contributions at ±�. The standard way to deal with this
situation is to impose the cycling boundary conditions for an
arbitrary large number of elementary cells and to then turn
this number to infinity.26 The use of the Fourier transforma-
tion and manipulation with infinite-rank matrices to treat the
general properties of the eigenmodes, which happens often in
the literature, seems to be much less effective.

With the basic difference from the dielectric case ex-
plained, we can proceed to useful assertions using the defi-
nition of the scalar product given by Eq. �4�.

If an eigenfunction h�x� possesses a positive norm, the
corresponding value of �2 is real. Within the subspace of
such functions, all the axioms of the scalar product are ful-
filled.

Two eigenfunctions h1 and h2 corresponding to different
real eigenvalues �1

2 and �2
2 are orthogonal, �h2 �h1��=0. This

can be proven by multiplying Eq. �1� for h1,2 by h2,1
* , inte-

grating by parts, and using the boundary conditions at the
metal-dielectric interfaces.

If at least one of �1,2
2 is complex, this orthogonality rela-

tion must be replaced by �h2
* �h1��=	�−1h2h1dx=0.
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FIG. 1. Three waveguiding structures, a single slit �a�, a periodic
1D structure �b�, and a circular hole �c�. The permittivities of di-
electric and metal are �d and �m, respectively.
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The above general properties occur also in the case of a
single slit in a lossless metal. The use of the cycling bound-
ary conditions is not necessary here because the eigenmodes
with complex eigenvalues are fully localized; the corre-
sponding eigenfunctions are zero at infinity.

In the 2D case, the Hermitian character of the eigenmode
problem and reality of �2 can be proven only in the case of
waves with Ez=0 �TE modes�. In the general case �TM and
hybrid modes� complex values of �2, i.e., the anomalous
modes, are present.

The question arises whether the above features of the
metal-dielectric structures lead to complex eigenfrequency 	
for photonic crystals. The answer is no: The eigenfrequencies
are real in the lossless case. The reason is as follows: To
formulate the eigenproblem for the frequency, we must re-
place k0 by 	 /c �c is the speed of light� in Eq. �1� and to
divide its left- and right-hand sides by �. The corresponding
differential operator for the eigenvalue 	2 becomes Hermit-
ian if we use the definition �3� for the scalar product. In other
words, our proof of the non-Hermitian character of the eigen-
problem for �2 is fully compatible with the general proof of
reality of the eigenfrequency 	 in photonic crystals which is
given in Ref. 6.

III. SINGLE SLIT

This waveguiding structure is presented in Fig. 1�a�.
Within the slit, �x��xd /2, we have a dielectric with the per-
mittivity �=�d and outside the slit, �x��xd /2, we have a
metal with the permittivity �=�m; the quantities �d,m are gen-
erally complex.

The main findings for this structure can be announced
with the help of Fig. 2 which shows the allowed values of the
propagation constant �= +��2 in the lossless case for three
representative sets of parameters. We always have a se-
quence of anomalous complex values, �=��+ i�� with ��
����m� and ��= ± ����, which originates from the complex
conjugate eigenvalues �2, and a continuous spectrum ��=0,
������m�. Furthermore, we have at least one propagation

mode with ���0 and ��=0. If the slit width xd is not too
small, we also have discrete evanescent mode �modes� with
��=0 and ���0. Below in this section we present the prop-
erties of these eigenmodes in more detail.

According to Eq. �1� the eigenfunction h obeys the equa-
tion

d2h/dx2 + ��k0
2 − �2�h = 0 �5�

within the metal and dielectric regions. Its particular solu-
tions in these regions are exponential functions exp�±ipdx�
and exp�±ipmx�, where

pd,m = ��d,mk0
2 − �2. �6�

The square root of a complex number w is defined according
to the complex variable theory: 0�arg��w�
� /2 for w�
�0 and −� /2�arg��w��0 for w��0.

A. Discrete spectrum: Localized solutions

Within the slit region, �x��xd /2, the general solution for
h�x� is

h = c+eipdx + c−e−ipdx �7�

with two constants c±. Outside the slit we can represent h�x�
as

h = b+eipmx �x � xd/2� ,

h = b−e−ipmx �x � − xd/2� , �8�

where b± are new constants. If pm� �0, then h�x�→0 for �x�
→�, i.e., we have a localized solution.

Using the boundary conditions �continuity of H and Ez
��−1�H /�x as functions of x� one can readily come to a set
of four linear equations for constants c± and b±. From the
condition of solvability of this set �the zero-determinant con-
dition� we obtain routinely the following dispersion equation
for �2:

eipdxd = ±
pd�m + pm�d

pd�m − pm�d
. �9�

Alternatively, we can represent the eigenfunction h�x�
outside the slit as

h = b+e−ipmx �x � xd/2� ,

h = b−eipmx �x � − xd/2� . �10�

The only difference with Eqs. �8� is the signs before pm. The
function h�x� decreases for �x�→� when pm� �0. The disper-
sion equation for this case reads

e−ipdxd = ±
pd�m + pm�d

pd�m − pm�d
. �11�

It can be obtained from Eq. �9� by the replacement pm
→−pm. As we will see below, Eqs. �9� and �11� supplement
each other in different regions of �2.

Combining the linear algebraic relations for the coeffi-
cients c± and b±, one can prove easily that signs �
� and ���
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FIG. 2. The values of the propagation constant � for a single slit
of the width xd for �d=1 and three combinations of parameters �m

and xd /�: �a� �m=−10, xd /�=1/4; �b� �m=−5, xd /�=1/8; �c� �m

=−0.64, xd /�=1/8. The filled and open circles refer to the even and
odd modes, respectively. The vertical black lines show the continu-
ous spectrum. The gray line in case �a� shows the continuous spec-
trum with weak losses ��m� =0.3 as in silver� taken into account.
Note the breaks in the horizontal axis in cases �a� and �b�.
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on the right-hand sides of the dispersion equations corre-
spond to the even, h�x�=h�−x�, and odd, h�x�=−h�−x�,
eigenmodes, respectively.

In the general case, the normalized propagation constant
� /k0 is determined by three dimensionless parameters, k0xd,
�m, and �d. It is sufficient, however, to investigate the depen-
dence of � only on the first two parameters by setting �d
=1 �an air slit�. Then we can calculate � for �d�1 using the
scaling relation

��k0xd,�m,�d� = ��d����dk0xd,�m/�d,1� , �12�

which complies with the above dispersion equations. As fol-
lows from this relation, it is possible to shape the properties
of the slit �the relative permittivity of the metal �m /�d and
the effective width ��dxd� by filling the slit with a dielectric
with �d�1. Apparently, transparent dielectrics with large re-
fractive index ��d, which considerably increases the effec-
tive slit width, are most suitable for this purpose.

1. Propagating and evanescent modes

Consider first real eigenvalues �positive and negative� for
�2 /k0

2�−��m� � and �m� =0. In this range we have pm� �0 so that
Eq. �9� must be used to analyze the localized modes.

In the subrange �2 /k0
2�1, where pd,m are pure imaginary,

Eq. �9� can be rewritten as k0xd=F±�� , ��m��, where �
=�2 /k0

2 and

F± =
1

�� − 1
ln
±

��m��� − 1 + �� + ��m�

��m��� − 1 − �� + ��m�
� . �13�

It gives solutions for � as a function of ��m� and k0xd. If
��m��1 �the most common case�, the function F−��� grows
from 2��m� /���m�+1 to � when � increases from 1 to �c
= ��m� / ���m�−1�; for ���c the function F−��� is not defined.
On the contrary, the function F+��� is defined only for �
��c; it decreases here monotonically from � to 0 with in-
creasing argument. As follows from these observations, for
any finite values of k0xd and ��m� there is one solution of Eq.
�13� for ���2 /k0

2 which corresponds to the even propagating
mode, i.e., to sign �
� in Eq. �13�. The root � that refers to
the odd propagating mode ���, exists only for k0xd

�2��m� /���m�+1, i.e., for sufficiently large slit widths. The
biggest value of �2 /k0

2 always corresponds to the even propa-
gating mode. Line 1 and the section of line 2 with ��1 in
Fig. 3�a� show the functions F+��� and F−���, respectively,
for �m=−5.

In the subrange −��m����1 parameter pd becomes real
while pm remains imaginary. Equation �9� with sign �
�
�even modes� can be rewritten here as k0xd=F+�� , ��m��,
where

F+ =
2�n

�1 − �
−

2
�1 − �

arctan
 ���m� + �

��m��1 − �
� �14�

and n=1,2 , . . . To obtain the function F−�� , ��m�� for the odd
modes, it is sufficient to replace 2n by 2n−1.

The found relations give a sequence of branches for k0xd
as a function of ���2 /k0

2. The structure of the lowest
branches for ��m��1 is shown in Fig. 3�a� by lines 2–4. The

lowest branch 2 corresponds to the odd mode with n=1, it
transforms to the odd branch of the previous range, ��1.
The other branches are finite at the left end ��=−��m�� and
turn to infinity at the right end ��=1�. The larger the number
n, the higher is the branch. Note that each branch possesses a
shallow minimum in the close vicinity of the left end. In
particular, the minimum of branch 2 in Fig. 3�a� occurs at
�2 /k0

2�4.9. The minima become more pronounced with de-
creasing ��m�.

As follows from these observations, within the interval
−��m����1 the number of propagating and evanescent
modes increases with increasing k0xd and new even or odd
modes appear in pairs. With decreasing k0xd, all these modes
disappear sooner or later depending on ��m�. The odd evanes-
cent mode with n=1 disappears last. For the threshold value
of k0xd we have �k0xd�th
� /���m�+1; it decreases with in-
creasing ��m�.

In the case ��m��1, which can be realized, e.g., with
aluminum28 or employing the relative permittivity �m /�d, the
structure of branches is different. In the subrange ��1, the
only solution of equation k0xd=F±��� corresponds to sign
���, i.e., to the odd propagating mode. This branch continues
without any singularity into the region −��m����1, where it
corresponds to the lowest of the odd branches, see Fig. 3�b�.
In the whole range of ���2 /k0

2 the lowest branch of F−��� is
decreasing. The structure of the higher branches of F±��� is
qualitatively the same as it is in the case ��m��1; the main
quantitative difference is the more pronounced minima near
the left end.

In any case, only a single propagating mode with � /k0
�1 survives for sufficiently small slit width parameter k0xd.
We consider now this important mode in some detail for
��m��1 taking into account small losses ��m� �0�. For k0xd

�1, we obtain from Eq. �9�,
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FIG. 3. Dependence of k0xd on ���2 /k0
2 for the propagating

���0� and evanescent �−��m����0� modes; �a� and �b� corre-
spond to �m=−5 and −0.64. The solid and dashed lines refer to the
even and odd modes. Note that branches 1,2 and 3,4 in case �a� turn
to infinity at �=5/4 and 1, respectively.
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� �
1

xd
�ln
 ��m� � + 1

��m� � − 1
� +

2i�m�

��2��
2 − 1

� . �15�

The effective refractive index �� /k0 tends to infinity for xd
→0 while the ratio �� /��, i.e., the quality factor of the
mode, remains constant. In the ideal-metal limit ���m�→��
we have � /k0=0.

Note that in the opposite case, xd→�, we have the fol-
lowing from Eq. �9�: �� /k0= ±���m� � / ���m� �−1�. This corre-
sponds to the usual surface plasmon which exists under the
condition �m� �−1.1,9

2. Anomalous eigenvalues

Above we restricted ourselves to the real values of �
=�2 /k0

2. However, the localized eigenmodes possess also
complex eigenvalues in the lossless case, �m� =0. To find
them, we must use both Eqs. �9� and �11�. Numerical analy-
sis of Eq. �9� gives a sequence of complex roots for �; for all
of them we have pm� �0, i.e., the localized modes. Equation
�11� gives the complex conjugate sequence of roots. For all
of them pm� �0, which also satisfies the condition of local-
ization, h�±��=0. In the dielectric case, �m�0, the complex
eigenvalues are absent.

Figure 2 shows the anomalous values of � /k0 for three
representative combinations of parameters �m and k0xd. Nu-
merical and analytical studies have allowed us to establish
some general properties of the anomalous eigenvalues:

�i� For the anomalous roots we have generally �� /k0
����m�.

�ii� For subwavelength slits ���n� /xd and pdxd�n�
with n=1,2 , . . . . The anomalous modes can be attributed
thus to the transverse cavity resonances.

�iii� The vertical separation between the anomalous roots
of the same parity �even or odd� is �2� /xd.

�iv� The horizontal separation between the anomalous
roots, 2����, is relatively small, ����� ����; it is decreasing
with increasing ��m� and/or k0xd.

�v� With increasing ��, the horizontal separation is slowly
increasing for ��m��1 and decreasing for ��m��1.

With changing parameters k0xd and ��m�, pairs of anoma-
lous roots transform into pairs of evanescent roots of the
same symmetry �even or odd� and vice versa. Such transfor-
mations occur in the vicinity of � /k0= i���m�; they are
closely related to the mentioned shallow minima of F±���.

A representative example of such transformations is given
by Fig. 4 for �m=−10. Let us decrease the slit width param-
eter k0xd starting from 0.95. For this value only a single
evanescent root with � /k0�3.115i is present. With decreas-
ing slit width, new evanescent root with � /k0= i�10
�3.162i splits off from the continuous spectrum at k0xd

=� /���m�+1�0.9472. Two imaginary roots then move to-
wards each other to confluence at �k0xd�th�0.9453. For
k0xd� �k0xd�th we have a pair of anomalous roots. The hori-
zontal separation between them, 2��� /k0�, increases sharply
with departure from the threshold while �� /k0 grows almost
linearly with decreasing slit width.

The same scenario of generation of the anomalous roots
takes place each time when an evanescent root approaches

the border of the continuous spectrum, � /k0= i���m�. With
increasing slit width, pairs of the anomalous roots transform
sequentially into the evanescent roots.

3. Eigenfunctions

As we know, the eigenfunctions h�x� are either even or
odd, if the point x=0 is set at the slit center, see Fig. 1�a�.
One can easily obtain explicit expressions for the eigenfunc-
tions and analyze their properties. Owing to the symmetry, it
is sufficient to restrict ourselves to x�0.

An arbitrary even eigenfunction h+�x� is given by

h+ = c�cos�pdx� �x � xd/2� ,

cos�pdxd/2�eipm�x−xd/2� �x � xd/2� ,
� �16�

if the eigenvalue �2 entering parameters pd,m= ��d,mk0
2

−�2�1/2 satisfies Eq. �9� with sign �
�. It is applicable thus to
the propagating and evanescent modes, as well as to the
anomalous modes with pm� �0. The constant c can be chosen
as convenient. Since the norm squared �h �h�� is zero for the
anomalous modes, particular choices of c are of little impor-
tance.

The following simple observations are useful:
�i� For any anomalous even mode with pm� �0, whose

eigenvalue satisfies Eq. �11�, one must replace pm by −pm.
This means merely complex conjugation of the function
h+�x� for pm� �0.

�ii� For the odd modes, it is sufficient to replace the cos
function in Eq. �16� by the sin function.

�iii� For the propagating and evanescent modes, the eigen-
functions are real.

�iv� For the propagating modes, the values of pd,m are
imaginary so that the trigonometric functions transform into
real hypergeometric ones.
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FIG. 4. Transformation between pairs of evanescent and anoma-
lous roots near the border of the continuous spectrum �shown by the
horizontal dashed line� when changing the slit width parameter k0xd

for �m=−10. The dot marks separation of the discrete evanescent
root from the continuous spectrum.
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Figure 5 shows the eigenfunction h+�x� for the single
propagation mode, �m=−10, and two subwavelength slits:
xd /�=1/4 and 1/8. The field is practically uniform inside
the slit and decreases very rapidly in the metal. The thinner
the slit, the smaller is the absolute �not normalized to xd�
decay distance in the metal.

4. Energy flow

Specific properties of different eigenmodes become appar-
ent when we consider the corresponding distributions of the
energy flow, i.e., the stream lines of the Pointing vector P
= �E�H� /4�. Being expressed in terms of the amplitude h,
the x and z components of the Pointing vector are

Px =
1

4�

−

i

�
h*dh

dx
+ c.c.�exp�− 2��z� ,

Pz =
��

2��
�h�2 exp�− 2��z� . �17�

The direction of P depends on the sign of ��x�. Inside the
slit, where �=�d�0, we have Pz���.

For the propagating modes we have Px=0 and ��=0 in
the lossless case. This means that the Pointing vector P�x� is
parallel and antiparallel to the z axis inside and outside the
slit, respectively, for the positive propagation constant �. The
total energy flux, 	Pz�x�dx, is proportional here to the norm
squared �h �h�� defined by Eq. �4�. One can make sure that
this norm is positive, i.e., the energy flow inside the slit is
dominating and the positive sign of � leads to a positive total
energy flux.

For the evanescent modes, the propagation constant � is
purely imaginary in the lossless case. Correspondingly, we
have here Px,z=0 for the eigenfunctions of the discrete spec-
trum. Note that Px�0 for the evanescent modes of the con-
tinuous spectrum, �� /k0� ��m�, see also below.

A new situation occurs for the anomalous modes where
the propagation constant � is complex for �m� =0. Both com-
ponents of the Pointing vector, Px and Pz, are nonzero func-
tions of x and z in this case.

Furthermore, we claim that the norm squared �h �h�� is
zero for the anomalous modes in the lossless case. This im-

portant property can be proven straightforwardly: An anoma-
lous eigenfunction ha�x� obeys Eq. �5� with a complex eigen-
value �a

2. Multiplying the left- and right-hand sides of this
equation by h*�x� and taking the imaginary part of the result-
ing relation, it is easy to see that the norm squared is propor-
tional to the integral 	�−1 Im�ha

*�d2ha /dx2��dx. Integrating it
by parts inside and outside the slit and using the continuity of
ha�x� and �−1�x�dha /dx at the walls, we calculate readily that
this integral is zero. It is also not difficult to prove that the
norm squared is zero using the explicit expression �16� for
the eigenfunction and the corresponding complex eigenvalue
�2.

Looking now at Eqs. �17�, we see that the z component of
the total energy flux, 	Pz�x ,z�dx, is zero for any anomalous
mode and for any value of the propagation coordinate z. As
for the x component of the total energy flux, it is zero by
symmetry. All this means is that the forward energy flow in
air transforms to the backward flow in metal, and the lateral
energy transfer takes place. This is illustrated by Fig. 6
showing the streamlines of the Pointing vector for the first
anomalous mode with ���0, �m=−10, and xd /�=1/4. The
x component of the Pointing vector is positive here at the
wall xd /2 �the energy outflow�. Outside the slit, the stream-
lines are straight and mutually parallel. The ratio Pz / Px can
be approximated here by �� /���2−k0

2��m�. It decreases with
increasing ��.

What is the difference between two anomalous modes
with ���0 and the opposite values of ��? The answer is as
follows: One of such modes, namely the mode with ���0,
corresponds to the outflow of light energy from the slit. The
other one �with ���0� corresponds to the energy inflow. The
conjugate anomalous mode gives an inflow of the light en-
ergy into the slit. All arrows in Fig. 6 must be inverted in this
case.

Note that the sign of �� does not indicate the propagation
direction for the anomalous modes. The positive �+z� propa-
gation direction corresponds here to ���0, i.e., to decay of
the wave amplitude at z=�.

FIG. 5. Spatial profile of the single propagating mode for �m

=−10. Lines 1 and 2 are plotted for xd /�=1/4 and 1/8.
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FIG. 6. Streamlines of the Pointing vector for the first anoma-
lous symmetric mode with ���0. The dashed vertical lines show
the wall positions. Increasing �with z� distance between neighboring
lines shows qualitatively decreasing energy flow.
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B. Nonlocalized solutions: Continuous spectrum

The line Im��2�=0, Re��2��−��m �k0
2 on the complex �2

plain, where both parameters pd,m are real quantities and h�x�
is not decreasing for �x�→�, represents the continuous spec-
trum of the eigenvalues in the lossless case, see Fig. 2. It is
easy to construct directly the evanescent solutions of Eq. �5�
for an arbitrary point of this line. For an even eigenfunction
we have

h+ = c�cos�pdx� �x � xd/2� ,

Q cos�pmx − �� �x � xd/2� ,
� �18�

where Q=cos�pdxd /2� / cos �, �=�+ pmxd /2, and tan �
= �pd / ��m�pm�tan�pdxd /2�. Similarly one can represent the
odd modes of the continuous spectrum h−�x�. The sin func-
tions in Eq. �18� must be replaced by cos functions to make
it so. A double degeneration of the eigenstates of the continu-
ous spectrum thus takes place.

For the above-introduced eigenstates the energy flow is
zero, Px,z=0. However, for the combinations h+± ih−, which
can also serve �owing to the degeneracy� as the basic eigen-
functions, we have Px�0. The eigenfunctions of the con-
tinuous spectrum thus provide nonvanishing energy flow to
±�. This property is not specific for the slit case; similar
modes �known also as nonuniform waves9� exist in any slit-
less metal.

With a weak light absorption taken into account, the
straight line �� /k0����m� �, �� /k0=0, representing the con-
tinuous spectrum, transforms to the line ���� /k0

2=�m� /2,
�� /k0����m� �, i.e., slightly bends and shifts to the right, see
Fig. 2�a�.

IV. ONE-DIMENSIONAL PHOTONIC CRYSTAL

Our second particular structure is 1D photonic crystal de-
picted in Fig. 1�b�. The slit and wall widths are xd and xm,
respectively, the period is x0=xd+xm, and the permittivities
�d,m are generally complex.

Solution of Eq. �1� for an eigenmode now has the form

H�x� = ei�x+i�zh�x� , �19�

where � is the Bloch wave vector ranging from −� /x0 to
� /x0 and h�x� is an x0 periodic function. Within each of the
regions, slit �d� and metal �m�, it is a linear combination of
two exponential functions,

hd,m�x� = cd,m
+ ei�pd,m−��x + cd,m

− e−i�pd,m+��x, �20�

where cd,m
± are four constants and pd,m are given again by Eq.

�6�.

A. Eigenvalues

Using continuity of H�x� and Ez�x���−1dH /dx at the in-
terfaces �i.e., the true boundary conditions� and the periodic-
ity of h�x� and dh /dx, we come to a set of four linear alge-
braic equations for the constants cd,m

± . The condition of
solvability of this set �the zero determinant condition� gives a
new dispersion equation for the eigenvalue �2. After routine
calculations, this equation can be presented in the form:

1

2

 pd�m

pm�d
+

pm�d

pd�m
�sin�pdxd�sin�pmxm�

= cos�pdxd�cos�pmxm� − cos��x0� . �21�

It generalizes Eq. �13� of Ref. 12 in the sense that the per-
mittivity in the slit regions, �d, can be different from 1. The
trigonometric functions possess generally complex argu-
ments. If �d,m are real, Eq. �21� for �=�2 /k0

2 is real as well.
One can check that the following scaling relation for �

takes place:

��k0xd,k0xm,�m,�d,�x0�

= ��d����dk0xd,��dk0xm,�m/�d,1,�x0� . �22�

It is similar to Eq. �12� for the single slit and allows us again
to restrict ourselves to the case �d=1 �air slits�.

For practical purposes, the ratios � /x0 and xm /xd are
sometimes more useful for analysis of the eigenmodes than
the products k0xd and k0xm.

1. The case �=0

Often, the Bloch wave vector � equals the transverse
component of the wave vector of a plain wave which is in-
cident onto the photonic crystal. In the case of normal inci-
dence, which is of prime importance for the ELT and is also
the simplest in symmetry, we are at the center of the Bril-
louin zone, �=0. This is why we pay special attention to this
particular case.

For �=0, each eigenmode is either even or odd, h�x�
= ±h�−x�, if we set the point x=0 at the slit center, see Fig.
1�b�. The dispersion equation �21� can be split here into two
separate equations:

pd,m

�d,m
tan
 pdxd

2
� +

pm,d

�m,d
tan
 pmxm

2
� = 0. �23�

The first and second of the double subscripts correspond to
the even and odd modes, respectively. The values of �2 for
these modes are different.

Each of Eqs. �23� gives a sequence of real roots, positive
and negative, for �2 /k0

2 in the lossless case. These roots cor-
respond to the propagating and evanescent modes. In the
dielectric case, �d,m� �0, this sequence is complete—there are
no longer any solutions for �2 /k0

2. However, in the metal-
dielectric case, �d��0, �m� �0, there is again an additional
sequence of complex mutually conjugate roots for �2 /k0

2

which corresponds to the anomalous modes.
The circles in Fig. 7�a� show the values of the propagation

constant �= +��2 for �=0, xd=x0 /5=� /4, �d=1, and �m
=−10. Like in Fig. 2�a�, we have a single even propagating
mode with � /k0
1.2, a single odd evanescent mode with
� /k0
1.6i, and a sequence of even and odd anomalous
modes with �� /k0����m� and ���0. One of the differences
between the periodic case in question and the single-slit case
is the presence of a discrete sequence of the evanescent roots
with �� /k0����m� and ��=0 instead of the continuous spec-
trum. About 30% of the modes in Fig. 7�a� are anomalous.

With weak losses taken into account, the roots experience
small displacements. The strongest of them �slight shifts to
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the right� occur for the evanescent roots. The other displace-
ments do not exceed the circle size.

In many respects, the changes in the spectrum of � with
changing parameters xd and �m are similar to the above de-
scribed changes for the single-slit case. With decreasing slit
width xd, the propagating mode survives ��� grows as xd

−1�,
the evanescent mode with �� /k0����m� disappears, and the
vertical separation between the anomalous roots increases as
2� /xd. With increasing xd, the number of propagating modes
and the number of evanescent modes with �� /k0����m� in-
crease. With increasing ��m�, the value of � /k0 for the propa-
gating mode decreases, the density of the anomalous roots
decreases as well, and still one evanescent root with �� /k0
� ��m�1/2 is present.

Increasing wall thickness xm does not strongly affect the
propagating and anomalous roots in Fig. 7�a�. However, the
density of the evanescent modes in the region �� /k0����m�
increases �xm. In the limit xm→� we come to the continu-
ous spectrum of the single-slit case.

Despite the mentioned similarities with the single-slit
case, there are important differences. To highlight them, we
recall that our periodic 1D structure can be characterized by
the effective dielectric permittivity �eff in the long-wave
limit, � /2���m��xm, when the metal walls become skin
thin.29 This permittivity is expressed by the average over the
period, �eff= ��−1�x��−1= ��m�x0 / ���m�xd−xm�. It is positive for
xm /xd� ��m�, negative for xm /xd� ��m�, and infinite at xm /xd
= ��m�. It turns out that the properties of the anomalous modes
are essentially different in the above two regions of xm /xd��m�
even when we are far from the long-wave limit.

Our analysis shows that for �m�−1 the total number of
even anomalous modes is infinite only for xm /xd� ��m� when
�eff�0, i.e., for sufficiently large wall widths. How big is
this number in the case xm /xd� ��m�? The number of even
modes grows with decreasing � /x0 and increasing �eff. For
example, in the case of Fig. 7 �where �m=−10, xm /xd=4, and

� /x0=0.8� there are 10 pair of even roots and for the last pair
�� /k0�39.8. Switching �m to −6 increases the number of
pairs to 18. Disappearance of the “even” anomalous roots
with increasing �� /k0 occurs via decreasing horizontal sepa-
ration 2���� and transformation into a pair of purely imagi-
nary evanescent roots, see Fig. 7�b�. The number of odd
anomalous modes remains infinite for �m�−1. Persistence
of the these modes in the range of large �� /k0 is also illus-
trated by Fig. 7�b�.

For −1��m�0, the situation is inverse: The number of
even anomalous modes is always infinite while the number
of odd modes is finite only for xm /xd� ��m�.

The conclusion about the relationship between �eff and the
total number of anomalous roots is based not only on nu-
merical calculations but also on our analytical studies of the
special case xm /xd=4. It admits a complete analytical analy-
sis in the long-wave limit.

One more difference of the periodic case from the single-
slit case is mutual transformations between the discrete
anomalous and evanescent roots of the same parity when
changing parameters k0xd,m and �m. This is illustrated by Fig.
8 that shows the dependences of �� /k0 and �� /k0 on the ratio
� /xd for � /xm=1, �m=−10, and the even modes with �� /k0
�6. At � /xd=4 we have, in accordance with Fig. 7�a�, a pair
of anomalous roots with � /k0� ±0.1+3.9i and two higher-
lying evanescent roots � /k0�4.7i and 5.5i. When � /xd in-
creases, the value of �� /k0 for the anomalous roots grows
relatively quickly and approaches the nearest evanescent
root. At the same time, the horizontal separation 2��� /k0�
first increases and then tends quickly to zero. At � /xd�4.4
the anomalous roots confluence and transform into a pair of
new evanescent roots with rapidly increasing vertical sepa-
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FIG. 7. �Color online� Values of � /k0 for a periodic structure
with �m=−10 and xm=4xd=�. The filled and open circles corre-
spond to the even and odd modes at �m� =0. Case �b� refers to large
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ration. The largest of these roots grows quickly with further
increasing � /xd and confluences with the nearest evanescent
root giving rise to a new pair of the anomalous roots. This
occurs at � /xd�4.54. Then the processes of mutual transfor-
mation continue. The same scenario holds for the other even
roots and also for the odd roots; the transformations for the
latter occur at different values of � /xd.

Three general features of the transformations are worthy
of mentioning:

�i� Only approaching anomalous roots trigger the changes
of �� /k0 for the evanescent roots.

�ii� The transformations occur in a critical manner, i.e.,
according to the square-root law in the close vicinity of the
threshold.

�iii� The roots cannot appear or disappear when varying
characteristic parameters. Only quantitative changes and
transformations between pairs of anomalous and evanescent
roots of the same parity take place.

2. Peculiarities of Bloch diagrams

Consider now dependences of the eigenvalues on the
Bloch wave vector �. They are important for analysis of the
transmission and reflection properties in the case of tilted
incidence of a plane wave onto the photonic crystal. The
Bloch dependences ����� and ����� for the propagating and
evanescent modes, which are solely present in the literature,
are insufficient in the metal-dielectric case where the anoma-
lous modes are present. Moreover, the anomalous modes
cause interaction of different branches and strong peculiari-
ties of the Bloch diagrams.

For ��0 the eigenmodes cannot be separated in even and
odd and the general dispersion equation �21� must be used.
Each value of � calculated for �=0 initiates a branch ����.
Figure 9 shows examples of the � dependences for our 1D
periodic structure. The value of ���� for the first pair of
anomalous modes �see Fig. 7�a�� decreases with growing �

and turns to zero for 0.66��x0 /��0.71, i.e., the anomalous
modes become evanescent within this interval. For �x0 /�
�0.71 a pair of anomalous modes appears again. This be-
havior is correlated with bifurcations of ����� for the anoma-
lous modes and the nearest evanescent mode. Behavior of
the second pair of anomalous modes is different. The conflu-
ence of the branches ����� for these modes at �x0 /��0.9 is
accompanied by the split of �����. The dependence ���� for
the propagating mode and most of the evanescent modes is
fairly weak.

Only neighboring anomalous and evanescent roots affect
each other. In this sense, the bifurcations in the above �
dependences are similar to those in the � /xd dependences
presented in Fig. 8.

B. Eigenfunctions

Construction of the eigenfunctions in the periodic case for
�=0 is similar to that in the single-slit case, see Eq. �16�. In
particular, setting the point x=0 at the slit center we have for
an even eigenfunction inside and outside the slit,

h+ = c�cos�0.5pmxm�cos�pdx� �in�
cos�0.5pdxd�cos�pm�x − 0.5x0�� �out� .

� �24�

It is applicable to the propagating, evanescent, and anoma-
lous modes. One can check that h+�x� is even also with re-
spect to the wall center. Similarly, one can construct the odd
eigenfunctions. Using the dispersion relation �23� for the
even modes, one can show explicitly the validity of the or-
thogonality relations. The integration in x must be performed
over the period x0.

Our analysis of the light energy flows for different modes,
made earlier for the single-slit case, is fully applicable to the
periodic case in question, if we restrict our considerations to
the period x0.

V. SINGLE CIRCULAR HOLE

The last waveguiding structure to consider is a circular
hole, see Fig. 1�c�. Inside and outside the hole �r�R and r
�R� each of the field components Ez, Hz can be set propor-
tional to Ij�sdr�exp�ij�+ i�z� and Kj�smr�exp�ij�+ i�z�, re-
spectively. Here r=�x2+y2 is the radial coordinate, � is the
azimuth angle, j=0, ±1, ±2, . . . is the azimuth number, Ij
and Kj are the modified Bessel and MacDonald functions of
order j,27 and sd,m= ipd,m= ��2−�d,mk0

2�1/2. The quantities sd,m

are generally complex. The other field components in the
cylindrical coordinate system, Er, E�, Hr, and H�, can be
expressed by Ez and Hz using Maxwell’s equations. All field
components are expected to be zero for r→�.

Using the boundary conditions for the field components at
r=R, we come to the known dispersion equation for
�2,10,30,31


�dIj�

sdIj
−

�mKj�

smKj
�
 Ij�

sdIj
−

Kj�

smKj
� =

j2�2

k0
2R2
 1

sd
2 −

1

sm
2 �2

, �25�

where the prime means taking the derivative with respect to
the argument and the arguments of the functions Ij and Kj are
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FIG. 9. �Color online� Dependences ����� and ����� for the
periodic structure with x0=5xd=5� /4, and �m=−9.6. Solid lines are
plotted for the first pair of anomalous modes and the nearest eva-
nescent mode, the dotted lines correspond to the second anomalous
pair, and the gray line is for the propagating mode.
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sdR and smR, respectively; they are generally complex. Note
that Eq. �25� can be rewritten in an equivalent form via the
Bessel functions and the first-kind Hankel functions. Further-
more, using the recursion relations for the Bessel functions,27

one can get rid of the derivatives in Eq. �25�.
Solutions for � /k0 are determined by three dimensionless

parameters, k0R, �d, and �m. One can check that the scaling
relation ��k0R ,�m ,�d�=��d����dk0R ,�m /�d ,1� is appli-
cable; it is similar to Eq. �12� for the single-slit case. It is
sufficient thus to consider, as earlier, the case �d=1.

At j=0 the dispersion equation splits into two separate
equations. One of them �equality to zero of the first large
parentheses in Eq. �25�� is for the TM modes, Hz=0, while
the other �equality to zero of the second large parentheses� is
for the TE modes, Ez=0. For j�0, the modes are hybrid—
both Ez and Hz are nonzero.

Figure 10 shows two representative examples of the spec-
trum of � for the azimuth number j=0 and 1. The case �a� is
�m=−10 and R=� /2, this radius is slightly above its critical
value for the ideal metal, �0.3�. We have two propagating
modes, the largest value of � corresponds to j=1 �to the
HE11 mode�. Additionally, we have several evanescent
modes �two of them, with ��3i, are due to transform into a
pair of anomalous modes�, a sequence of anomalous modes
with pretty small horizontal separations, and a continuous
spectrum ��=0, �� /k0����m�. In general, the situation is
similar to that for the single-slit case, compare with Fig. 2.
With decreasing R, the propagating roots move toward zero
and transform here into evanescent roots, i.e., the modal cut-
off takes place in contrast to the slit case. This distinction is
not surprising; it is caused by the geometric and polarization
differences between the 1D and 2D eigenfunctions. The eva-
nescent roots, in turn, move toward i���m� with decreasing R
and transform into anomalous roots; scenario of this trans-
formation is qualitatively the same as it is in the single-slit
case.

Case �b� corresponds to −1��m and an ultranarrow hole,
R=� /8. We have here three propagating modes and the larg-
est value of � corresponds to the TM mode �j=0�. The eva-
nescent modes are absent. The other features—localized

anomalous modes with relatively large horizontal separations
and a continuous spectrum—are well recognizable. The
propagating roots with �j��1 are absent. Furthermore, the
shown propagating roots do not disappear with decreasing R.
This feature is rather surprising and promising for the ex-
traordinary transmission phenomena.

The presented data raise an important question: What is
the minimum possible hole radius R for the propagating
modes? The rest of this section is devoted to answer this
question.

For ��m��1, the propagating modes exist only for suffi-
ciently large values of the radius, R�Rc, where the critical
radius Rc depends on ��m� and also on j2. At R=Rc, the ei-
genvalue �2 changes its sign, i.e., the propagating mode
transforms into an evanescent one. Figure 11 shows the de-
pendence Rc��m� for m=0 and 1; the values of Rc for j2�1
lie considerably higher. The lowest branch corresponds to
�j�=1. With �m approaching −1 the value of Rc tends to zero.

The situation with the propagating modes in the range
−1��m�0 is entirely different. At least one propagating
mode exists here for arbitrary small radius R. In the limit
k0R�1, � /k0�1, the right-hand side of Eq. �25� is negli-
gible, sd,m��, and the dispersion equation simplifies to
��m�=Fj��R�, where Fj =−�KjIj�� / �IjKj��. Figure 12 shows the
dependence Fj��R� for j=0, 1, and 2. One sees that the
lowest branch F0��R� grows monotonically from 0 to 1,
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FIG. 10. The values of the propagation constant � for the cir-
cular hole and j=0,1. Case �a� corresponds to R=� /2 and �m=
−10; for the case �b� R=� /8 and �m=−0.8. The filled and open
circles correspond to j=0 and 1, respectively. The vertical solid
lines show the continuous spectrum.

FIG. 11. �Color online� Critical radius Rc versus ���m�� for the
azimuth numbers j=0 �line 1� and 1 �line 2�.

FIG. 12. Dependence Fj��R� for the propagating modes in the
case 0��m�−1, k0R�1. Curves 1, 2, and 3 correspond to the
azimuth number j=0, 1, and 2, respectively.
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whereas the higher branches decrease first from 1 to certain
minimum values and grow then very slowly approaching
unity.

As follows from this analysis, we always have a single
propagating mode with j=0; the corresponding value of the
propagating constant is given by �0=R−1F0

−1���m��. For the
branch with j=1, equation F1��R�= ��m� has two solutions
for 1� ��m��0.71 and no solutions outside the indicated in-
terval of ���. When the azimuth number �j� is increasing, the
allowed interval of ��m� is shrinking. For 0�1+�m�1 there
is a waste variety of the propagating modes with R��.

Note that the condition �m /�d�−1, which is sufficient to
realize the propagating modes for ultranarrow holes, can be
achieved with many real metals using the dielectric compo-
nent with sufficiently high value of the refractive index ��d.

Our results on the presence of the propagating modes in
ultranarrow circular holes are in line with the recent conclu-
sions of Ref. 32. In contrast to this paper, we did not use,
however, model assumptions concerning the frequency de-
pendence of �m. Our approach relies solely on the concept of
the dielectric permittivity.

VI. SUMMARY

The eigenmode problem for metal-dielectric structures,
photonic crystals, single slits, and holes in metal, is essen-
tially different from that typical of dielectric structures and

quantum mechanics. It is not Hermitian and the eigenvalues
are generally complex in the lossless case.

In addition to the propagating and evanescent modes,
there is a sequence of pairs of anomalous eigenmodes with
complex conjugate eigenvalues. For single slits and holes,
these modes are fully localized—the corresponding eigen-
functions tend to zero at infinity.

The anomalous eigenmodes provide a lateral transfer of
the light energy between the dielectric and metal counter-
parts. The total energy flow is zero in the lossless case.

For periodic 1D structures, the number of anomalous
modes is determined by the ratio xm�d /xd��m�. For xm /xd
� ��m� /�d, which corresponds to the effective long-wave per-
mittivity �eff�0, the number of even anomalous modes is
infinite. In the opposite case, the sequence of the even
anomalous modes is finite.

The presence of anomalous modes causes strong pecu-
liarities of the Bloch diagrams for periodic 1D structures.

Solutions for the propagating constant � obey scaling re-
lations. They allow to extend the conditions for existence of
the propagating modes by filling the slits and/or holes with
transparent dielectrics.

Whereas at least one propagating mode always exists in
1D slits, in circular 2D holes the cutoff for the propagating
modes is absent only for 0��m /�d�−1.

The results obtained form an infrastructure for modelling
of the extraordinary light transmission phenomenon.
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