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We study the magnetotransport properties of two typical periodic structures. It is found that the magnetic
field has a dramatic impact on the resonant splittings via bound states in the structures. For an open periodic
structure, the original �n−2�-fold resonant splitting rule at the beginning of the first conductance step is
changed to �n−1�-fold splitting rule by magnetic modulation. The coupling effect of the edge states is very
important to form the magnetically bound states corresponding to the n−1 resonant splitting peaks. For an
electric superlattice consisting of n barriers, the magnetic modulation turns the n−1 low quasibound states into
true bound states; thus, the lower-energy resonant splitting in conductance disappears. Instead, n−1 resonant
peaks via magnetically bound states appear at the beginning of the first conductance step. The high states are
mainly confined in the potential barriers rather than in the wells, and their wave functions in different regions
are coupled together by the edge states. One can find the “fingerprint” of the edge states from the probability
densities of the high states.
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I. INTRODUCTION

Transmission resonance via the bound state is a typical
quantum phenomenon in periodic quantum structures.1–6 It is
well known that there exists �n−1�-fold resonant splitting in
the conductance for an electromagnetic superlattice, which
consists of n identical potential or magnetic barriers.1–3 Each
of the resonant splitting peaks is induced by a quasibound
state with amplitude confined within the quantum wells. A
similar resonant splitting rule is also found in the open peri-
odic structure such as a periodic multiwaveguide.4–6 As the
periodic multiwaveguide consists of n constrictions, n−1
resonant splitting peaks appear in the lower-energy region of
the conductance profile. The quasibound states correspond-
ing to the peaks are mainly confined in the stubs or wide
regions.5,6 By analogy with the electromagnetic superlattice,
the stub in an open structure is usually regarded as an attrac-
tive well while the constriction is a repulsive barrier. How-
ever, recent research to the high quasibound states in the
open periodic structure indicates that the effect of a stub on
these states is a repulsive barrier rather than a well.6 This is
explained by the effective mass picture. At the high energies,
the negative effective mass reverses the sign of the potential,
which leads to each stub becoming repulsive rather than at-
tractive. In this case, an open periodic structure consisting of
n constrictions �n−1 stubs� is equivalent to an electromag-
netic superlattice with n−1 potential barriers. So, there are
�n−2�-fold resonant splitting peaks at the beginning of the
first conductance step. The high quasibound states corre-
sponding to the higher-energy peaks are mainly localized in
the constrictions. However, most of the former studies are
focused on the transmission resonance via quantum bound
states in the case of no magnetic modulation. As a magnetic
field is applied on a periodic structure, the edge states7–10

along the boundaries of the structure will extremely affect
the quantum bound states in the structure. Thus, some new
magnetically bound states11–13 will exist in the structure. Ac-
cordingly, some interesting transmission resonance via the
new states will appear in conductance.

The purpose of this paper is to study the effect of mag-
netic field on the transmission resonance and quantum states
in periodic structures. The models we studied are two typical
periodic structures, as shown in Fig. 1. One is a multi-
waveguide with geometrical constrictions. The other is an
electric superlattice with potential barriers or wells. We dis-
cuss the influence of the magnetic modulation on both low
and high quasibound states in the two structures. It is found
that the energies and the lifetimes of the low quasibound
states increase with the strength of the magnetic field. The
low states in the electric superlattice are even changed to true
bound states by strong modulation, which directly results in
the disappearance of the lower-energy resonant peaks in con-
ductance. The magnetic modulation also has a notable effect
on the higher-energy electron states in the two structures.
Through the coupling effect of the edge states, n−1 high
quasibound states will exist in the multiwaveguide structure
including n constrictions. Accordingly, n−1 resonant peaks
via the quasibound states appear at the beginning of the first
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FIG. 1. �a� Schematic view of a periodic multiwaveguide, where
a finite superlattice is connected to two leads with width W. The
basic cell consists of a stub, with length L and width W, connected
to a constriction of length Lc and width Wc. �b� Schematic view of
a quasi-one-dimensional electric superlattice with width W1, where
potential wells with length L2 are embedded in the potential barriers
with length L1 and height P.
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conductance step. As to the high quasibound states in the
electric superlattice under a magnetic field, electrons in these
states are mainly localized in the potential barriers rather
than in the wells. The critical effect of the edge states on the
forming of the magnetically bound states is clearly shown in
the probability density plots of the high quasibound states.

II. MODEL AND METHOD

Let us consider two periodic structures shown in Fig. 1.
Figure 1�a� is an open periodic multiwaveguide in which a
finite superlattice is connected to two leads with width W.
The finite superlattice consists of stubs with size L�W and
constrictions with size Lc�Wc. Figure 1�b� is a quasi-one-
dimensional electric superlattice with width W1, in which the
potential wells with length L2 are embedded in the potential
barriers with length L1. The conductance of the two quantum
structures can be calculated by the lattice Green’s function
�LGF� method.14–16 In terms of the LGF scheme, a system is
divided into a set of effective square lattices with lattice con-
stant a. One uses the following tight-binding Hamiltonian to
describe the effective discretized system:14

H = �
i,j

��i,j + Pi,j��i, j��i, j� + �
i,j

V1��i, j��i, j + 1� + H.c.�

+ �
i,j

V2��i + 1, j��i, j� + H.c.� , �1�

where �i,j and Pi,j represent the site energy and the additional
potential at the �i , j� site, respectively, while V1 and V2 re-
spectively represent the transverse and longitudinal hopping
energies between nearest neighboring sites. Generally,
�i,j =−4V and V1=V2=V=−�2 /2m*a2. As a magnetic field,
B is perpendicularly applied on the structure, V2
=V exp�ieBa2j /��.14 By using the recursive Green’s function
technique,15 the Green’s function of the system can be found
and then the conductance G of the system can be
obtained.14,16

In addition, to calculate the eigenenergy E of a structure
and the corresponding wave function �, one can write the
Hamiltonian of the system as

H = H0 + � , �2�

where H0 is the Hamiltonian of the structure without leads
and � is the total self-energies of the two leads. Solving the
eigenequation H�=E�, one can obtain the eigenenergy E
and wave function �. In general, the eigenvalue is a com-
plex whose imaginary part is associated with the lifetime of
the eigenstate. We will measure all lengths in units of lattice
constant a, while the electron energy E, potential height P,
and magnetic field H=��c��c=eB /m*� are all in units of
−V.

III. RESULTS AND DISCUSSION

In Fig. 2, the magnetoconductance for the multi-
waveguide, as shown in Fig. 1�a� with two constrictions, are
calculated. Without magnetic modulation �H=0�, there is a
sharp resonant peak at the low-energy region of the conduc-

tance in Fig. 2�a�. The peak is caused by a low quasibound
state whose probability density is displayed in the inset of
Fig. 2�a�. The electrons in the state are confined in the center
of the T junction. As a magnetic field is applied on the struc-
ture �Figs. 2�b� and 2�c��, the lower-energy peak shifts to
high energy and becomes sharper with the increase of the
magnetic modulation. This indicates that the energy and life-
time of the low quasibound state increase with the strength
of magnetic field. However, the low state will not be changed
to a true bound state �with infinite lifetime� by strong modu-
lation due to the open channel of the structure. This can also
be illustrated by the left inset of Fig. 2�c�, which shows the
probability density of the low state corresponding to the first
peak in Fig. 2�c�. One can find that the magnetic modulation
just slightly shrinks the wave function of the low state. While
in the higher-energy regions of Figs. 2�b� and 2�c�, a reso-
nant peak induced by magnetic field appears at the beginning
of the first conductance step. The peak corresponds to a high
quasibound state in the structure. In the right inset of Fig.
2�c�, the probability density of the high state is depicted.
Why does the high quasibound state only exist in the open
structure under a magnetic modulation? It is originated from
the quantum states of higher-energy electrons. According to
the effective mass picture, the effect of a stub to the electrons
with energies at the beginning of the first conductance step is
a repulsive barrier rather than a well.6 So, the quantum states
of these electrons are mainly localized in the constrictions. In
the case of no magnetic field, a high quasibound state cannot
exist in the multiwaveguide including two constrictions due
to the fact that the electron states in the constrictions directly
couple with the continuum states in the leads. In the case of
magnetic modulation, however, edge states will form along
the edge of the T junction. The electron states in the two
constrictions will communicate with each other by the edge
states; as a result, a quasibound state, such as that in the right
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FIG. 2. �Color online� Conductance versus electron energy for a
periodic multiwaveguide including two constrictions under different
magnetic fields H. �a� H=0, �b� H=0.194, and �c� H=0.291. Re-
sults are for the case W=16, L=8, Wc=6, and Lc=10. Inset of �a�:
probability density of the quasibound state corresponding to the first
peak in �a�. Left and right insets of �c�: probability densities of the
quasibound states corresponding to the first and second peaks in �c�,
respectively.

CHEN, XIE, AND YAN PHYSICAL REVIEW B 76, 115439 �2007�

115439-2



inset of Fig. 2�c�, exists in the structure. One can find that the
state is confined with big probabilities around the T junction
rather than in the center of the T junction. While the wave
function in different constrictions is connected together by
the coupling effect of the edge states. The result demon-
strates that the edge states are very important to form the
high quasibound state in the periodic structure.

In Fig. 3, we show the conductance as a function of elec-
tron energy for a multiwaveguide including three constric-
tions. Due to the structure consisting of two T junctions, two
resonant peaks via low quasibound states appear in the
lower-energy region of conductance as H=0 �see Fig. 3�a��.
Meanwhile, a high quasibound state, as that shown in the
inset of Fig. 3�a�, can also exist in the structure because the
structure to the higher-energy electrons is equivalent to a
double-barrier structure.6 Accordingly, a higher-energy reso-
nant peak appears in Fig. 3�a�. However, in Fig. 3�b�, there
are two resonant peaks at the beginning of the first conduc-
tance step. It indicates that under magnetic modulation, there
are two high quasibound states existing in the structure. In
the left and right insets of Fig. 3�b�, the probability densities
of the two states are depicted. The states are results of sym-
metric and antisymmetric superpositions of two adjacent
quasibound states, as shown in the right inset of Fig. 2�c�.
One can expect that as a magnetic field is applied on the
multiwaveguide consisting of n constrictions, n−1 high qua-
sibound states will exist in the structure and �n−1�-fold reso-
nant splitting peaks will appear at the beginning of the first
conductance step. In addition, the difference between the
common state and the magnetic state can be distinctly distin-
guished by comparing the inset of Fig. 3�a� and the insets of
Fig. 3�b�. The wave function of the common state is inde-
pendently localized in the three constrictions due to lack of
coupling, while the wave function of the magnetic state is
connected together by the coupling of the edge states.

We next consider the transmission resonance via magneti-
cally bound states in an electric superlattice, as shown in Fig.

1�b�. Figure 4 shows the calculated conductance for the su-
perlattice including two barriers under different magnetic
fields. As H=0, a resonant peak is exhibited below the first
threshold energy �see Fig. 4�a��. The peak corresponds to a
low quasibound state whose probability density is depicted
in the inset of Fig. 4�a�. As expected, the electrons in the
state are mainly confined in the potential well. Under mag-
netic modulation, the resonant peak shifts quickly to high
energy and becomes sharper, as shown in Fig. 4�b�, while in
the inset we show the probability density of the quasibound
state corresponding to the peak. One can find that the quasi-
bound state is tightly squeezed into the potential well by the
magnetic modulation. Gradually, the low quasibound state
will change to a true bound state with the increase of the
magnetic field. Thus, as H is increased to 0.076 �Fig. 4�c��,
no resonant peak appears in the lower-energy region of the
conductance profile. Instead, a higher-energy resonant peak
is shown at the beginning of the first conductance step. This
peak is caused by a high quasibound state whose probability
density is shown in the inset of Fig. 4�c�. It is found that the
high state is mainly localized in the two barriers rather than
in the middle well. This indicates that the effect of a real
potential well on the state acts as a repulsive barrier, which
can also be explained by the simple effective mass picture.6

As in the case of the multiwaveguide, a high quasibound
state cannot exist in the electric superlattice including two
potential barriers without magnetic modulation. However,
under strong magnetic modulation, edge states will form
along the boundaries of the structure. Through the coupling
of these edge states, the electron states localized in the two
barriers can communicate with each other, and then a mag-
netically bound state as shown in the inset of Fig. 4�c� forms.
From the probability density of the state, one can obviously
find the “fingerprint” of the edge states around the potential
well, while the wave function of the magnetic state is
coupled together by the edge states.
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FIG. 3. �Color online� Conductance versus electron energy for a
periodic multiwaveguide including three constrictions under differ-
ent magnetic fields H. �a� H=0 and �b� H=0.291. Other parameters
are the same as in Fig. 2. Inset of �a�: probability density of the
quasibound state corresponding to the third peak in �a�. Left and
right insets of �b�: probability densities of the quasibound states
corresponding to the third and fourth peaks in �b�, respectively.
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FIG. 4. �Color online� Conductance versus electron energy for
an electric superlattice which includes two potential barriers under
different magnetic fields H. �a� H=0, �b� H=0.038, and �c� H
=0.076. Results are for the case W1=20, L1=20, L2=10, and P
=0.033. Insets in �a�–�c�: probability densities of the quasibound
states corresponding to the first resonant peaks in �a�–�c�, respec-
tively. The shadow regions represent potential barriers.
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In Fig. 5, the conductance for an electric superlattice in-
cluding n barriers under magnetic modulation are calculated.
There are n−1 resonant peaks at the beginning of the first
conductance step. As mentioned above, these peaks are in-
duced by the high quasibound states whose wave functions
are mainly confined in the barriers. The upper and lower
insets of Fig. 5�a�, respectively, show the probability densi-
ties of the high states corresponding to the first and second
peaks in Fig. 5�a�. The two states are the results of symmet-

ric and antisymmetric superpositions of the two adjacent
quasibound states, as shown in the inset of Fig. 4�c�. The
fingerprint of the edge states and their coupling effect are
found again from the probability densities of the two states.

IV. CONCLUSIONS

By using the LGF method, we study transmission reso-
nance via quantum bound states in two typical periodic struc-
tures under a magnetic field. For the open periodic multi-
waveguide consisting of n constrictions, the n−1 low-energy
resonant peaks shift to high energy with the strength increase
of the magnetic field, while the magnetic modulation turns
the �n−2�-fold resonant splitting peaks at the beginning of
the first conductance step into �n−1�-fold resonant splitting
peaks. The high quasibound states corresponding to the
higher-energy peaks are formed by the coupling effect of the
edge states around the T junctions. For the electric superlat-
tice consisting of n barriers, the n−1 lower-energy resonant
peaks disappear under magnetic modulation because the low
quasibound states in the structure change into true bound
states. Instead, n−1 higher-energy resonant peaks via high
quasibound states appear at the beginning of the first conduc-
tance step. The wave functions of the high states are mainly
confined in the potential barriers rather than in the wells. One
can clearly find the fingerprint of the edge states and their
coupling effect from the probability density of the high state.
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FIG. 5. �Color online� Conductance versus electron energy for
an electric superlattice which includes n potential barriers under
magnetic field H=0.076. �a� n=3, �b� n=4, and �c� n=5. Other
parameters are the same as in Fig. 4. Upper and lower insets of �a�:
probability densities of the quasibound states corresponding to the
first and second resonant peaks in �a�, respectively. The shadow
regions represent potential barriers.
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