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We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical
aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations �Acta Crystallogr. 15, 1311
�1962�; Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 �1964�� for strained single crystals. We derive a set of basic
equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing
property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg
condition to various degrees, namely, flat, tilted, and wedged geometries, and derive the curved geometries
required for ultimate focusing. We show that the curved geometries satisfy both the Bragg condition every-
where and phase requirement for point focusing and effectively focus hard x rays to a scale close to the
wavelength. Our calculations were made for an x-ray wavelength of 0.064 nm �19.5 keV�.
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I. INTRODUCTION

X-ray microscopy has found numerous applications in
materials sciences, medicine, biology, environmental sci-
ences, and many other fields by utilizing analytical tech-
niques such as diffraction, x-ray fluorescence, and spectros-
copy, as well as imaging techniques using absorption and
phase contrast. Progress in the fabrication of x-ray optics has
pushed the spatial resolution of hard x-ray microscopes and
microprobes to well below 100 nm using Kirkpatrick-Baez
mirrors,1–4 refractive lenses,5 and diffractive optics.6,7 This
makes hard x-ray microscopy and spectromicroscopy power-
ful tools to probe the structure and properties of materials at
the nanoscale, with the advantages of good penetration,
which enables one to study thick specimens and buried struc-
tures. Also, there are only moderate or no vacuum require-
ments, enabling in situ studies, and no interaction with elec-
tric and magnetic fields. In order to push the spatial
resolution of x-ray microscopy to the theoretical limit, it is
important to know whether there exists a limit in efficiently
focusing x rays using optics made of realistic materials. Such
limits have been studied theoretically for various optics and
yielded numbers of the resolution limit of approximately
10 nm for waveguides8 and 2 nm or less for a refractive lens
in an idealized adiabatically focusing geometry.9 For diffrac-
tive optics, for example, a zone plate with “flat zones,” a
recent study found that when illuminated by a plane wave a
zone plate could have a focusing limit similar to that for a
waveguide, while for 1:1 imaging �spherical wave illumina-
tion�, this limit can be overcome.10

Diffractive optics are intrinsically well suited to achieve a
high spatial resolution because a large numerical aperture
�NA� can be achieved by diffraction. A novel approach to
making diffractive optics with high NA is the multilayer
Laue lens �MLL�.11 MLL’s are fabricated by multilayer depo-
sition onto a flat substrate and used in Laue geometry. An
MLL can be considered as a special type of zone plate. The

fabrication approach provides high aspect ratios, and is
therefore particularly well suited for hard x-ray focusing.12

Initial one-dimensional �1D� MLL structures have achieved a
line focus of 30 nm in the hard x-ray range �19.5 keV� with
a diffraction efficiency of more than 40%.6

MLL’s exhibit strong dynamic diffraction properties and
have to be described using a dynamical diffraction theory.
Using such an approach, namely, coupled wave theory
�CWT�,13 we have shown that MLL’s can reach a spatial
resolution of 1 nm.6 However, these simulation results were
limited by assumptions made in the derivation of the local
�1D� CWT equations for volume diffractive optics.14 To un-
derstand the ultimate limit of focusing by diffractive x-ray
optics made of realistic materials, we have developed a the-
oretical approach to volume diffraction, based on the Takagi-
Taupin description of dynamical x-ray diffraction developed
for strained single crystals. This approach represents a full-
wave dynamical theory for volume diffractive optics with
high numerical aperture. It is applicable to flat, tilted,
wedged, and curved zones as well as arbitrary zone profiles,
allowing us to simulate any of these geometries for imaging
and focusing. Since it is based on a dynamical diffraction
theory, it provides physical insight into the diffraction prop-
erties of volume diffractive optics. Using this approach, we
have studied the focusing performance of various MLL’s and
have investigated limitations that constrain the achievable
NA. We find that a wedged MLL is able to focus hard x rays
to less than a nanometer and that curved zones are needed to
achieve a beam size approaching the x-ray wavelength.

II. THEORETICAL APPROACH

In the conventional geometrical-optical theory, a zone
plate is considered to be “thin” so that the volume diffraction
effect can be neglected.15 This approximation is only valid
when the zone plate thickness w is less than �2�rmin�2 /�,
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where �rmin is the outmost zone width and � is the wave-
length of the incident x ray. Such a condition is usually sat-
isfied for diffractive optics at optimum thickness with a zone
width no smaller than 10 nm.12 A more rigorous full-wave
theory that takes into account the dynamical diffraction ef-
fect is needed to correctly describe x-ray diffraction from a
zone plate with outmost zone width less than 10 nm because
the optimized thicknesses are too large to treat them as thin.
This was initially done by Maser and Schmahl,14 who ap-
plied locally a 1D approach of CWT to study the variation of
the local diffraction efficiency with thickness and with the
slant of the zones. Their approach assumes that the zone
plate can be decomposed locally into periodic gratings with
fixed grating period. Their approach properly accounts for
dynamical diffraction effects and allows the calculation of
the point spread function and modulation transfer function of
zone plates with high aspect ratios and small outermost zone
width. However, their approach is limited to cases of w� f
and relatively small NA, where f is the focal length of the
zone plate. For an optimized zone plate thickness �these are
less than 1 �m for soft x rays and greater than 1 �m for hard
x rays� and for a zone plate radius matched to the coherence
length of a third generation synchrotron source, their ap-
proach is limited to MLL’s with outmost zone width no
smaller than 1 nm.

Other calculations have been published since that of Ma-
ser and Schmahl. The 1D CWT approach was further ex-
tended to study the effects of an arbitrary line/space ratio and
interface roughness by Schneider.16,17 By decomposing zone
plates into local gratings, and with similar limitations as 1D
CWT, Levashov and Vinogradov18 studied the variation of
the total diffraction efficiency with thickness. A different nu-
merical approach based on the parabolic wave equation
within paraxial approximation has been employed by
Kurokhtin and Popov.19 Their numerical method requires
large computing power when thousands of individual zones
are considered. More recent methods of solving the parabolic
wave equation using eigenfunctions have been reported.10,20

Due to the use of the paraxial approximation, numerical ap-
proaches based on the parabolic wave equation are limited to
intermediate values of NA. To overcome the limitations of
these theories and to provide an approach that is valid to
wavelength scale, we have developed and present below an
approach to modeling dynamical diffraction from MLL’s
based on first principles.

From Maxwell’s equations, we obtain the scalar-wave
equation describing the electric field variation of a mono-
chromatic x-ray wave in a medium with susceptibility ��r�� as

�2E� �r�� + k2�1 + ��r���E� �r�� = 0, �1�

where k=2� /� and E� is the electric field vector. In principle,
for a given function ��r�� and appropriate boundary condi-

tions, the electric field E� can be solved directly from Eq. �1�.
However, in many cases the variation of ��r�� is too compli-
cated to allow an analytical solution to Eq. �1�. Even using a
numerical approach, the computing time can be prohibitive.
An extreme case is x-ray diffraction from single crystals,
where tens of thousands of atomic planes are involved in the

scattering process and solving Eq. �1� plane by plane be-
comes impractical. The same difficulty arises for x-ray dif-
fraction from volume diffractive optics, which contains thou-
sands of diffractive structures and requires the consideration
of the multiwave scattering process. In crystallography, this
difficulty has been overcome elegantly by the classical dy-
namical diffraction theory, in which the periodic susceptibil-
ity function � is expanded into a Fourier series. Each Fourier
expansion component serves as a resonator, interacting with
the incident plane wave and exciting a resonant wave. The
excited resonant wave will again interact with resonators and
excite high-order resonant waves, leading to a dynamical
multiwave scattering process and a self-consistent system of
equations. Instead of seeking a solution to the second-order
partial differential equation �Eq. �1�� for each atomic plane,
the diffraction problem in a single crystal is simplified to
finding a set of plane waves that satisfy the self-consistent
system. This allows a much simplified mathematical and nu-
merical solution. To deal with strained single crystals, this
approach was generalized by Takagi and Taupin.21,22 An ad-
ditional phase term is added to each Fourier component of
the susceptibility function to account for the phase change
caused by the deformation of the lattice planes due to mis-
orientation and strain fields. Detailed treatments of x-ray dy-
namical diffraction theory can be found in many
monographs.23,24 We show that a similar methodology can be
applied to solve the diffraction problem for diffractive optics.

We begin by considering a Fresnel zone plate �FZP�. A
FZP is a circular diffraction grating that is capable of focus-
ing an incident wave to a series of focal points. It consists of
alternating zones made of two different materials and, in the
limit of a thin zone plate, produces a phase shift � between
waves passing through neighboring zones, thereby yielding a
focusing effect. The position of the nth zone is determined
by the zone plate law

rn
2 = n�f + n2�2/4, �2�

where the width of the nth zone is given by

�rn =
�f

2rn

�1 +
rn

2

f2 . �3�

It is seen from Eq. �3� that the zone width �rn decreases
radially. Locally, the zone width does not vary rapidly. When
rn is large and �rn is small, a FZP might be viewed as a
“strained crystal” with d spacing equal to d=2�rn. There-
fore, we reason that a formalism akin to the Takagi-Taupin
equations in crystallography can serve to allow a study of
dynamical diffraction effects in a volume zone plate or MLL
and, more generally, in volume diffractive optics. A difficulty
arises when applying the Takagi-Taupin equations since the d
spacing of volume diffractive optics changes significantly
from its center to its outmost region. Its susceptibility func-
tion therefore cannot be expanded into a Fourier series in a
conventional way. We address this by finding a mapping re-
lationship between zones in a FZP and zones in a strictly
periodic structure with a known Fourier series expansion.
From this mapping relationship, we expand the susceptibility
function for a FZP into a pseudo-Fourier series.
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We will study in this paper flat, tilted, wedged, and curved
geometries �see Fig. 1�. For the sake of simplicity, we begin
by considering a 1D MLL with flat zones. These zones can
be aligned parallel to the optical axis in “flat geometry,”
satisfying the Bragg condition on the optical axis, or in tilted
geometry, satisfying the Bragg condition in some outer area
of the MLL. The zones are made of materials A and B,
whose layer thickness follows the zone plate law �Eq. �2��.
To find the pseudo-Fourier series of an MLL, we consider
another periodic binary structure with mirror symmetry
about the axis z, as shown in Fig. 2. We consider that it is
also made of the materials A and B and has an A/B layer
ratio of 1:1. This periodic grating has a radial coordinate x�
that is different from the radial coordinate x for the MLL. A
connection between x and x� will be established later. The
Fourier series of a periodic structure can be straightforwardly
written as

�P�x�� = �̄ + �
h=1

�
��

h�
�1 − �− 1�h�sin�2h�

�x��
T
	

= �̄ + �
h=−�,h�0

�
��

2ih�
�1 − �− 1��h��exp�i2h�

�x��
T
	,

x� � 0, �4�

where �̄= ��A+�B� /2, ��=�A−�B, and T is the period. Here,
T is taken as arbitrary. If a relationship between x and x� can
be found so that the nth layer in the perfect periodic structure
is mapped to the nth layer in a 1D MLL, a series represen-
tation of the susceptibility function for the MLL can be ob-
tained as �MLL�x�=�P�x��x��. From the zone plate law �Eq.
�2��, the nth layer index n can be written as

n =
2

�
��xn

2 + f2 − f� .

Similarly, in the periodic structure the nth layer index n� can
be written as

n� =
2�xn��

T
.

By equating n and n�, we establish a relationship between x
and x� given by

�x�� =
T

�
��x2 + f2 − f� .

Substituting this into Eq. �4�, we obtain the following series
expansion:

�MLL�x� = �0 + �
h=−�,h�0

�

�h exp�i�h�x��, x � 0, �5�

where �0= �̄, �h= ��� /2ih���1− �−1��h��, and �h

=hk��x2+ f2− f�. Since the Fourier series of the periodic
structure is mathematically complete and x� is one-to-one
mapped to x, the series expansion in Eq. �5� can be consid-
ered as a pseudo-Fourier series. Using Eq. �5�, we can con-
struct the MLL structure, aside from the singular point at
origin. For simplicity, in the following discussion the sub-
script notation MLL of �MLL will be dropped.

We note that the gradient of the phase function taken with
respect to x and z, ��h, is equal to the local reciprocal lattice
vector, 	�h= �2�h /d�e�x, where e�x is a unit vector along the
positive x axis. Unlike the conventional Fourier series repre-
sentation of a strictly periodic structure, here the zone plate
structure is represented by a superposition of sine waves with
varying periods obeying the zone plate law �see Fig. 3�. If
the radius of an MLL is sufficiently small so that xmax is less
than �4f3� / �h��1/4, the following approximation can be made:

xn
2 
 n�f and �h 


h�

�f
x2. �6�

The basic zone plate law is thereby reduced to the first term
in Eq. �2� only.

FIG. 1. Types of multilayer Laue lens �MLL� layer arrange-
ments: flat, tilted, wedged, and curved.
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FIG. 2. A mapping of layers between a Fresnel zone plate and a
periodic structure composed by binary bars with thickness ratio 1:1.

FIG. 3. The zone plate structure can be constructed by a set of
sine waves with varying period that obey zone plate law.
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For an incident wave with an arbitrary wave front, we
assume that it can be written as

E� incident = E� 0
�a��r��exp�iks�0 · r�� , �7�

where s�0 is a unit vector along the incident propagation di-

rection and E� 0
�a� is a slowly varying complex function that

represents the modulated amplitude of the incident wave.
When an MLL is illuminated by such an incident wave, we
write a trial solution to the wave equation as

E� = �
h

E� h�r��exp�i�ks�0 · r� + �h�� = �
h

E� hPh, �8�

where Ph=exp�i�ks�0 ·r�+�h��. This series form of the trial
solution is chosen in accordance with the zone plate structure
and Eq. �5�. Because a zone plate structure can be repre-
sented by a pseudo-Fourier series, the phase term Ph in the
trial solution in Eq. �8� indeed reflects the primary compo-
nent of the spatial variation of the wave field inside the glo-
bal structure. Recall that 	�h=��h, so in a local region the
trial solution in Eq. �8� is a Bloch wave solution. In addition,
a further examination of Ph shows that it actually corre-
sponds to the phase variation of a spherical wave that con-
verges to the hth order focus of the MLL; therefore, this trial
solution represents a superposition of a set of spherical
waves with modulated amplitudes that converge to MLL’s
foci.

Substituting Eqs. �5� and �8� into Eq. �1�, we obtain

�
h

�
i=x,y,z

�2 � Ehi · �Ph + Ph�
2Ehi + Ehi�k2Ph + �2Ph��e�i

= − k2�
h

Ph��
l

�h−lE� l	 ,

where e�x,y,z are unit vectors along the x, y, and z axes. By
equating them for each h, we obtain an infinite set of equa-
tions,

�
i=x,y,z

�2 � Ehi · �Ph + Ph�
2Ehi + Ehi�k2Ph + �2Ph��e�i

= − k2Ph�
l

�h−lE� l,

h,l = 0, ± 1, ± 2, ± 3, . . . . �9�

If there is a solution to Eq. �9�, it will also be a solution to
Eq. �1�. Equation �9� can be simplified using the following
assumptions. First, the second-order derivative, �2Ehi, is
negligible compared to other terms. This is equivalent to
saying that the amplitude envelope function, Eh, varies very
slowly over a length scale equal to the wavelength or zone
width, i.e., only the phase term Ph contains quickly varying
components. For this approximation to be valid, one needs to
ensure that no specularly reflected wave from the MLL/
vacuum boundary is strongly excited. This is because if the
incidence angle �the angle between the incidence direction
and the MLL surface� is much larger than the critical angle at
which total external reflections occur and the specularly re-
flected wave is negligible, the approximate solution obtained
without second-order derivatives can be uniquely determined

by the boundary condition for the electric field alone. Under
this condition, it is easy to verify that to a good approxima-
tion this solution can also satisfy the boundary condition for
the magnetic field. In other words, without second-order de-
rivative terms, the system is still self-consistent. On the other
hand, when the incidence angle approaches the critical angle
and the specularly reflected wave is strongly excited, this
approximate solution can no longer satisfy the boundary con-
dition for the magnetic field, violating the physical law for
electromagnetic field. In this case, to have a solution that is
able to satisfy the boundary conditions for both electric and
magnetic fields, second-order derivatives should be retained
in the equation. For hard x rays, the critical angle for most
materials is smaller than 1°. For example, at 20 keV the criti-
cal angle of total external reflection is 0.23° for tungsten. The
specular wave decreases below 10−3 above 0.67°. If we con-
sider values of the numerical aperture of 0.7 or smaller here,
corresponding to incidence angles of 45° or larger, then the
second-order derivatives can be neglected. It is important to
point out that this approximation of neglecting second-order
derivatives also imposes a restriction on how rapidly E0

�a� can
vary on the entrance surface, in order to guarantee that the
second-order derivative terms are negligible everywhere.

By neglecting second-order derivatives, we obtain

�
i=x,y,z

�2 � Ehi · �Ph + Ehi�
2Ph + k2EhiPh�e�i

= − k2Ph�
l

�h−lE� l.

Taking the dot product on both sides with E� h, one obtains a
scalar equation,

�Eh
2 · �Ph + Eh

2�2Ph + k2Eh
2Ph = − k2Ph�

l

�h−lEhEl cos 
hl,

�10�

where 
hl is the angle between the polarization directions of

two wave components, E� h and E� l. Equation �10� can be fur-
ther simplified by canceling one factor of Eh to give

2 � Eh · �Ph + Eh�
2Ph + k2EhPh = − k2Ph�

l

�h−lEl cos 
hl.

�11�

Because Ph is known �see Eq. �8��, we obtain

�Ph = i�k�0 + ��h�Ph,k�0 = ks�0,

�2Ph = �i�2�h − �k2 + 2k�0 · ��h + ���h�2��Ph.

Substituting these expressions into Eq. �11� yields

2i

k
� Eh · �s�0 +

��h

k
	 + �h�r��Eh + �

l

�h−lEl cos 
hl = 0,

h,l = 0, ± 1, ± 2, ± 3, . . . , �12�

where
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�h = i
�2�h

k2 − 2s�0 ·
��h

k
− ���h

k
	2



k2 − �k�0 + ��h�2

k2 .

These are the central equations that will be used in this pa-
per. Here, �h is the deviation function, which quantifies the
violation of the Bragg condition. Because an infinite number
of differential equations need to be solved simultaneously
�both h and l run from −� to ��, a system described by Eq.
�12� is considered at present to be still too complicated. By
noting that a diffracted wave is strongly excited only near the
Bragg condition, we can truncate the system to a finite num-
ber of equations. Consequently, it is sufficient to consider a
finite number �N� of coupled first-order partial differential
equations, with the boundary conditions of the electric field
at the entrance surface �Laue case� given by

E� h,h�0 = 0, E� 0 = E� 0
�a�. �13�

One may recognize that Eq. �12� resembles the Takagi-
Taupin equations for strained single crystals. This is due to
the fact that the methodologies of these two theories are the
same: both utilize the prior knowledge about the solution for
diffraction from a periodic structure, thereby allowing the
separation of the fast and slowly varying components. How-
ever, there is a fundamental difference between them: the
lattice constant of a strained single crystal differs from its
unstrained value only very slightly, and as a result the dif-
fracted wave vector can be regarded approximately invariant
with position. In other words, in a strained crystal, the fol-
lowing approximation is valid:

s�0 +
��h

k
= s�0 +

	�h

k

 s�0 +

	�h0

k

 s�h, �14�

where 	�h0
is the unstrained reciprocal lattice vector and s�h is

a unit vector along the diffracted wave direction. In addition,
in a crystal often only one diffracted wave is strongly ex-
cited, so only two waves need to be considered. Under these
approximations, Eq. �12� becomes

�

�s0
E0 = i

�

�
��0E0 + C�h̄Eh� ,

�

�sh
Eh = i

�

�
���h + �0�Eh + C�hE0� , �15�

where C=cos 
h0 and �h̄=�−h. These are the well-known
Takagi-Taupin equations for crystal diffraction. For volume
diffractive optics, its d spacing can vary from hundreds of
nanometers in the vicinity of the center to several nanom-
eters or even smaller in the outmost region, so the variation
of the diffracted wave vector is significant and the approxi-
mation in Eq. �14� is invalid. Also, for areas of a diffractive
optics with large d spacing, many diffraction orders can be
excited, and consideration of only two orders is insufficient
for the description of volume diffractive optics in these areas.

III. DIFFRACTION FROM AN MLL WITH FLAT, TILTED,
AND WEDGED ZONES

A. Flat and tilted zones

Using a Takagi-Taupin description for volume diffractive
optics, we can study dynamical diffraction from various
types of MLL’s. We will discuss flat, tilted, and wedged
MLL’s. Flat and tilted MLL’s have zones that are parallel to
each other, but are aligned at different tilt angles with respect
to the incident beam. Wedged MLL’s have zones that are
tilted with respect to each other so as to satisfy the Bragg
angles with regard to the direction of the incident wave. We
consider MLL’s with a diameter of 30 �m, which corre-
sponds to typical lateral coherence lengths of 20 keV x rays
at a third generation synchrotron source, and a thickness of
13.5 �m, which corresponds to the optimum thickness for
efficiency of an MLL of Si and WSi2 for a photon energy of
19.5 keV. As an example, we use an outermost zone width of
5 nm, corresponding to MLL structures we are currently
fabricating.25 A plane wave at 19.5 keV is impinging on the
MLL described above, with an inclination angle of � to the
normal direction of the MLL surface, as shown in Fig. 4. For
simplicity, 
 polarization, corresponding to cos 
hl=1, is as-
sumed. In this case, xmax=30 �m is much smaller than the
focal length f =4.72 mm and the approximate zone plate law
can be used, so

xn = �n�f and �h =
h�

�f
x2.

From Eq. �12�, one can deduce

��h

k
=

hx

f
e�x,

�h�x� 
 − 2
hx

f
sin � − �hx

f
	2

.

In order to obtain a complete description of the wave field,
11 beams �h=0, ±1, ±2, ±3, ±4, ±5� are considered. Thus,
we need to obtain a solution for 11 coupled hyperbolic par-
tial differential equations given by

FIG. 4. Schematic of a plane wave diffracted by a tilted MLL
with flat zones, in which many diffraction orders are excited.
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�sin � +
h

f
x	 �

�x
+ cos �

�

�z
�Eh = i

�

�
��hEh + �

l=−5

5

�h−lEl	 ,

h = − 5,− 4, . . . ,4,5, �16�

with the boundary conditions Eh,h�0�x ,0�=0 and E0�x ,0�
=1. Equation �16� is solved numerically in MATHEMATICA 5.2,
and the simulation results are displayed in Fig. 5�a� for �
equal to 0, 1.6, and 3.2 mrad. Since we are not interested in
the diffractions with positive orders which correspond to di-
vergent waves, they are not plotted. We find, as shown in the
figures, that higher-order diffractions have weaker intensities
and the fifth-order diffraction intensity becomes negligible.

This justifies the approximation of only retaining diffraction
orders up to order 5.

For normal incidence ��=0�, the intensity distribution of
all diffracted beams shows a similar trend: only in the vicin-
ity of the center �x=0� do the diffracted beams have appre-
ciable intensities; below a certain d spacing, the diffracted
intensity decreases to zero quickly. The local diffraction ef-
ficiency, defined as the ratio of the local diffraction intensity
�Eh�x ,w��2 to the incident wave intensity, which is unity, is
below 30% for all diffraction orders. Near the center where
the value of the deviation function �h is relatively small, a
large number of diffracted waves are excited. The value of
the deviation function increases rapidly as the d spacing be-
comes smaller with increasing radius, causing a fast drop of
the diffraction intensity in the outmost region. This indicates
that only a fraction of the MLL near the center contributes to
the focusing. This is consistent with the results obtained by
Maser26 and by Pfeiffer et al.10 The radial variation of the
diffraction efficiency also depends on the thickness of the
MLL, as seen in Fig. 5�b�, where the negative first-order
diffraction intensity profile is plotted as a function of radius
and thickness. When the thickness is very small, the diffrac-
tion efficiency is low, and no dynamical effects are encoun-
tered. At larger thickness, the efficiency increases for areas
with larger d spacing, but stays small for areas with smaller
d spacing, where deviations from the Bragg condition have
an appreciable effect. This trend is clearly shown in Fig. 5�c�,
where the radial efficiency distribution of the negative first
order at different thicknesses is plotted. A maximum diffrac-
tion efficiency, about 34%, is reached at w=10 �m. This
number agrees with the value of optimum thickness for a
phase zone plate obtained in geometrical optics, w=� /��

10 �m.15

When the MLL is tilted, the Bragg condition can be sat-
isfied for a small area of the MLL. The middle graph in Fig.
5�a� shows the local diffraction efficiency at a tilt angle of
�=1.6 mrad. At this angle, the Bragg condition is satisfied
for the negative first diffraction order at x=15 �m, corre-
sponding to a zone width of 10 nm. A diffraction efficiency
maximum is observed at x=15 �m, with a local diffraction
efficiency of 67%, as expected from dynamical diffraction.
At this tilting angle, the local diffraction efficiency starts to
decrease at a larger radius than that in the case of normal
incidence, indicating that a larger fraction of the MLL con-
tributes to the focusing. An increase in the diffraction effi-
ciency of the negative second �focusing� diffraction order is
observed for a radius of 7.5 �m, corresponding to a zone
width of 20 nm, where the Bragg condition is satisfied for
the negative second order. In Fig. 5�b�, the variation of the
local efficiency of the negative first-order diffraction as a
function of radius and thickness is displayed. The bottom
graph in Fig. 5�c� shows its radial efficiency distribution at
different thicknesses. We observe that at a thickness of
16 �m, a maximum diffraction efficiency of the negative
first order is reached. In the phenomenon of “Pendellösung
fringes” for dynamical diffraction from a single crystal in
Laue geometry, a Laue peak maximum is reached at a thick-
ness of w=� cos � /2���−1�1�
16 �m,23 which is in a rea-
sonable agreement with the value obtained here. This agree-
ment suggests that dynamical resonant scatterings are

FIG. 5. �Color online� �a� The radial efficiency distributions of
different diffraction orders on the exit surface of a flat MLL at �
=0 �top�, �=1.6 �middle�, and �=3.2 mrad �bottom�, w=13.5 �m.
�b� The efficiency variation of the negative first-order diffraction
inside the zone plate at �=0 �left� and �=1.6 mrad �right�. �c� The
radial efficiency distribution of the negative first-order diffraction
on the exit surface at different thicknesses and tilting angles.
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strongly excited in this case, which raises the diffraction ef-
ficiency as well as the effective radius.

Here, the even order diffractions are excited via dynami-
cal multiwave scattering processes, similar to the Renninger
effect in diffraction from crystals,27 although they are forbid-
den in the geometrical-optical theory.15

To study the focusing property of the flat and tilted
MLL’s, we employed Fresnel-Kirchhoff integral28 to calcu-
late the wave field at a point behind the MLL. In Fig. 6�a�,
the isophotes near the focus at different tilting angles are
plotted. As expected, we observe in our calculations that tilt-
ing leads to a reduction in beam size and to an enhancement
of peak intensity. However, there is an optimum tilting angle
above which defocusing occurs. This tendency is clearly
seen in Fig. 6�b� by comparing the line focus profiles on the
best focal plane at different tilting angles. When �=0, the
full width at half maximum �FWHM� of the best focused
beam is about 7.4 nm. As � increases to 2.1 mrad, the
FWHM of the best focused beam is reduced to 4.7 nm be-
cause a larger fraction of the MLL contributes to the focus-
ing, as shown in Fig. 5�a�. However, when �=3.2 mrad at
which the Bragg condition is satisfied for the outmost zones
at x=30 �m, multiple peaks with nearly equal intensities

appear on the plane of best focus, destroying the resolution.
This is a result of the uneven radial intensity distribution at
�=3.2 mrad �see the bottom graph in Fig. 5�a��. At this tilt-
ing angle, the diffraction efficiency of the negative first order
has appreciable values only near the center and near the out-
most regions where a Bragg condition is satisfied, while in
between the diffraction efficiency, it is very low. As a result,
the diffracted waves from the center and the outmost region
interfere with each other strongly, causing multiple peaks
with nearly equal intensity on the focal plane in an analogy
to the multislit diffraction pattern. The effective radius within
which the diffraction efficiency is nonzero constrains the fo-
cal size of a tilted MLL with parameters given here to
slightly smaller than 5 nm. Therefore, if the radius of the
MLL is increased to 60 �m and the outmost zone width is
reduced to 2.5 nm, at this optimum thickness we still cannot
obtain a 2.5 nm beam size. To increase the effective radius,
we need to reduce the thickness of the MLL, but with a
significant loss of efficiency, as shown in Fig. 5�c�.

The improvement of the focusing by tilting might be bet-
ter understood by considering the structure of an MLL,
which consists of many thin layers. The diffraction property
of an MLL is determined by the scattering property of a
single layer and the interference effect of the scattered waves
from different layers as well. Each thin layer can be regarded
as a waveguide where total external reflection occurs at the
boundaries. As Bergemann et al. argued,8 the critical angle of
the total external reflection imposes an ultimate limit on the
achievable NA for a waveguide, because above this critical
angle x rays start to leak out, resulting in a rapid drop of the
reflection intensity. Consequently, the maximum converging
angle of x rays from a waveguide cannot exceed the critical
angle, so the maximum achievable NA for a waveguide is
about �2�n, where �n is the difference of the refractive
index of the waveguide material from unity. They also
claimed that this limit applies to all x-ray focusing optics.
However, it has been shown that this limit could be over-
come by a thick adiabatic refractive lens.9 Such a limit does
not apply to diffractive optics either since resonant scattering
occurs when the Bragg condition is fulfilled, so that the re-
flected waves from different layers can interfere construc-
tively, leading to a resultant wave that can be as strong as the
incident wave. For the MLL, the converging angle is only
limited by the Bragg angle, which can be as large as � /2.
Though the waveguide effect will somewhat influence the
achievable NA of an MLL when the Bragg condition is not
satisfied ��=0�, it does not determine the ultimate resolution
of an MLL. Recent calculation based on the parabolic wave
equation also confirmed that a 0.8 nm focusing could be
achieved by MLL’s,20 much smaller than the focal size lim-
ited by total external reflection.

B. Wedged MLL

As shown previously, tilted MLL’s can focus x rays much
more effectively than flat MLL’s. However, tilted MLL can-
not achieve a 1 nm focusing without significantly sacrificing
the efficiency. To achieve both high efficiency and small fo-
cusing, we consider a structure in which there is a distinct tilt

FIG. 6. �Color online� �a� Isophotes near the focus at different
tilting angles, �=0, 1.1, 2.1, and 3.2 mrad, in �i�, �ii�, �iii�, and �iv�.
The intensity is plotted in a logarithmic scale. �b� The intensity
profiles on the best focal plane.
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to every zone by an angle increasing with radius so that the
local Bragg condition is fulfilled in every zone. This geom-
etry corresponds to a wedged zone shown in Fig. 1. Deduc-
ing from Eqs. �2� and �3�, we obtain the modified zone plate
law corresponding to an MLL with wedged zones which sat-
isfy the Bragg condition at z=0,

xn = an�z��n�f +
n2�2

4
, an = 1 −

z

2f�1 + n�/4f�
.

�17�

At the entrance surface �z=0�, the zone width obeys the con-
ventional zone plate law �Eq. �2��, but all zones shrink by a
factor an�z� along the depth z. The shrinkage factor an also
depends on the zone number n. To simplify the calculation,
as an approximation we consider a shrinkage factor indepen-
dent of n given by an=1−z / �2f�1+nmax� /8f��, where nmax is
the maximum zone number. Consequently, all zones shrink
homogeneously by a factor proportional to the depth z, simi-
lar to the wedged structure considered by Schroer,20

�xn = a�z�
�f

2x
�1 +

x2

f2 ,

and the phase function �h becomes

�h = hk
� x2

a�z�2 + f2 − f�, h = 0, ± 1, ± 2, ± 3, . . . .

�18�

To explore a possible upper limit of the achievable NA,
we consider an MLL operating at 19.5 keV with the follow-
ing parameters: f =4.72 mm, w=13.5 �m, xmax=600 �m,
and an outmost zone width of 0.25 nm. As we demonstrated
previously �see Fig. 5�a��, for zone widths less than 10 nm,
high diffraction orders are negligible and the two-beam ap-
proximation is sufficient to describe the diffraction property
of an MLL. Since here we are interested in the diffraction
behavior of zones with much smaller widths, from now on,
unless otherwise specified, the two-beam approximation will
be used. Simulation results are shown in Figs. 7�a� and 7�b�.
In Fig. 7�a�, the radial efficiency distribution and the phase
deviation of the diffracted wave from a perfect spherical
wave that converges to the focal point are plotted. Although
in the outmost region the diffracted waves still have strong
intensities, they do not contribute to the focus because their
phase deviation varies rapidly over � and they interfere de-
structively at the focal spot. Therefore, using this structure,
we cannot focus an incident plane wave down to the diffrac-
tion limit due to the phase effect. In Fig. 7�b�, the intensity
profile on the best focal plane is displayed. The inset on top
shows the isophotes near the focus, and the bottom one is a
sketch of the zone plate structure. In this case, the achievable
NA is also limited by the dynamical diffraction property of
the MLL and a larger physical radius will not increase its
NA. This study indicates that to efficiently focus x rays down
to the wavelength using diffractive optics, not only does the

Bragg condition have to be satisfied so that the diffracted
wave intensity is strong and the efficiency is high, but also
the phase has to be right so that all diffracted waves add up
in phase at the focal spot. We will derive the optimum curved
shapes that minimize the radial phase change in Sec. IV.

C. Localized one-dimensional theory

In this section, we show that under certain conditions the
assumption of local perfect gratings becomes valid and the
basic diffraction equations derived in this paper are simpli-
fied to simpler forms similar to those in 1D CWT. For the
sake of simplicity, we start with the two-beam approxima-
tion, so that Eq. �16� is reduced to

FIG. 7. �Color online� �a� The radial intensity distribution of the
negative first-order diffraction on the exit surface of a wedged MLL
with an outmost zone width of 0.25 nm. Two-beam approximation
is assumed. The dashed curve represents the phase deviation from a
perfect converging spherical wave front. �b� The intensity profile on
the focal plane, showing a peak width FWHM=0.34 nm. The inset
on the top is the isophotes near focus; the intensity is plotted in a
logarithmic scale. The one on the bottom is a sketch of the wedged
MLL structure.
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�sin �
�

�x
+ cos �

�

�z
	E0 = i

�

�
��0E0 + �−hEh� ,


�sin � +
hx

f
	 �

�x
+ cos �

�

�z
�Eh = i

�

�
���0 + �h�Eh + �hE0� ,

h = ± 1, ± 3, ± 5, . . . . �19�

To simplify the calculation, dimensionless variables are used,

x̄ =
hx

f sin �
, z̄ =

hz

f cos �
.

Consequently, we obtain

� �

�x̄
+

�

�z̄
	E0 = i

f�

h�
��0E0 + �−hEh� ,


�1 + x̄�
�

�x̄
+

�

�z̄
�Eh = i

f�

h�
���0 + �h�Eh + �hE0� , �20�

where �h
−x̄�2+ x̄�sin2 �. We may further simplify Eq. �20�
by setting

E0 = Ẽ0 exp�i
f�

h�
�0z̄	 ,

Eh = Ẽh exp�i
f�

h�
�0z̄	 ,

so the refraction and photoelectric absorption effects are
taken out of the equation. Substituting the above expressions
into Eq. �20� yields

� �

�x̄
+

�

�z̄
	Ẽ0 = i

f�

h�
�−hẼh,


�1 + x̄�
�

�x̄
+

�

�z̄
�Ẽh = i

f�

h�
��hẼh + �hẼ0� , �21�

which are two coupled hyperbolic partial differential equa-
tions. According to the partial differential equation theory,29

a solution at a point �x̄0 , z̄0� to a hyperbolic equation only
depends on the initial data in a bounded domain of depen-
dence; the outside part of this domain has no influence on the
value of the solution at �x̄0 , z̄0�. For a system described by
Eq. �21�, the domain of dependence is bounded by its char-
acteristics,

x̄ = �x̄0 + 1�exp�z̄ − z̄0� − 1, x̄ = x̄0 + �z̄ − z̄0� . �22�

In Fig. 8, the domain of dependence of point P is depicted.
The counterpart concept in crystallography is the inverse
Borrmann triangle in a single crystal, where the wave field at
P is determined by the wave fields in the triangle RPQ �Fig.
8�. A physical elucidation of this concept is that because
waves propagate along either s�0 or s�h, the wave field at P can
only be influenced by the wave fields at points that can
propagate to P. Such points form a domain of dependence
bounded by RPQ. In single crystals both s�0 and s�h are invari-

ant, so the shape of the inverse Borrmann triangle is inde-
pendent of position. However, in an MLL the diffracted
beam direction s�h is a function of position because the
change of reciprocal lattice vector causes a curved edge QP
which will vary with position.

By noting that for w� f , z̄�1, one can make the follow-
ing approximation:

exp�z̄ − z̄0� 
 1 + z̄ − z̄0.

Then, the first equation in Eq. �22� becomes

x̄ = x̄0 + �x̄0 + 1��z̄ − z̄0� .

The physical manifestation of this approximation is to re-
place the curved edge QP by a straight line, so Eq. �21� can
be simplified. With the replacement of variables,

� = z̄ − x̄ ,

� = x̄ − �x̄ + 1�z̄ ,

one obtains

�

�x̄
+

�

�z̄
= − �x̄ + z̄�

�

��
,

�1 + x̄�
�

�x̄
+

�

�z̄
= − x̄

�

��
− �1 + x̄�z̄

�

��
.

In the case � is very small so that z̄� x̄ can be satisfied, the
following approximations are valid:

�

�x̄
+

�

�z̄

 − x̄

�

��
,

FIG. 8. The domain of dependence in an MLL �left�, which has
a curved edge due to the change of diffracted direction with posi-
tion, and the inverse Borrmann fan in a single crystal �right�, which
is a triangle that is invariant with position.
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�1 + x̄�
�

�x̄
+

�

�z̄

 − x̄

�

��
.

Use of these approximations leads to

�

��
Ẽ0 = − i

f�

h�

�−h

x̄��,��
Ẽh��,�� ,

�

��
Ẽh = − i

f�

h�

�h��,��

x̄��,��
Ẽh��,�� +

�h

x̄��,��
Ẽ0��,��� .

�23�

If we note the fact that the wave field at P is only affected by
the wave fields inside the triangle RPQ, and under conditions
z̄� x̄ and z̄�1 the values of x̄ and �h change only very
slightly inside this triangle, it is justified to replace variables
x̄ and �h by their values at P. In this way, we arrive at two
equations that can be solved analytically:

�

��
Ẽ0 = i�̃−hẼh��,�� ,

�

��
Ẽh = i�̃h��,��Ẽh��,�� + i�̃hẼ0��,�� , �24�

where

�̃h,−h = −
f�

h�

�h,−h

x̄�P�
,

�̃h = −
f�

h�

�h�P�
x̄�P�

are constants. One may recognize that Eq. �24� coincides
with Takagi-Taupin equations for perfect single crystals, im-
plying that our approximations have the following physical
meaning: locally, an MLL can be treated as a strictly periodic
grating. However, we want to emphasize that the validity of
these approximations is limited to the case where � is small
�corresponding to a small NA�, and w� f , i.e., within the
triangle RPQ the variation of periodicity can be neglected
and MLL can be considered as a periodic grating locally. We
found that there were similar discussions about the validity
of local 1D CWT in volume holography previously.30,31 If all
beams are retained in the equation, the discussion is the same
but Eq. �24� will become N-beam Takagi-Taupin equations
for perfect single crystals. From Eq. �24�, a closed-form ana-
lytical solution can be obtained.

IV. IDEAL STRUCTURES FOR HIGH NUMERICAL
APERTURE

We have shown above that a wedged MLL cannot achieve
a focus close to the wavelength. Ideal structures, which not
only satisfy the Bragg condition everywhere so that the dif-
fraction efficiency is high but also have a right phase locally
so that all diffracted waves interfere constructively at the
focus, are needed. The first condition requires the deviation
function �h to be zero everywhere. We may consider this

condition in reciprocal space with the aid of Ewald sphere. In
Fig. 9�a�, we show a case in which a plane wave is incident
normally on a zone plate with local reciprocal lattice vector
of 	�h. For a Bragg condition to be satisfied at a point �x ,z�
within the MLL, the end point of the vector k�h=k�0+	�h
should lie on the Ewald sphere, which has a radius k and is
centered at �x ,z�, so that �h=0. In addition, for the diffracted
wave to converge to the focus F, all k�h should point to it. In
order to satisfy both conditions, k�h has to take the form given
by

k�h =
− kx

�x2 + �f − z�2
e�x +

k�f − z�
�x2 + �f − z�2

e�z.

Because k�0=ke�z, 	�h can be determined unambiguously from
the relationship k�h=k�0+	�h. Then, according to the relation-
ship 	�h=��h, we can obtain �h by integrating 	�h. We then
obtain the following equation:

�h = − k��x2 + �f − z�2 + z + const� .

The integration constant in �h can be arbitrary because it
does not affect the Bragg condition. This constant is deter-
mined by the second condition: all diffracted waves should
interfere constructively at the focus F. By calculating the
optical path, we obtain

�h = − k��x2 + �f − z�2 − �f − z�� . �25�

According to the derivation of the pseudo-Fourier series
�Eq. �5��, we find that only the negative first-order diffraction
�h=−1� can satisfy both conditions. From Eq. �25�, the ideal
zone plate law for an incident plane wave can be deduced,

F
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FIG. 9. �a� A schematic of satisfying Bragg’s law everywhere
for an incident plane wave. All diffracted wave vectors point to the
focal point F. �b� A structure consisting of a set of confocal parabo-
loids obtained from �a�, serving as an ideal structure to focus a
plane wave into a point.
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xn
2 = n��f − z� + n2�2/4, �26�

which is a set of confocal paraboloids �Fig. 9�b��. Substitut-
ing Eq. �26� into Eq. �12�, with the two-beam approximation,
we can simplify the system to two partial differential equa-
tions,

�

�z
E0 = i

�

�
��0E0 + �1E−1� ,

1
�x2 + �f − z�2
− x

�

�x
+ �f − z�

�

�z
�E−1 = i

�

�
��−1E0 + �0E−1� .

�27�

Solved numerically, the efficiency and the phase deviation of
the negative first-order diffraction that we obtain are shown
in Fig. 10�a�. High diffraction efficiency, 67%, is observed
over all radial positions, and the phase deviation is rather
small, indicating that a converging spherical wave front with
very small distortion forms on the exit surface of such an
MLL. The abrupt drop of the diffraction intensity close to the
outmost boundary is a result of incomplete structure beyond
it. In Fig. 10�b�, we show the intensity profile on the best
focal plane with a FWHM of 0.21 nm,33 and the inset on top
shows the isophotes near the focus. Comparing to the peak
half width of 0.34 nm obtained from a wedged MLL with the
same outmost zone width of 0.25 nm, we conclude that
curved zone profiles are needed to achieve a resolution ap-
proaching the wavelength.

In a similar way, the ideal structure to focus a spherical
wave �from a point source� can be obtained as well �see Fig.
11�a��. The difference is that in this case the incident wave
vector is a function of position too,

k�0 =
kx

�x2 + �lo + z�2
e�x +

k�lo + z�
�x2 + �lo + z�2

e�z,

where lo is the distance from the point source to the entrance
surface of the zone plate. To focus it to a point located at a
distance li away from the entrance surface on the down-
stream side, we find

�h = − k��x2 + �lo + z�2 + �x2 + �li − z�2 − �lo + li�� , �28�

then we obtain the zone plate law for focusing a spherical
wave,

4xn
2

n2�2/4 + n��lo + li�
+

4�z + �lo − li�/2�2

�n�/2 + lo + li�2 = 1. �29�

Again, only for h=−1 can all requirements be satisfied.
Equation �29� describes a set of confocal ellipsoids, as
shown in Fig. 11�b�.

It is interesting to consider 1:1 imaging in this case. If
lo+ li=4f and lo− li=−w, Eq. �29� then becomes

xn
2 = n�f +

n2�2

16
−

n2�2/4 + 4n�f

�n�/2 + 4f�2 �z − w/2�2, 0 � z � w .

�30�

If the thickness w is small enough so that the last term can be
neglected, we obtain

xn
2 = n�f +

n2�2

16
, �31�

which is the conventional zone plate law for 1:1 imaging.15

The inset on the bottom of Fig. 12 shows the zone plate
structure that satisfies Eq. �31� �solid flat lines� and the ideal
one according to Eq. �30� �dashed curved lines� for 1:1 im-
aging. In this case, the flat zones show an increased deviation

FIG. 10. �Color online� �a� The radial intensity distribution of
the negative first-order diffraction on the exit surface of an MLL
with ideal parabolic zones and outmost zone width of 0.25 nm,
based on the two-beam simulation. The dashed curve represents the
phase deviation from a perfect converging spherical wave front. �b�
The intensity profile on the focal plane, showing a peak with
FWHM=0.21 nm. The inset on the top is the isophote pattern near
focus; the intensity is on a logarithmic scale. The one on the bottom
is a sketch of the ideal structure.
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from the ideal curved ones with increasing radius, indicating
that there may exist a theoretical limit preventing the NA
from approaching unity even for 1:1 imaging. To investigate
this limit, we studied the imaging property of a flat MLL
when illuminated by a spherical wave emitted from a point
source 2f away from its center �Fig. 12�. The parameters for
the MLL are w=13.5 �m, f =0.472 mm, xmax=75 �m, and
the outmost zone width of 0.2 nm. It is easy to derive the
phase function for this MLL structure from Eq. �31�,

�h = 4hk��x2/4 + f2 − f� .

By solving Eq. �12�, we are able to simulate the isophotes
near the image point �Fig. 12�. We found a peak FWHM of
0.53 nm, 33% larger than the diffraction limit from Rayleigh
criterion, 0.4 nm �note that in this case NA=xmax/2f�. The
larger focused beam size, compared to the diffraction limit, is
a result of deviating from the ideal structure. From the draw-
ing of MLL structures in Fig. 12, as the radius increases, the
flat zone profile deviates further from the ideal elliptical
shape. Therefore, as opposed to the conclusion made by Pfe-
iffer et al.,10 we argue that according to our calculation there
is a resolution limit even for 1:1 imaging when an MLL with
flat zone profiles is used.

We note that parabolic and elliptical profiles for
multilayer focusing optics are well known and can be ob-
tained by recording the interferogram between a plane wave
�or a diverging spherical wave� and a converging spherical
wave in holography.32 However, it was not clear before
whether they would also work for thick optics where dy-
namical diffraction effect is dominant. Here, we showed that
these structures are also ideal for volume diffractive optics.

V. SUMMARIES AND CONCLUSIONS

In summary, we present a formalism of dynamical diffrac-
tion from Fresnel zone plates analogous to the Takagi-Taupin
equations for a strained single crystal. The basic equations

for dynamical diffraction are derived and employed to study
diffraction properties of multilayer Laue lens with various
types of zone profiles, including flat, tilted, wedged, and ide-
ally curved. Our study shows that for a thick MLL made of
flat zones, in the case of plane wave illumination with nor-
mal inclination angle, the dynamical diffraction effect of the
zone plate would prevent it from focusing the beam size
down to a few nanometers. A rough estimation in this case
shows that when the thickness is optimized for dynamical
diffraction, the achievable NA is about �2�n, a result similar
to that for waveguides and in an agreement with the conclu-
sion obtained recently by Pfeiffer et al.10 We also demon-
strate that the achievable NA of an MLL with flat zones can
be increased by a factor of roughly 2 by tilting zones. The
MLL with wedged zones, which satisfy locally the Bragg
condition, is studied as well. It is observed that wedged
MLL’s can reach a NA of �0.1 when high diffraction effi-
ciency is achieved, i.e., efficiently focusing hard x rays down
to several angstroms. Ideal structures which satisfy both the
Bragg condition and the phase requirement are obtained with
the aid of an Ewald sphere construction. Not unexpectedly,
they turn out to be confocal paraboloids for an incident plane
wave and confocal ellipsoids for an incident spherical wave.
In addition, the present modeling approach can be extended
to other types of diffractive optics, for example, kinoform
lenses and multilayer mirrors, with appropriate modifica-
tions. Without the paraxial approximation, this approach can
go well beyond the 1 nm focusing and allows one to under-
stand the basic physics of diffractive optics and explain phe-
nomena at a fundamental level.
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FIG. 11. �a� A schematic of satisfying Bragg’s law everywhere
for an incident spherical wave. All diffracted wave vectors point to
the focal point F. �b� A structure consisting of a set of confocal
ellipsoids, serving as an ideal structure to focus a point in object
space into a point in image space.

FIG. 12. �Color online� The focused beam profile on the plane
of best focus and the isophotes �logarithmic scale� near the image
point �the inset on the top� for 1:1 imaging. The inset on the bottom
shows the difference of an MLL with flat zones �solid line� and an
ideal MLL �dashed line�.
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