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We have studied the effect of an Anderson impurity in Landau quantized graphene, with special emphasis on
the influence of the chemical potential. Within the slave-boson mean-field theory, we found reentrant Kondo
behavior by varying the chemical potential or gate voltage. Between Landau levels, the density of states is
suppressed, and by changing the graphene’s Fermi energy, we cross from metallic to semiconducting regions.
Hence, the corresponding Kondo behavior is also influenced. The f-level spectral function reveals both the
presence of Landau levels in the conduction band and the Kondo resonance.
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I. INTRODUCTION

The existence of Dirac fermionic excitations in single
layer graphene has attracted great interest.1–6 Theoretically,
the linear dispersion and chiral nature of massless quasipar-
ticles has many unexpected physical consequences, espe-
cially for magnetotransport properties.7–11 Experimentally,
graphene may be considered as a zero gap semiconductor
with charge carriers of very high mobility whose density
may easily be controlled by applying a gate voltage, which
gives hope for interesting applications.6

The scattering of graphene quasiparticles from normal im-
purities determines electronic and thermal transport and is
well studied.7,9–13 The linear dispersion of quasiparticles and
the associated pseudogap plays an essential role in the
magnetotransport11 because it leads to unconventional Lan-
dau level quantization as compared to the case of parabolic
bands. One essential difference is that a zeroth order Landau
level is pinned at zero energy for any field strength. With
increasing impurity scattering, the pseudogap is therefore
gradually filled and the density of states exhibits oscillations
as a function of the chemical potential or carrier number.9,11

Because the graphene carrier number and density of states
can easily be manipulated with gate voltage and magnetic
field, it is attractive to consider the effect of magnetic impu-
rities in a graphene host. It is well known that magnetic
moments in the Fermi sea show the competition of on-site
Kondo singlet formation and intersite RKKY interactions,
which is highly sensitive to the density of states around the
Fermi level.14 While experiments in graphene are still miss-
ing, we think that chemisorption or adsorption of transition
metal ions on graphene sheets is the most likely realization
of Kondo effect and RKKY interaction with Dirac electrons.
Possible ways for creation of local moments in carbon based
materials have been discussed in Refs. 15–17.

Theoretically, the Kondo- and Anderson-type models for
local moments in graphene have been studied without mag-
netic field.16,18 In the present work, we investigate the effect
of Landau level formation on the screening of magnetic im-
purities described by the Anderson model. Due to the strong
density of state variation with chemical potential and mag-
netic field, it should be possible to drive the magnetic impu-

rity in and out of the Kondo regime, which is characterized
by the formation of an f-level resonance close to the chemi-
cal potential. This effect is studied within the mean-field
slave-boson theory and assuming a constant broadening of
Landau levels by normal impurities. In Sec. II, we define the
Anderson impurity model coupled to a Dirac Fermi sea in a
magnetic field. The solution of the model within the saddle-
point approximation is derived in Sec. III and the numerical
results are discussed in Sec. IV. Finally, Sec. V gives the
conclusion.

II. ANDERSON IMPURITY IN GRAPHENE

The Hamiltonian of Dirac quasiparticles living on a single
graphene sheet, interacting with an infinite-U Anderson im-
purity at the origin, is given by7,19,20

H0 = �
�=±1

�� dr �
s=±1

��,s
+ �r�� �

j=x,y
− vF�1 − 2� j,y�s,−1�

�� j�− i� j + eAj�r�� − � − h�	��,s�r� + �E − h��f�
+ f�

+ V �
s=±1

�f�
+��,s�0�b + b+��,s

+ �0�f��
 , �1�

where � j’s are the Pauli matrices and stand for Bloch states
residing on the two different sublattices of the bipartite hex-
agonal lattice of graphene.7,9 The quasiparticle spectrum van-
ishes at six points in the Brillouin zone. Out of these six,
only two are nonequivalent points and are referred to as K
and K� points in the Brillouin zone, denoted by the s=1 and
−1 indices, respectively, and � is the Kronecker delta. The
Kronecker delta function accounts for the nonequivalence
of the two Dirac points8 at K and K�. The finite chemical
potential � accounts for particle-hole symmetry breaking.
The vector potential for a constant, arbitrarily oriented
magnetic field reads as A�r�= �−By cos � ,0 ,B�y sin � cos �
−x sin � sin ���, where � is the angle the magnetic field
makes from the z axis and � is the in-plane azimuthal angle
measured from the x axis. The Zeeman term is assumed to
couple to both the impurity and Dirac electrons by the same
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g factor, h=g�BB and vF�106 m/s, and is characteristic to
graphene. f�

+ and f� creates and annihilates an electron on the
localized E level; b+ and b are the slave-boson operators,
responsible for the hole states.21–23 These take the infinite-U
term into account.

The Hamiltonian should be restricted to the subspace

�
�=±1

f�
+ f� + b+b = 1. �2�

Within the mean-field approximation, the slave-boson op-
erators are replaced by their expectation value, b0= �b, and
the constraint is satisfied by introducing a Lagrange multi-
plier 	,

H = �
�=±1

�� dr �
s=±1

��,s
+ �r�� �

j=x,y
− vF�1 − 2� j,y�s,−1�

�� j�− i� j + eAj�r�� − � − h�	��,s�r�

+ �E + 	 − h��f�
+ f� + Vb0 �

s=±1
�f�

+��,s�0� + ��,s
+ �0�f��


+ 	�b0
2 − 1� . �3�

In the particle-hole symmetric case ��=0�, in the absence of
magnetic field, the energy spectrum of the system of Dirac
electrons is given by

E�k� = ± vF�k� . �4�

This describes massless relativistic fermions with a spectrum
consisting of two cones, touching each other at the end
points. From this, the density of states per spin follows as


��� =
1

�
�
k

��� − E�k�� =
1

�

Ac

2�
�

0

kc

kdk��� ± vFk� =
2���
D2 ,

�5�

where kc is the cutoff, D=vFkc is the bandwidth, and Ac
=4� /kc

2 is the area of the hexagonal unit cell. We mention in
passing that an applied gate voltage directly controls the
number of extra charge carriers in the system, which is given
by eV�n=�0

�
���d�=�2 /D2. Hence, chemical potential is
proportional to the square root of the applied gate voltage
even in the ideal case, without any scatterers and magnetic
field. Such a relation can hardly be calculated for the realistic
case. Nevertheless, the chemical potential always varies
monotonically with the gate voltage due to the positiveness
of the density of states.

Magnetic impurities in gapless Fermi systems have thor-
oughly been studied starting with the pioneering work of
Withoff and Fradkin,24 and the focus was on the influence of
gapless excitations on the Kondo phenomenon �for a review,
see Ref. 25�. Recently, the Kondo effect in graphene without
magnetic field has been studied within this framework.16

Here, we allow for Landau quantization of the quasiparticle
spectrum and study the orbital effect of magnetic field on the
various Kondo phases.

In the presence of magnetic field, the eigenvalue problem
of our Hamiltonian without the localized level can readily be

solved.7 From now on, we concentrate on the K point; the
eigenfunctions of the K� point can be obtained by exchang-
ing the two components of the spinor. Momentarily, we also
neglect the spin and the Zeeman term and concentrate on the
effect of Landau quantization. They will be reinserted when
necessary. For the zero energy mode �E=0�, the eigenfunc-
tion is obtained as

�k�r� =
eikx

�L
� 0

�0�y − klB
2�
� , �6�

and the two components of the spinor describe the two
bands. The energy of the other modes reads as

E�n,� = �c
�n + 1, �7�

with = ±1, n=0,1 ,2 , . . ., and �c=vF�2e�B cos���� is the
Landau scale or energy but is different from the cyclotron
frequency.26 Only the perpendicular component of the field
enters into these expressions, and by tilting the field away
from the perpendicular direction corresponds to a smaller
effective field. The sum over integer n’s is cut off at N given
by N+1= �D /�c�2, which means that we consider 2N+3
Landau levels altogether.

The corresponding wave function is

�n,k,�r� =
eikx

�2L
� �n�y − klB

2�
�n+1�y − klB

2�
� , �8�

with cyclotron length lb=1/�eB. Here, �n�x� is the nth
eigenfunction of the usual one-dimensional harmonic oscil-
lator. The electron-field operator at the K point can be built
up from these functions as

��r� = �
k
��k�r�ck + �

n=0

N

�
=±1

�n,k,ck,n,� . �9�

The Green’s functions of these new operators do not depend
on k and read as

G0�i�n,k� =
1

i�n
, �10�

G0�i�n,k,n,� =
1

i�n − E�n,�
, �11�

for ck and ck,n,, respectively, and �n is the fermionic Mat-
subara frequency. As seen from above, the density of states
in the presence of quantizing magnetic field contains Dirac-
delta peaks located at the Landau level energies, and quasi-
particle excitations have infinite lifetime. To describe a more
realistic situation, scattering from disorder needs to be con-
sidered in the presence of the magnetic field. Usually, the
resulting self-energy of the Dirac fermions, determined in a
self-consistent manner, depends on the frequency and field
strength.7,11 However, good agreement can be reached by
assuming a constant, phenomenological scattering rate, de-
noted by �, for small and moderate fields, as can be learned
from similar analysis.9,27 To simplify calculations, we have
chosen to mimic disorder by a constant scattering rate.
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III. SADDLE-POINT EQUATIONS

The free energy of the system can be found from Eq. �3�
using a standard technique.23 The value of 	 and b0 is deter-
mined self-consistently by minimizing the free energy of the
system with respect to them.28,29 As a result, by restoring the
finite chemical potential, spin, and the Zeeman term, the
saddle-point equations at T=0 are given by

b0
2 = �

�=±1
S1�E + 	 − �h,� + �h� , �12�

	 = �
�=±1

S2�E + 	 − �h,� + �h� , �13�

where the auxiliary functions are defined as

S1�y,z� = �
0

� dx

�

y + b0
22V2 Im ��x + � − iz�

�x + b0
22V2 Re ��x + � − iz��2 + �y + b0

22V2 Im ��x + � − iz��2 , �14�

S2�y,z� = 2V2�
0

� dx

�

�x + b0
22V2 Re ��x + � − iz��Re ��x + � − iz� + Im ��x + � − iz��y + b0

22V2 Im ��x + � − iz��
�x + b0

22V2 Re ��x + � − iz��2 + �y + b0
22V2 Im ��x + � − iz��2 , �15�

��z� =
1

N + 1�1

z
+ �

k=0

N
2z

z2 + �c
2�k + 1�� =

1

N + 1�1

z
+ 2

z

�c
2��� z2

�c
2 + N + 2� − �� z2

�c
2 + 1��	 . �16�

The 1/ �N+1��B prefactor denotes the Landau level degen-
eracy. These reduce to the standard saddle-point equations
for gapless phases28,30 for zero field and �=0. The extra
factor of 2 in front of V2 stems from the two nonequivalent
Dirac cones at the K and K� points since by using

�
−�

�

dk�n�y − klB
2��m�y − klB

2� =
�n,m

lB
2 , �17�

each Landau level at each valley contributes to the hybrid-
ization energy by V2. Equation �12� accounts for the con-
straint of having at most one f electron at the impurity site
�Eq. �2��. Equation �13� stems from the equation of motion
of the slave boson-field b: since it is constant in the mean-
field approach, the terms determining its dynamics should
add up to zero.22 Here, ��z�, which is related to the f-level
self-energy, contains all the information about the conduction
electron bath, where the magnetic impurity is embedded.
When the field strength goes to zero, these equations reduce
to those found in gapless phases28 as

��z� = 2
z

D2 ln�1 +
D2

z2 � . �18�

In this case, for �=�=0, the critical f-level energy is found
to be Ec=−8V2 /D. For E�Ec, only the trivial solution oc-
curs �b0=0�; hence, charge fluctuations are completely sup-
pressed. The solution of Eqs. �12� and �13� can be carried out
by realizing that Eq. �12� depends only on the renormalized
f-level energy E+	 and not separately on the two variables
E and 	. Then, by fixing the value of E+	, we can determine
the corresponding b0 by iteration, for example. By inserting
the values of the renormalized f-level energy and the slave-
boson expectation value to Eq. �13�, we can directly read off
	 and determine E by subtracting it from the renormalized

f-level energy. As in other similar problems, this method
predicts a quantum phase transition at T=0, characteristic to
gapless Kondo phases. However, in our case, the order of the
transition can change from second to first. Such a transition
is absent for magnetic impurities embedded to normal
metals.23

IV. SPECTRAL FUNCTION: DISCUSSION

The full f-electron spectral function per spin along the
real frequency axis reads as


 f ,����

= −
1

�
Im

b0
2

� − E − 	 + �h − 2V2b0
2� f�� + � + �h + i��

,

�19�

where � f�x�=−i��−ix�. It shows the Landau level oscilla-
tions and, in addition, a large Kondo peak whenever a non-
trivial solution of Eqs. �12� and �13� exists. Without mag-
netic field and normal impurities, it shows a marginal Fermi
liquid behavior,31 as can be observed from the analytically
continued f-level self-energy,

� f�� � D� � −
4V2b0

2

D2 �2� ln� D

���� + i����� , �20�

which, in the presence of normal impurities, turns into the
usual fermionic self-energy at low energies, with � being
replaced by �, the scattering rate. In the case of quantizing
magnetic field, without normal impurities, its imaginary part
consists of Dirac-delta functions at the Landau level ener-
gies. Nonmagnetic impurities smear these singularities by
transforming them into Lorentz functions. Hence, the self-
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energy is that of a well-formed Fermi liquid for realistic
situations. We mention the possibility of detecting non-Fermi
liquid phases15,16 in graphene due to the valley degeneracy,
which might originate from multichannel Kondo physics.
This can be signaled by the finite critical value of E even at
T=0, as is seen in Fig. 1. However, such a situation is un-
likely to be observed by our simple mean-field analysis.

The numerical solution of the saddle-point equations has
been carried out, and the result for the order parameter �b0

2� is
shown in Fig. 1. It is directly related to the f-level occupa-
tion through Eq. �2� as nf =1−b0

2. In general, by increasing
���, a Fermi surface develops, and the critical value of E
penetrates deeply into the E�0 region.24 However, there is a
crucial difference between positive and negative chemical
potentials: for the former, the Kondo energy scale becomes
extremely small, as can be seen in Fig. 2 in the f-level den-
sity of states, since the f-level energy is well below the
Fermi energy of conduction electrons. In the latter case, the
energy level of f electrons lies above the Fermi energy;
hence, the Kondo scale enhances.

When the chemical potential is close to a Landau level
energy E�n ,�, the nontrivial solution �nonzero b0� extends
further in the E�0 region because the density of states is
enhanced around Landau level energies. Between Landau
levels, the conduction electron density of states is sup-
pressed, and the critical f-level energy moves closer to zero,
leading to the oscillatory behavior in the phase boundary and
diagram, as can be seen in Figs. 1 and 2. Here, we assume
that N=1000, which corresponds to weak or moderate
fields,11 depending on the explicit value of the cutoff D. The
Zeeman term is chosen to be much smaller than �c and fol-
lows from actual numbers in graphene.9 As a result, by
changing the chemical potential, we can move between Lan-
dau levels and we can enter into and leave the Kondo re-
gime. Hence, reentrant behavior is found. By decreasing the
scattering rate � from normal impurities, the oscillations
along the phase boundary become more pronounced.

The reentrant behavior can more directly be checked in
the f-level density of states in Fig. 3, where large Kondo
peaks are observable �due to Zeeman splitting� in addition to
a small oscillation stemming from Landau levels in the con-
duction band, when the nontrivial solution exists. The dis-
tance between the two parallel ridges in the contour plot in
Fig. 2 is twice the Zeeman energy, as it should be. When
only the trivial solution exists �b0=0�, 
 f��� is completely
suppressed since the maximally allowed one particle always
occupies the f level.

In the Kondo regime, as one varies the chemical potential,
the Kondo temperature does not change monotonically. It
remains mainly pinned to the closest Landau level, and then

FIG. 1. �Color online� The order parameter is shown for N
=1000, 2�V /D�2=0.01, �=0.05�c, h=0.1�c. For negative chemical
potentials, the order of the transition changes from second to first,
as is denoted by the thick black line.

FIG. 2. �Color online� The contour plot �for E /D=−0.036, up-
per panel� of the f-level density of states and the Kondo tempera-
ture �TK for E /D=−0.0387, lower panel� are shown for N=1000,
2�V /D�2=0.01, �=0.05�c, h=0.1�c. The parallel structures in the
contour plot denote the Kondo peaks, separated by twice the Zee-
man energy. The reentrant behavior is clearly observable as a func-
tion of the chemical potential in the lower panel, where the Kondo
peaks are emphasized by the bright circles. The yellow �bright�
framed bars denote regions without Kondo physics �b0=0�.

BALÁZS DÓRA AND PETER THALMEIER PHYSICAL REVIEW B 76, 115435 �2007�

115435-4



suddenly jumps to the neighboring one, as is seen in Fig. 2.
These features in the density of states can probably be

detected by conductance measurements, which measure di-
rectly the inverse of the f-level density of states, in addition
to normal impurities.23 When 
 f�0� is finite, its contribution
is thought to overwhelm that of normal impurities.23 Then,
both the Landau level oscillations stemming from the orbital
quantization of conduction electrons and the Kondo behavior
could be seen. The change in the Kondo temperature �the
peak position in Figs. 2 and 3� by chemical potential or gate
voltage can also, in principle, be detected from the specific
heat. This is expected to exhibit a double peak structure
around TK due to the Zeeman term. However, such measure-
ments on thin graphene films are extremely demanding. The
change of the spectral function would reveal itself directly in
photoemission spectroscopy,4,5 which, however, in a finite
magnetic field, does not constitute a standard experiment.

The presence of Kondo resonance makes itself felt in
magnetic responses, which are expected to be different from

the usual Kondo behavior due to the presence of orbital �or
diamagnetic� terms. This already influences the magnetic
susceptibility of pure graphene and probably alters the mag-
netic behavior of the impurity as well.

V. CONCLUSIONS

In summary, we have studied the infinite-U Anderson im-
purity embedded to a host of two-dimensional Dirac fermi-
ons within the self-consistent slave-boson mean-field theory.
The host material corresponds to graphene, where the el-
ementary excitations on a honeycomb lattice are Dirac fer-
mions. Such a system can most probably be realized by the
chemisorption of transition metal ions on graphene sheets.
We allow for the Landau quantization of the conduction elec-
tron spectrum, which turns out to be unusual7,32 �E��n� in
comparison with normal metals �E�n�. Then, we study the
effect of orbitally quantizing magnetic field on the Kondo
phenomenon, in addition to the Zeeman term, albeit the latter

−2 −1 0 1 2 3 40

100

200

300

400

500

600

700

800

μ/ωc

ρ f
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FIG. 3. �Color online� In the top left panel, the spin averaged f-level density of states is shown as a function of the chemical potential
for N=1000, 2�V /D�2=0.01, �=0.05�c, h=0.1�c for E /D=−0.036 �blue dashed�, −0.0387 �red solid�, and −0.04 �black dashed dotted�.
Note the presence of states for the middle value close to zero chemical potential. Reentrant behavior is also observable close to the first
Landau level for E /D=−0.04, ���c. The three-dimensional plots show the evolution of the spectral density as a function of chemical
potential and frequency for the previous three E values from top to bottom, left to right. Note the presence of small islands of states for
E /D=−0.0387, responsible for the Kondo effect at ��0.
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is thought to be negligible in the presence of Landau levels.9

When the chemical potential lies close to a Landau level
energy, the conduction electron density of states is enhanced,
and the mixed-valence regime extends further in the E�0
region.24 Between Landau levels, the density of states re-
sembles to that in an insulator, and the local moment regime
gains ground. Hence, by varying the chemical potential be-
tween Landau levels, reentrant Kondo behavior is found.
This manifests itself in the f-electron spectral function,
which accommodates small islands of states, corresponding
to the mixed-valence case, separated by the deserts of local
moment regions, as � changes. The reentrant behavior mani-

fest itself strongly around the zeroth order Landau level, but
for clean samples, it should be observable at higher levels as
well. The experimental detection of this phenomenon can be
done by conductance measurements in magnetic field at low
temperatures, which can show the presence or absence of
Kondo peaks in the f-electron density of states.
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