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We consider hot-carrier inelastic scattering due to electron-electron interactions in graphene as functions of
carrier energy and density. We calculate the imaginary part of the zero-temperature quasiparticle self-energy for
doped graphene utilizing the G0W and random phases approximations. Using the full dynamically screened
Coulomb interaction, we obtain the inelastic quasiparticle lifetimes and associated mean free paths. The linear
dispersion of graphene gives lifetime energy dependences that are qualitatively different from those of
parabolic-band semiconductors. We also get good agreement with data from angle-resolved photoemission
spectroscopy experiments.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms covalently
bonded together in a honeycomb structure �as in a monolayer
of graphite�, was previously thought to be unstable and
hence nonexistent in a free state. Recently, however, No-
voselov et al. reported1 that they had succeeded in fabricat-
ing single graphene sheets. Subsequently, several experimen-
tal groups have reported interesting transport and
spectroscopic measurements,2–4 which has led to rapidly bur-
geoning experimental and theoretical interest in this field.

The overlap of the �z orbitals between neighboring car-
bon atoms in the graphene plane is accurately described by a
tight-binding Hamiltonian. Around the K and K� points �of-
ten called Dirac points� which are at the corners of the hex-
agonal Brillouin zone, the kinetic energy term of the Hamil-
tonian is well approximated by a two-dimensional �2D�
Dirac equation for massless particles, Ĥ0=−v0��xk̂x+�yk̂y�,
where �x and �y are 2�2 Pauli spinors and k is the momen-
tum relative to the Dirac points ��=1 throughout this paper�.
The two components of the spinors correspond to occupancy
of the two sublattices of the honeycomb structure in a hex-

agonal lattice. This Ĥ0 gives a linear energy dispersion rela-
tion �k,s=sv0 �k�, where s= +1 �−1� for the conduction �va-
lence� band. The corresponding density of states �DOS� is
D���=gsgv �� � / �2�v0

2�, where gs=2 and gv=2 are the spin
and valley �i.e., K and K� points� degeneracies, respectively.
Thus, graphene is a gapless semiconductor. In intrinsic
graphene, the Fermi level lies at the Dirac points, but as with
other semiconductors it is possible to shift the Fermi level by
either doping the sample or applying an external gate volt-
age, which introduces 2D free carriers �electrons or holes�
producing extrinsic graphene with gate-voltage-induced tun-
able carrier density. The Fermi momentum �kF� and the
Fermi energy �EF, relative to the Dirac point energy� of
graphene are given by kF= �4�n /gsgv�1/2 and �EF � =v0kF

where n is the 2D carrier �electron or hole� density.
Interparticle interactions can significantly affect electronic

properties, particularly in systems of reduced dimensionality.
Moreover, the linear energy dispersion around the Dirac
points gives condensed matter experimentalists a unique op-
portunity to study interaction effects on effectively massless

particles. In this paper, we focus on the effect of electron-
electron �e-e� interaction effects on the imaginary part of
quasiparticle self-energies, Im���. From Im���, we can ex-
tract the quasiparticle lifetime, which gives information that
is relevant both to fundamental questions, such as whether or
not the system is a Fermi liquid, and to possible applications,
such as the energy dissipation rate of injected carriers in a
graphene-based device. In particular, an important physical
quantity of both fundamental and technological significance
is the hot-carrier mean free path, which we calculate as a
function of energy, density, and in-plane dielectric constant.
Furthermore, Im���, being the width of the quasiparticle
spectral function, is related to measurements in angle-
resolved photoemission spectroscopy �ARPES�.

The rest of the paper is organized as follows. In Sec. II we
discuss the general theory of the self-energy of graphene. In
Sec. III we present our calculated quasiparticle damping rate
of graphene and compare with the damping rate of parabolic
2D systems. In Sec. IV we show the detail results of the
self-energy, and finally we conclude in Sec. V.

II. THEORY

We evaluate the self-energy � within the leading-order
ring-diagram G0W approximation, which is appropriate for
weak-coupling systems, given by5

�s�k,i	n� = − kBT�
s�

�
q,i
n

G0,s��k + q,i	n + i
n�

� W�q,i
n�Fss��k,k + q� . �1�

Here, T is temperature, s ,s�= ±1 are band indices, G0 is the
bare Green’s function, 	n and 
n are Matsubara fermion and
boson frequencies, respectively, W is the screened Coulomb
interaction, and Fss��k ,k��= 1

2 �1+ss�cos �kk��, where �kk� is
the angle between k, k�, arises from the overlap of �sk� and
�s�k��. The screened interaction W�q , i
n�=Vc�q� /��q , i
n�,
where Vc�q�=2�e2 /�q is the bare Coulomb potential
��
background dielectric constant� and ��q , i
n� is the 2D
dynamical dielectric function. In the random phase approxi-
mation, ��q , i
n�=1−Vc�q��0�q , i
n�, where the irreducible
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polarizability �0 is approximated by the bare bubble
diagram,6,7 which gives the familiar Lindhard expression
�with a modification to include the form factor Fss��k ,k���.

The self-energy approximation described by Eq. �1�
should be an excellent approximation for graphene since
graphene is inherently a weak-coupling �or “high-density” in
parabolic-band systems� 2D system.8 The measure of the ra-
tio of the potential to the kinetic energy in graphene is
rs=e2 / ��v0��2.2/�, where � is the effective dielectric con-
stant of the graphene layer and the media surrounding it.
�Note that, unlike regular parabolic-band systems, rs in
graphene does not depend on density.� Typically, in
graphene, rs�1, implying that the system is in the weak-
coupling regime.

After the standard procedure of analytical continuation
from i	n to 	+ i0+, the retarded self-energy can be
separated into the exchange and correlation parts �s

ret�k ,	�
=�s

ex�k�+�s
cor�k ,	�.5 The exchange part is given by

�s
ex�k� = − �

s�q

nF��k+q,s��Vc�q�Fss��k,k + q� , �2�

where nF is the Fermi function and �k,s=�k,s−� is the elec-
tron energy relative to the chemical potential �. This term in
graphene is discussed in Ref. 9. At typical experimental den-
sities, the Fermi temperature TF	�EF � /kB in graphene is
very high compared to the temperature of the sample �e.g.,
for n=1013 cm−2, TF�3.1�103 K, and TF�
n�. Therefore,
it is an excellent approximation to set the temperature T=0,
which we do in the rest of this paper. This implies that
nF��ks�=���ks� �where � is Heaviside unit step function� and
�=EF.

The correlation part �s
cor�k ,	� is defined to be the part of

�s
ret�k ,	� not included in �s

ex�k�. In the G0W approximation,
the �s

cor�k ,	� can be decomposed into the line and pole con-
tributions �cor=�line+�pole,10 where

�s
line�k,	� = − �

s�q

�
−�

� d	�

2�

Vc�q�Fss��k,k + q�

�k+q,s� − 	 − i	�

�� 1

��q,i	��
− 1
 , �3�

�s
pole�k,	� = �

s�q

���	 − �k+q,s�� − ��− �k+q,s���

� Vc�q�Fss��k,k + q�� 1

��q,�k+q,s� − 	�
− 1
 .

�4�

The �ex and �line are completely real, the latter because
��q , i	� is real. Thus, Im��s

pole�k ,	�� gives the total contri-
bution to the imaginary part of the self-energy—i.e.,

Im��s
ret�k,	�� = �

s�
� dq

�2��2 ���	 − �k+q,s�� − ��− �k+q,s���

� Vc�q�Im� 1

��q,�k+q,s� − 	�
Fss��k,k + q� .

�5�

The inverse quasiparticle lifetime �or, equivalently, the
scattering rate� �s�k� of state �sk� is obtained by setting the
frequency in imaginary part of the self-energy to the on-shell
�bare quasiparticle� energy �sk—i.e.,

�s�k� = 2 Im��s
ret�k,�ks�� . �6�

�The factor of 2 comes from the squaring of the wave func-
tion to obtain the occupation probability.� The G0W self-
energy approximation used here is equivalent to the Born
approximation for the scattering rate. Note that the integrand
of Eq. �5� is nonzero only when Im����0 or Re���=0. These
correspond to scattering off single-particle excitations and
plasmons, respectively.

III. QUASIPARTICLE SCATTERING RATE

The self-energies and quasiparticle lifetimes of graphene
and conventional parabolic-band semiconductors differ con-
siderably. These differences can be explained with the help
of Fig. 1, which shows the single-particle excitation �SPE�
and injected-electron energy loss �IEEL� continua and the
plasmon dispersion for a direct gapless 2D parabolic-band
semiconductor and for graphene. The intersections of the
IEEL continua with the SPE continua and the plasmon dis-
persion lines indicate allowed decay processes via e-e inter-
actions. In both doped parabolic-band semiconductors and
graphene, an injected electron will decay via single-particle
intraband excitations of electrons in the conduction band. In
parabolic-band semiconductors, an electron injected with
sufficient kinetic energy can also decay via plasmon emis-
sions and interband SPE �also known as “impact ioniza-
tion”�. On the other hand, as shown in Fig. 1�b�, electrons
injected into doped graphene cannot decay via plasmon
emission and the region in q-	 where decay via interband
SPE is allowed �along the straight line segment between
	=v0kF and v0�k−kF�, for k�2kF� is of measure zero. In
fact, within the Born approximation the quasiparticle lifetime
of undoped graphene due to e-e interactions at T=0 is infi-
nite. �Multiparticle excitations, which are excluded in the
approximations used here, will give a quasiparticle a finite
lifetime,11 but this is a relatively small effect in graphene.�

In doped graphene, the only independent parameters rel-
evant for Born-approximation quasiparticle scattering rates
at T=0 are the Fermi energy relative to the Dirac point
EF=v0kF and the dimensionless coupling constant rs
=e2 / ��v0�. The scattering rate, which has units of energy,
must therefore be proportional to EF and must be a function
only of � /EF=k /kF and rs. Figure 2�a� shows the Born-
approximation T=0 quasiparticle lifetime 1/�=� due to e-e
interactions as a function of energy ��k�=�k−EF. Since the
speed of the quasiparticles close the Dirac points is approxi-
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mately a constant v0�108 cm/s, the inelastic mean free path
� is obtained by ����=v0����. In Fig. 2�b�, we provide the
corresponding �, which shows that at n=1013 cm−2 a hot
electron injected with an energy of 1 eV above EF has an �
due to e-e interactions that is on the order of 40 nm. This
will have implications for designing any hot-electron
transistor-type graphene devices. In particular, because Klein
tunneling12 in graphene creates problems in the standard
gate-potential switching method in transistors, in its place
could be a switch based on modulating the electron energy �
in a regime where ��� /��� is large.

As with doped parabolic-band 2D semiconductors,13–15 in
graphene ��k�=1/��k�� �k−kF�2 � log��k−kF � �� for k�kF due
to scattering phase-space restrictions. Farther away from kF,
however, the dependences of � on k in graphene and in
parabolic-band semiconductors are markedly and qualita-
tively different. To wit, in parabolic-band semiconductors
plasmon emission14,16 and interband collision thresholds17

cause discontinuities in the ��k�, as shown in Fig. 2�c�, but
the graphene ��k� is a smooth function because both plas-
mon emission and interband processes are absent.

IV. SELF-ENERGY

In order to see the effects of the plasmons and interband
SPE in graphene in Im��ret�, one must look off shell—i.e.,

	��k,s. The off-shell Im��s
ret� is not merely of academic

interest; it is needed to interpret data from ARPES. The spec-
tra of the ARPES electrons ejected from graphene give the
electronic spectral function, from which one can infer
�s

ret�k ,	�.18 Physically, in the G0W approximation, the off-
shell 2 Im��s

ret�k ,	�� gives the Born-approximation decay
rate of the quasiparticle in state k if it had kinetic energy
	+EF rather than �k+EF.

In Fig. 3 we show Im��+
ret�k ,	�� for k=0 and k=kF as a

function of 	. Within the G0W approximation, the contribu-
tions to the off-shell Im��s

ret�k ,	�� can be visualized as the
intersection of the SPE continuum and plasmon line in Fig. 1
with the vertically displaced IEEL.19 At k=0 there are two
contributions to Im���: the intraband and interband SPEs.
For low energies ��	 � �EF� only intraband SPE contributes
to Im���. Its contribution reaches a maximum around Fermi
energy, then decreases gradually with increasing energy, as is
the case with a parabolic-band semiconductor16 where it is

FIG. 1. �Color online� The single-particle excitations �intraband
and interband� and injected-particle energy-loss �hatched region�
continua, and plasmon dispersion �thick line� for �a� gapless
parabolic-band semiconductor with equal hole and electron masses
and �b� graphene, at T=0 with Fermi energy in the conduction
band. For gapped semiconductors, the interband continua are
shifted up by the energy gap.
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FIG. 2. �a� Inelastic quasiparticle lifetime/scattering rate
�1/�=�� in graphene due to dynamically screened e-e interactions,
as a function of energy at T=0 for different densities, within the
Born approximation. �b� The corresponding quasiparticle mean free
path for n=1013 cm−2 �corresponding to EF�0.4 eV�. �c� Equiva-
lent scattering rate for a parabolic-band semiconductor �without in-
terband processes�, for comparison.
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the only decay channel for the quasiparticle �assuming
	� band gap energy�. But in graphene there is a new decay
channel of the quasiparticle: the interband SPE. Due to the
phase-space restrictions, the interband SPE does not contrib-
ute to the self-energy at low energies, but at higher energies
�	�EF� its contribution increases sharply, overwhelming
the SPEintra contribution. The SPEinter contribution then in-
creases almost linearly with 	, with the same slope as for
intrinsic graphene.8 Plasmons do not contribute to
Im��+

ret�k=0,	�� for 	�0.
At k=kF, not only do plasmons contribute to Im���, in the

low-energy �	�2EF� regime, they actually dominate over
the SPE contributions, as can be seen in Fig. 3�b�. In con-
trast, in parabolic-band 2D electron gases �2DEGs� the plas-
mon and SPE contributions to Im��ret�kF ,	�� go as 	2 and
	2 ln 	, respectively,14 and hence both contributions are
roughly equal in magnitude.

Figure 4 shows the imaginary part of the quasiparticle
self-energies for the conduction band, Im��+

ret�, and the va-
lence band, Im��−

ret�, of graphene for several different wave
vectors. For k�kF, the Im��+

ret� shows a sharp peak associ-
ated with the plasmon emission threshold. In the high-energy

regime, the dominant contribution to Im��� comes from the
interband SPE, which gives rise to an Im��� which is linear
in 	 for all wave vectors. Note that within the G0W approxi-
mation, for a given rs in graphene, the �, 	, and k scale
with EF, EF, and kF, respectively; i.e., for fixed rs, the

function �̃�k̃ , 	̃� is universal, where �̃=� /EF, k̃=k /kF, and
	̃=	 /EF.

Finally, Fig. 5 shows the calculated Im��+
ret� at fixed

k=kF as a function of energy 	 for various densities. No
fitting parameters were used in this calculation. These results
compare favorably with the recent data from ARPES experi-
ments by Bostwick et al.3 from which they extract
Im��ret�kF ,	�� for different densities. �The overall scale is
different because we have assumed a SiO2 substrate used by
some other groups, whereas the samples of Ref. 3 were on
SiC, which has a different �.� Bostwick et al. invoked plas-
mons, SPE, and phonon effects in interpreting their data. We
find that including just the plasmon and SPE effects, we get
reasonable agreement with their data, except for features
near 0.2 eV which probably can be explained by calculations
that include electron-phonon interactions.

Before concluding, we discuss some of the approxima-
tions that lead to Eq. �1�. We ignore on-site �Hubbard� e-e
interactions because, at zero magnetic field, this interaction
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FIG. 3. �Color online� The imaginary part the retarded self-
energy at T=0 �thick line� for �a� k=0 and �b� k=kF as a function of
energy. The dot-dashed and dashed lines in �a� are the SPEintra and
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is irrelevant in the renormalization group sense.20 Our calcu-
lation does include both intraband and interband scattering
processes, since our expression for �s�k , i	n�, Eq. �1�, con-
tains a pseudospin sum s�= ±1. Finally, there is an issue
about the coupling of the bands due to interactions; i.e., be-
cause of nondiagonal terms �ss� with s�s�, the elementary
excitations are a superposition of states from the conduction
and valence bands. Dyson’s equation in this case is G−1

=G0
−1−�, where the quantities are 2�2 matrices, which,

when written out in full, is

G−1�k,	� = �	 − �+�k� − �++�k,	� − �+−�k,	�
− �−+�k,	� 	 − �−�k� − �−−�k,	�

� .

�7�

The excitation energies are given by the poles of G, or
equivalently, the zeros of the determinant of G−1. Our calcu-
lation is equivalent to ignoring the off-diagonal terms

�+−�−+ in the determinant of G−1. The off-diagonal terms
�±� are each of order rs, and therefore the product
�+−�−+�rs

2 which can be ignored in the weak-coupling re-
gime. We also ignore intervalley scattering because the Born-
approximation Coulomb scattering rate in 2D is �q−2, imply-
ing that small-q intravalley scattering processes dominate
over the large-q intervalley ones.

V. CONCLUSION

To conclude, we have calculated the electron-electron in-
teraction induced hot-electron inelastic scattering in
graphene, finding a number of intriguing and significant dif-
ferences with the corresponding 2D parabolic dispersion sys-
tems. Our infinite ring-diagram G0W approximation should
be an excellent quantitative approximation for graphene
since graphene is a low-rs �i.e., weak-coupling� system. Our
T=0 results should remain for T�TF, which is typically the
case in experiments. We obtain good agreement with recent
ARPES data without invoking any phonon effects. ARPES
data has recently created a controversy with respect to the
role of plasmons.3,4 Our detailed calculation using a realistic
model generally agrees with the interpretation of the data in
Ref. 3. The calculated inelastic scattering length � as a func-
tion of energy � is by itself is of interest in the context of
ballistic hot-electron transistor applications of graphene,
where the performance limitation is inelastic scattering. Fur-
thermore, the Klein tunneling effect in graphene makes it
difficult to switch transistors by a gate-voltage-induced
depletion �as in a conventional metal-oxide-semiconductor
field-effect transistor �MOSFET��. In its place, one could
imagine a graphene-based transistor in which switching is
achieved by modulation of the injection carrier energy in the
regime of � where �d� ��� /d�� is large.
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