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We investigate the conductance of normal-conductor/graphene/normal-conductor �NGN� junctions for arbi-
trary on-site potentials in the normal and graphitic parts of the system. We find that a ballistic NGN junction
can display insulating behavior even when the charge-carrier density in the graphene part is finite. This effect
originates in the different k intervals supporting propagating modes in graphene and a normal conductor, and
persists for moderate levels of bulk, edge, or interface disorder. The ensuing conductance thresholds could be
used as an electronic tool to map out details of the graphene band structure in absolute k space.
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I. INTRODUCTION

Graphene, the two-dimensional arrangement of carbon at-
oms on a honeycomb lattice, which has recently become
available through groundbreaking fabrication methods,1,2

possesses a wide range of unique electronic transport prop-
erties, which originate from the conical dispersion relation
around the corners �K points� of the hexagonal Brillouin
zone.3 The low-energy theory in the vicinity of these points
is of the form of a Dirac equation for massless chiral fer-
mions.4 The intrinsic transport properties studied on the basis
of the Dirac equation �such as the quantum Hall effect,5–8 the
minimal conductivity,5,7,9–18 and weak localization correc-
tions to the conductance19–24� therefore effectively probe the
graphene band structure via the momentum difference �k
relative to the K points. On the other hand, detailed informa-
tion corroborating the conical band structure in the absolute
k space has recently become accessible via angle-resolved
photoemission spectroscopy.25,26

Recent theoretical transport studies have pointed out that
highly unconventional devices could be fabricated in pat-
terned and gated samples of graphene, such as Veselago
lenses27 and filters for the valley degree of freedom.28 These
effects already occur in simple rectangular graphitic samples,
so-called nanoribbons, which have been studied in great de-
tail in the past.29–37 With few exceptions, however, theoreti-
cal investigations of electronic transport have concentrated
on all-graphitic structures. In experiments, the ultimate elec-
tronic contacts are metallic �for illustration, see, e.g., Ref.
38�. Two recent works39,40 have addressed the coupling
of graphene to normal-conducting electrodes, in each case
considering normal-conductor/graphene/normal-conductor
�NGN� junctions with an armchair ribbon and zigzag inter-
faces, as shown in Fig. 1�a�. In Ref. 39, the graphitic part
was fixed at the value of charge-neutral graphene, while the
on-site potential in the leads was changed �the results were
then compared to the results for a setup in which the leads
are also graphitic13�. In Ref. 40, the on-site potential in all
three regions was changed simultaneously �the resulting fi-
nite charge-carrier density in the graphitic part greatly en-
hances the conductance of the junction�.

In this paper, we systematically investigate the depen-
dence of the electronic transport through NGN junctions on

independent on-site potentials in the leads and in the gra-
phitic region. Since the transport at finite charge-carrier den-
sity is anisotropic and depends on the details of the normal
electrodes, we also consider the case of zigzag ribbons with
armchair interfaces �Figs. 1�c� and 1�d�� and the case of real-
space leads �Figs. 1�b� and 1�d��. We also investigate how
the conductance depends on bulk disorder, boundary rough-
ness, and interface imperfection.

Our results entail that a ballistic NGN junction can be
insulating even when the charge-carrier densities in the leads
and in the graphitic region are both finite. Conceptually, this
effect can be seen as the counterpart of the celebrated mini-
mal nonvanishing conductivity exhibited by a graphene sheet
at the point of nominally vanishing charge-carrier den-
sity.5,7,9–18

We identify a simple mechanism for this insulating behav-
ior at finite charge-carrier density, which originates in the
mismatch of propagating modes in the normal and graphitic
parts of the system. In the transport across a ballistic inter-
face, the transverse momentum is conserved �modulo re-
ciprocal-lattice vectors�, and the conductance probes whether
there are propagating modes with the same transverse mo-
mentum on both sides of the interface. The conductance
thresholds, hence, are intimately related to the band structure
in the normal and graphitic parts of the junction, which re-
stricts the transverse momenta of propagating modes. Con-
sequently, the conductance thresholds could be used to de-
liver information on the band structure of graphene in
absolute k space if the band structure in the leads is known.
Our numerical computations show that the insulating behav-
ior persists for moderate levels of bulk, edge, or interface
disorder and is only destroyed for a very rough interface. The
practicality of fabricating sufficiently clean graphene ribbons
has been demonstrated in recent experiments.41 In other me-
soscopic systems, the fabrication and characterization of
clean ballistic interfaces have reached a high level of so-
phistication.42

The paper is organized as follows. Section II provides
background information on the tight-binding models used to
model the NGN junctions and on the propagating and eva-
nescent modes in the normal and graphitic parts of the sys-
tem. Section III presents numerical results for clean junctions
and identifies regions of insulating behavior at finite charge-
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carrier density. Analytical results are given in Sec. IV. We
start with an exact calculation of the conductance for the case
of armchair ribbons with zigzag interfaces and lattice-
matched leads, shown in Fig. 1�a�. The results allow us to

identify the simple mechanism for the insulating behavior
described above, which can be carried over to the other ge-
ometries in Fig. 1. In Sec. V, we discuss the effects of bulk,
edge, and interface disorders, as well as the effect of mode
mixing at armchair interfaces. Conclusions are presented in
Sec. VI. Appendices A �on transverse-momentum quantiza-
tion� and B �on the modeling of a ballistic interface to a
real-space lead� give some additional theoretical background
on the features of the tight-binding model used in the nu-
merical computations.

II. THEORETICAL BACKGROUND

In this section, we provide the theoretical background for
the analytic calculations and numerical computations of the
conductance of NGN junctions, which are based on tight-
binding models and the Landauer conductance formula.

A. Model Hamiltonian

Tight-binding models of NGN junctions are shown in Fig.
1. The tight-binding Hamiltonian is given by

H = �
i

Vici
†ci − �

�ij�
�ijci

†cj , �1�

where ci is a fermionic annihilation operator acting on lattice
site i, �ij� denotes pairs of nearest neighbors, and the hop-
ping matrix elements �ij as well as the on-site potential en-
ergies Vi take values as appropriate for the region in ques-
tion.

The graphitic region is modeled by sites on a honeycomb
lattice with lattice constant a�G�, hopping constant ��G�, and
on-site potential V�G�. The normal regions N�r� �r=1,2, cor-
responding to the left and right leads, respectively� are mod-
eled as sites on a square lattice with lattice constant a�r�,
hopping constant ��r�, and on-site potential V�r�.

In order to form a NGN junction, a graphitic region of
length L is matched to the normal regions along graphitic
zigzag �Figs. 1�a� and 1�b�� or armchair �Figs. 1�c� and 1�d��
interfaces of width W. Two types of matching are consid-
ered. Figures 1�a� and 1�c� show lattice-matched leads,
where the lattice constant is related to the lattice constant in
graphene by a�r�=�3a�G� and a�r�=a�G�, respectively. Figures
1�b� and 1�d� show real-space leads, approximated by a finer
lattice with a reduced lattice constant. The hopping constants
across the right and left interfaces are denoted by ��1G� and
��2G�, respectively.

B. Landauer conductance formula

For small bias voltages, the phase-coherent conductance
of a mesoscopic structure is given by the Landauer formula

g = �2e2/h�tr t†t , �2�

where t is the transmission matrix with elements tnm. The
mode index n refers to incoming propagating modes in the
left lead, while the mode index m refers to outgoing propa-
gating modes in the right lead. The interface couples these
modes to the propagating and evanescent modes in the gra-
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FIG. 1. Tight-binding models of normal-conductor/graphene/
normal-conductor �NGN� junctions, consisting of a hexagonal lat-
tice with lattice constant a�G� coupled to square lattices with lattice
constant a�r� �r=1,2, corresponding to left and right leads, respec-
tively�. �a� Zigzag interfaces connected to lattice-matched leads,
a�r�=�3a�G�. �b� Zigzag interfaces connected to real-space leads,
a�r�= 1

5
�3a�G�. �c� Armchair interfaces connected to lattice-matched

leads, a�r�=a�G�. �d� Armchair interfaces connected to real-space
leads, a�r�= 1

5a�G�. It is assumed that the charge-carrier density in
graphene and in the leads can be controlled independently by gates
�shaded� or chemical doping, which shifts the on-site potentials V�G�

�in the graphitic region�, V�1� �in the left lead�, and V�2� �in the right
lead�.
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phitic scattering region. The remainder of this background
section compares the properties of these modes in the normal
and graphitic parts of the NGN junctions.

C. Dispersion relations

The properties of the modes in the normal and graphitic
regions follow from the dispersion relations, which relate the
wave number k= �kx ,ky� to the energy E�k� of Bloch waves
and reflect the symmetry properties of the underlying lattice
structure.

The unit cell of the hexagonal lattice contains two in-
equivalent sites A and B with different orientations of the
bonds. The unit cell of the square lattice contains only a
single site, which we denote by S. We use the symbols
�A�x ,y�, �B�x ,y�, and �S�x ,y� to denote the amplitudes of
the wave function on each site, where x and y are the coor-
dinates of the center of the unit cell. We assume that one unit
cell is centered at the origin x=y=0.

The square lattice supports Bloch waves

�S�x,y� = �S�0,0�eikxx+ikyy �3�

with dispersion relation

E = V�r� − 2��r��cos�a�r�ky� + cos�a�r�kx�� . �4�

In the continuum limit a�r�→0 at fixed ��r��a�r��2	 �2

2m , one
recovers the parabolic dispersion relation

E = V�r� − 4��r� +
�2

2m
�kx

2 + ky
2� . �5�

The hexagonal lattice supports Bloch waves of the form
��A�x ,y� ,�B�x ,y��= ��A�0,0� ,�B�0,0��eikxx+ikyy. For the zig-
zag orientation of the interface, the amplitudes on the A and
B sites are related via �B�0,0�=� f


f 
�A�0,0�, where the func-
tion

f�kx,ky� = ��G��1 + 2ei3kxa�G�/2 cos��3kya
�G�/2�� �6�

also delivers the graphene dispersion relation via E=V�G�

−�
f 
. The index �= ±1 distinguishes the two branches of
the dispersion relation. For the armchair interface, the
graphene lattice is rotated by 90°. The amplitudes �B�0,0�

=� f̃


 f̃ 

�A�0,0� and dispersion relation E=V�G�−�
 f̃ 
 are then

determined by the function

f̃�kx,ky� = ��G��1 + 2ei3kya�G�/2 cos��3kxa
�G�/2�� . �7�

The quantization of the transverse momentum ky in a wire
geometry is discussed in Appendix A.

D. Mode characterization

Whether a mode with a given transverse momentum is
propagating or evanescent is determined by the dispersion
relation of the region in question. For a given transverse
momentum, the dispersion relation delivers the longitudinal
wave number kx as a function of energy and on-site potential.
A mode is propagating when kx is real and evanescent when
kx is complex.

Propagating modes at the Fermi energy EF	0 can be
identified from the condition that the line of constant ky
crosses one of the Fermi lines, which depend on the on-site
potential, as shown in Fig. 2. This delivers the following
conditions for propagating modes on the various types of
lattice:

� 
V�G�

2��G� −

1

2
� � �cos��3

2
kya

�G�
� � � 
V�G�

2��G� +

1

2
� �8a�

for a hexagonal lattice with zigzag interfaces,

1 −
V�G�2

��G�2 � �cos�3

2
kya

�G�
�2

for 
V�G�
 � ��G�,

V�G�2

4��G�2 −
5

4
� �cos�3

2
kya

�G�
� for 
V�G�
 � �5��G�

�8b�

for a hexagonal lattice with armchair interfaces, and

� V�r�

2��r� − cos�kya
�r��� � 1 �8c�

for a square lattice. For each type of lattice, these conditions
deliver the range of transverse momentum in which the
modes are propagating, while in the complementary range
the modes are evanescent. The border between these ranges
defines the threshold values of transverse momentum at
which the modes change their character. In Sec. IV, we trans-
late these thresholds into conductance thresholds for the
NGN junctions.

III. NUMERICAL RESULTS FOR CLEAN
NORMAL-CONDUCTOR/GRAPHENE/
NORMAL-CONDUCTOR JUNCTIONS

A. Method and parameters

In order to obtain an immediate insight into the gate-
voltage dependence of the conductance of the NGN junc-
tions of Fig. 1, we first present numerical results for clean
systems.

The transmission coefficients tnm are computed employing
an efficient decimation scheme.43 In this scheme, the un-
coupled Hamiltonians of the leads and graphene are reduced
to effective Hamiltonians �self-energies� at the interfaces.
For square-lattice leads, the self-energies are known
analytically.44 In the graphitic region, the renormalization
procedure is performed iteratively site by site, employing the
Gauss-Jordan elimination. The Dyson equation is then used
to determine the surface Green’s function of the coupled sys-
tem. Finally, the transmission coefficients follow from the
Fisher-Lee relation.45

In our numerical computations, the graphitic region has
width W=175a�G� and length L=150a�G�. In the case of
lattice-matched leads �Figs. 1�a� and 1�c��, the hopping con-
stants in the leads and across the interfaces are all taken to be
identical to the hopping constant in graphene, ��r�=��rG�

=��G�, corresponding to a ballistic interface �without a tunnel
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barrier�. In order to model real-space leads �Figs. 1�b� and
1�d��, the lattice constant is reduced by a factor of q=5 as
compared to the lattice-matched leads. The hopping constant
��r�=q2��G� in the leads is chosen to preserve the effective
mass m=�2 / �2��r�a�r�2� in the parabolic region of the disper-
sion relation at the bottom of the band. The value ��rG�

=7.861��G� for the interface hopping term is again chosen to
model a ballistic interface �for a derivation of this value, see
Appendix B�.

B. Results

Figures 3�a�–3�d� show the gate-voltage dependence of
the conductance of clean NGN junctions, where each panel
corresponds to one of the configurations in Figs. 1�a�–1�d�.
The results are presented in a color scale where red corre-
sponds to a large conductance, while blue corresponds to a
low conductance. The unit of conductance is the conductance
quantum g0= �2e2 /h�. Regions of low and high conductances
are separated by a white contour at g= 1

2g0. The on-site po-
tential V�G� in the graphitic part is varied independently of
the on-site potential V�1�=V�2� in the leads. These energies
are measured in units of the hopping constant in graphene,
��G�. For lattice-matched leads, the on-site potentials are var-
ied over the complete bandwidth of the dispersion relation in
the graphitic region �−3��G��V�G��3��G�� and in the leads
�−4��G��V�r��4��G��. For real-space leads, the on-site po-
tential is restricted to the range −4��G�+4q2��G��V�r�

�4��G�+4q2��G� in the parabolic region at the bottom of the
square-lattice dispersion relation, where q=5 is the lattice-
constant reduction factor introduced above.

The results in Fig. 3 show a highly systematic dependence
of the conductance on the on-site potentials. The conduc-

tance is small for V�G�=0, the region of minimal conductivity
at zero charge-carrier density discussed in previous transport
studies of graphene.5,7,9–18 However, we also find regions of
very small conductance where the charge-carrier density in
graphene and in the leads is finite. Conditions for this insu-
lating behavior are determined in Sec. IV. The general rag-
gedness of the contours of constant conductance is a com-
mon feature in graphene transport studies, and can be
associated to Fabry-Pérot resonances.36,37,40

For lattice-matched leads with zigzag interfaces �Fig.
3�a��, we observe an approximate mirror symmetry of the
conductance for �V�r� ,V�G��→ �V�r� ,−V�G��. This symmetry is
most pronounced for the regions of low conductance, delim-
ited by the white threshold contour. On the other hand, the
maximal conductance for positive V�G� is much larger than
for negative V�G�. These maxima are found at V�r��0 and
V�G�� ±��G�.

For lattice-matched leads with armchair interfaces �Fig.
3�c��, the mirror symmetry �V�r� ,V�G��→ �V�r� ,−V�G�� is only
observed for the region of low conductance with V�r�

�−4��G�, close to the top of the square-lattice dispersion
relation. The region of high conductance obeys an approxi-
mate symmetry when both on-site potentials are inverted,
�V�r� ,V�G��→ �−V�r� ,−V�G��.

For real-space leads �Figs. 3�b� and 3�d��, the general fea-
tures of the conductance are inherited from the behavior for
the lattice-matched leads in the parabolic region at the bot-
tom of the square-lattice dispersion relation. In this region,
the conductance, in general, increases for increasing charge-
carrier density in the leads �corresponding to smaller values
of V�r��, and large values of the conductance are predomi-
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FIG. 2. �Color� Dependence of the Fermi lines on the on-site
potential V�G� or V�r� in the Brillouin zones of a hexagonal lattice
with hopping constant ��G� �middle panels�, a lattice-matched
square lattice with hopping constant ��r�=��G� �left panels�, and a
real-space lattice with lattice reduction factor q=5 and hopping
constant ��r�=q2��G� �right panels�. In the upper panels, the lattice
constants are related as in the NGN junctions with zigzag inter-
faces, shown in Figs. 1�a� and 1�b�. In the lower panels, the lattice
constants are related as in the NGN junctions with armchair inter-
faces, shown in Figs. 1�c� and 1�d�. The arrows indicate how the
Brillouin zones have to be matched to form the four different NGN
junctions in Fig. 1.
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FIG. 3. �Color� Dependence of the conductance g �in units of
the quantum of conductance g0=2e2 /h� on the on-site potentials
V�G� in graphene and V�r� in the leads. The conductance is color
coded, as indicated in the scale bar, and the white contour denotes

the conductance thresholds where g=
g0

2 . Panels �a�–�d� correspond
to the NGN junction shown in Figs. 1�a�–1�d�. The width and length
of the graphene region were chosen to be W=175a�G� and L
=150a�G�. Further parameters for the plots are described in Sec.
III A.
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nantly found for positive V�G�. Despite being more ragged,
the threshold contours have a similar general trend as in the
lattice-matched case. For zigzag interfaces, the region of in-
sulating behavior obeys the approximate mirror symmetry,
while this is not the case for armchair interfaces.

IV. ANALYTICAL RESULTS

Most of the conductance thresholds observed in the nu-
merical computations �Fig. 3� can be explained via a simple
mechanism based on the mismatch of propagating modes on
both sides of a NG interface. We start our considerations
with the exact calculation of the conductance of ballistic
NGN junctions with zigzag interfaces and latticed-matched
leads �Fig. 1�a��. The calculation shows that, in this case, the
insulating regions correspond to conditions where the propa-
gating modes in the normal leads only couple to evanescent
modes in the graphitic scattering region. This observation is
then carried over as a criterion to calculate conductance
thresholds for the other three types of NGN junctions.

A. Conductance for normal-conductor/graphene/
normal-conductor junctions with zigzag

interfaces and lattice-matched leads

For ballistic NGN junctions with zigzag interfaces and
lattice-matched leads �see Fig. 1�a��, the conductance can be
calculated analytically via a wave matching procedure. The
calculation succeeds because for the zigzag configuration the
hard-wall boundary conditions in the N and G parts select
the same transverse wave components �Eqs. �A1� and �A2��.
Hence, no mode mixing occurs at a clean zigzag interface.
The transmission matrix becomes diagonal, and the wave
matching for each fixed transverse-mode profile n reduces to
a one-dimensional problem.

A derivation of the matching conditions for the present
geometry has been given in Refs. 39 and 40. The wave func-
tion in the square leads, �S�x ,y�=�S�0,0�eikxx+ikyy, has to be
matched with the wave function in the graphitic region,
��A�x ,y� ,�B�x ,y��= ��A�0,0� ,�B�0,0��eikxx+ikyy at the inter-
faces of the NGN junction �located at x=0 and x=L�, subject
to the boundary conditions

��G��A�0,0� = ��1G��S�0,0� ,

��1G��B�0,0� = ��1��S�a�1�,0� ,

��2G��A�L,0� = ��2��S�L − a�2�,0� ,

��2��B�L,0� = ��2G��S�L,0� . �9�

In Refs. 39 and 40, these equations have been solved for
the cases V�G�=0 and V�1�=V�2� of charge-neutral graphene
and V�1�=V�2�=V�G� for uniformly gated junctions, respec-
tively. For the general case of independent on-site potentials
and coupling constants, we find

tnn = − 4iC sin�3

2
a�G�kx

�G�
sin��3a�G�kx
�1��sin��3a�G�kx

�2��

	��
1 +
1


1��1���2� −
V�G�
2

��G���1� −
V�G�

��G�
2��2�
sin�Lkx
�G��

+ 2C
1 sin��L −
3

2
a�G�
kx

�G��
+

2C


1��1���2� sin��L +
3

2
a�G�
kx

�G���−1

, �10�

where the n dependence of the above expression is implicit
in both kx and ky, and

C = cos��3

2
a�G�ky
, ��r� = ei�3a�G�kx

�r�
,


1 =
��1G���2G�

���1���2���G�
, 
2 =

��2G�

��1G�

���1�

���2�
. �11�

The conductance of the junction follows from the Landauer
formula �2�. In the limit of V�G�=0 and V�1�=V�2�, one recov-
ers the result of Ref. 39, while for V�1�=V�2�=V�G�, the result
of Ref. 40 is obtained. We confirmed that the values of con-
ductance obtained from Eq. �10� for general combinations of
the on-site potentials are in numerical agreement with the
results obtained in the previous section �Fig. 3�a��.

B. Conductance thresholds in large ballistic
normal-conductor/graphene/normal-conductor

junctions due to mode mismatch

For a long graphitic region, with L�a�G�, a transmission
coefficient �Eq. �10�� tends to zero when the propagating
mode in the lead couples to an evanescent mode in the gra-
phitic region �i.e., if Im kx

�G��0�. The conductance �Eq. �2��
of the junction is small if this is the case for all transmission
coefficients. A small conductance, hence, does not necessi-
tate that all the modes in the graphitic region are
evanescent—it suffices that the propagating modes in the
graphitic region do not couple to the propagating modes in
the leads. Consequently, the conductance can be small even
when the charge-carrier density both in the graphitic region
as well as in the normal leads is finite. We now apply this
mode-mismatch mechanism to calculate conduction thresh-
olds of long and wide ballistic NGN junctions with clean
interfaces, covering all of the geometries shown in Fig. 1.

The requirement of a wide junction arises from the fact
that the mechanism described above relies on the conserva-
tion of transverse momentum �modulo reciprocal-lattice vec-
tors�. For a clean zigzag interface, this conservation law is
exact. As discussed in Appendix A, for an armchair interface,
the quantized transverse momenta in the graphitic part �Eq.
�A3�� differ from the quantized transverse momenta in the
normal leads �Eq. �A2��. The resulting mode mixing for in-
terfaces of finite width is discussed in Sec. V B. Moreover,
details of the transverse-momentum quantization in graphene
ribbons depend on the chemistry of the edges.46–48 In wide
junctions, the modes in N and G are tightly spaced and can
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be assumed to be quasicontinuous. In the limit W→
, the
transverse wave number ky is then conserved exactly, also for
armchair interfaces.

The requirement of a long, ballistic NGN junction is
needed so that we can use the assumption that the evanescent
modes only give negligible contributions to the conductance,
as explained in more detail below. �The effects of disorder
are discussed in Sec. V.�

Under these conditions, good conduction requires values
of the on-site potentials V�G� and V�r� at which one finds
transverse momenta, possibly differing by reciprocal-lattice
vectors, for which the associated modes in N and G are both
propagating. The conductance is always small when this cri-
terion is not fulfilled. The threshold values of the on-site
potentials separating the regions of matching and mismatch-
ing propagating modes can be derived from Eqs. �8a�–�8c�.

For the arrangement in Fig. 1�a�, the conductance thresh-
old due to mode mismatch has two branches given by

V�r�

��r� = � 
V�G�

��G� + 1
2

, �12a�

V�r�

��r� = � 
V�G�

��G� − 1
2

− 4. �12b�

For a finer discretization of the square lattice as in Fig.
1�b�, the first branch remains within the region of the para-
bolic dispersion at the bottom of the band, while the second
branch shifts to V�r�→−
. In the continuum limit �Eq. �5�� of
the dispersion relation, conductance thresholds due to mode

mismatch exist only for
�2m�4��r�−V�r��

�
�3a�G��2� /3, and then

are given by


V�G�

��G� = 2 cos��2m�4��r� − V�r��

�

�3

2
a�G�� − 1. �13�

The survival of conductance thresholds in the continuum
limit can be best understood by considering the modes with
ky �0, which propagate in the normal leads for on-site po-
tentials close to the bottom of the parabolic dispersion rela-
tion. For zigzag interfaces, these modes propagate in the gra-
phitic region only in the region 
V�G�
���G� �see Fig. 2�.

For the arrangement in Fig. 1�c�, care has to be taken for
the fact that the periods of the Brillouin zones of the leads
and the graphene part differ by a factor of 3 /2 in the ky
direction �see the alignment of the Brillouin zones in Fig. 2�.
The graphitic region hence mediates the coupling of lead
modes with different transverse momenta. Propagating
modes always match up for v	 V�r�

��r� �−3, while in the region
v�−3, there are three branches of conductance thresholds
due to mode mismatch. Two of these branches are bounded
by the condition


V�G�


��G�
=�5 + 4�1 +

9

4
v +

3

2
v2 +

1

4
v3. �14a�

The third branch is given by the condition


V�G�

��G� =�−

9

4
v −

3

2
v2 −

1

4
v3. �14b�

For a finer discretization of the square lattice as in Fig.
1�d�, all these branches move to V�r�→−
. This results in the
absence of conductance thresholds due to mode mismatch in
the continuum limit. This can be understood from the obser-
vation that in graphene with armchair interfaces, one can find
propagating modes with ky �0 for all values of the on-site
potential V�G� �see Fig. 2�.

Figure 4 shows the conductance thresholds due to mode
mismatch in the V�G�-V�r� plane. Each panel corresponds to
one of the various types of NGN junctions shown in Fig. 1.
A comparison with Fig. 3 shows that for zigzag interfaces
�panels �a� and �b��, the mode-mismatch mechanism explains
all conductance thresholds. For armchair interfaces, the
mode-mismatch mechanism explains the conductance thresh-
olds in the left part of panel �c�, corresponding to energies
close to the top of the band in the leads. The numerical
results in Figs. 3�c� and 3�d� exhibit additional thresholds in
the lower-right corner of the V�r�-V�G� plane, corresponding
to the bottom of the conduction band in the leads and to the
top of the conduction band in the graphitic part of the sys-
tem. Here, the propagating modes on both sides of the inter-
face differ drastically in their longitudinal wave number �and
hence in their self-energy�, which also inhibits their
coupling.39 Consequently, the conductance of a ballistic
NGN junction can be small even for conditions not described
by the simple mode-mismatch mechanism.

C. Sharpness of thresholds

Above, we have ignored the contribution of evanescent
modes in graphene. These modes become important for a
finite system size L and determine the sharpness of the con-
ductance thresholds.

The role of the evanescent modes is best understood by
considering the most slowly decaying modes in the graphitic
region and, in particular, by investigating which of these
modes still couple to propagating modes in the leads when
one enters the insulating regime. It comes in handy that the
most slowly decaying modes have transverse wave numbers
just at the threshold to where such modes become propagat-
ing, which is determined by Eqs. �8a�–�8c�. Inside the insu-
lating region, not only all the propagating modes in graphene
but also the adjacent slowly decaying evanescent modes
couple to evanescent modes in the leads and hence do not
contribute to the transport. The remaining graphitic evanes-
cent modes, which do couple to the propagating modes in the
leads, all have a finite decay constant, Im kx

�G���, and their
total contribution to the conductance is suppressed exponen-
tially with exp�−�L�. The sharpness of the thresholds hence
increases exponentially with the system size.

The decay constant � approaches zero as one approaches
the conductance thresholds. Let us assume that this is in-
duced by changing the on-site potential V�r�→V�r�,thresh at
fixed V�G�, where depending on the geometry V�r�,thresh is de-
termined by Eqs. �12� and �13�, or �14a� and �14b�. For a
vanishing charge-carrier density in graphene, V�G�=0, the lin-
ear dispersion relation close to the Dirac point then entails
that �� 
V�r�−V�r�,thresh
 increases linearly with the distance to
the threshold, while for a finite V�G�, it increases faster, as
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�� 
V�r�−V�r�,thresh
1/2. Hence, the conductance thresholds are
sharper at a finite charge density.

It is insightful to contrast the exponential suppression of
the conductance carried by evanescent modes in the insulat-
ing region with their contribution inside the conductive re-
gion. In this case, the most slowly decaying modes do couple
to propagating modes in the leads. For a vanishing charge-
carrier density in graphene, V�G�=0, the conductance carried
by the evanescent modes adds up to a contribution �W /L,
which is constant and finite at a fixed aspect ratio even when
the system is very large.13,39 For finite V�G�, on the other
hand, their contribution is proportional to W /L4 for L
�a�G���G� / 
V�G�
 and hence decays algebraically for increas-
ing system size.40 Both expressions require that the most
slowly decaying evanescent modes in the graphitic part
couple to the propagating modes in the leads, which is not
the case in the insulating regime.

V. MODE MIXING

The derivation of conductance thresholds from the condi-
tion of mismatching propagating modes in Sec. IV relied on
the conservation of transverse momentum. In this section, we
explore how violations of this assumption modify the thresh-
old conditions.

A. Mode mixing by disorder

In order to explore the effects of mode mixing by disor-
der, we implement three different scattering mechanisms:
short-ranged bulk disorder and surface roughness in the gra-
phitic region, as well as imperfections at the NG interfaces
�long-ranged bulk disorder does not provide efficient mode
mixing�. Bulk disorder is modeled via a random on-site po-

tential Vi=V�G�+ui, where the ui are independently and iden-
tically distributed �iid� random numbers drawn with uniform
probability from an interval �−u /2 ,u /2�. For a rough edge,
we randomly eliminate a fraction f of the graphene sites
within a distance of 2a�G� from the boundaries of the system.
An imperfect interface is modeled via random hopping ele-
ments �ij =��rG�+
ij for the links crossing the interface,
where the 
ij are iid random numbers drawn with uniform
probability from an interval �−
 /2 ,
 /2�.

Figure 5 presents the results for a NGN junction with
zigzag interface and lattice-matched leads �the geometry of
Fig. 1�a�; the results for the other geometries are similar�.
Panel �a� shows the conductance for bulk disorder of strength
u=0.2��G�. Panel �b� shows the conductance for surface
roughness with f =0.3, the value for which we found the
strongest effect on the conductance. In both cases, the maxi-
mal conductance is reduced to about 2 /3 of the value found
in the clean case. This is comparable to what is found in
other transport studies at similar levels of disorder.49–53 In
contrast, the threshold contours delimiting the region of low
conductance are only weakly affected by the disorder.

Figure 5�c� shows the conductance for an imperfect inter-
face 
=0.1��rG�. This moderate level of imperfection has
only a minimal effect on the regions of high and low con-
ductance. A noticeable change of these regions is only in-
duced for a rough interface, shown in Fig. 5�d�, where the
fluctuations 
=��rG� are set equal to the average interface
hopping element. At this level of imperfection, the regions of
low conductance cover a smaller part in the V�G�-V�r� plane.
This has to be attributed to the diffractive effects of a rough
interface. It is interesting to observe that the conductance
thresholds are most robust around V�G�=0; especially, the
conductance threshold in the region V�r��0 is almost un-
changed even though the interface is very rough.

B. Mode mixing at clean armchair interfaces

As discussed in Appendix A, the quantized transverse mo-
menta in the graphitic part of a NGN junction with armchair

FIG. 4. �Color online� For each of the NGN junctions shown in
Figs. 1�a�–1�d�, the white regions denote conditions for insulating
behavior due to the mismatch of propagating modes. The boundary
of the regions are the conductance thresholds derived in Eq. �12�
�for panel �a��, Eq. �13� �for panel �b��, and Eqs. �14a� and �14b�
�for panel �c��. No regions of mismatching modes occur in panel
�d�. A comparison to Figs. 3�b� and 3�d� shows that the conductance
can be small even beyond the mode-mismatch mechanism.

V
(G

) /γ
(G

)

−3

0

3

V(r)/γ(G)

V
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(G

)

−4 0 4
−3

0

3

V(r)/γ(G)
−4 0 4

0 45 90 0 45 90

(a) (b)

(c) (d)

FIG. 5. �Color� Same as Fig. 3�a�, but in the presence of bulk
disorder with u=0.2 �panel �a��, surface roughness with f =0.3
�panel �b��, and interface disorder with 
=0.1��rG� and 
=��rG�

�panels �c� and �d�, respectively�.
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interfaces �and zigzag surface� �Eq. �A3�� differ from the
quantized transverse momenta in the normal leads �Eq.
�A2��. This results in a finite amount of mixing even for a
clean interface, which is automatically accounted for in the
numerical results of Sec. II. Figure 6 shows a density plot of
the modulus 
tnm
 of the transmission amplitudes for the
NGN junction in Fig. 1�c�, with parameters as for the com-
putations in Fig. 3�c�. The on-site potentials are set to the
values V�G�=��G� and V�r�=0, where all modes are propagat-
ing, so that the mode mixing can be seen in transmission.
The figure shows that the transmission matrix is sparse. Each
mode mixes with a small number of modes with a similar
transverse momentum. The additional branches originate
from the different periodicity of the Brillouin zones in the
leads and the graphitic part, already mentioned in Sec. IV. At
each interface, the transverse momentum is only conserved
modulo reciprocal-lattice vectors. The periodicity of the Bril-
louin zone of the leads and the graphitic region in the ky
direction differs by a factor of 3 /2. For the conditions of Fig.
6, this mediates the coupling into two additional branches of
transverse momenta in the leads.

VI. CONCLUSIONS

In this work, we systematically investigated the gate-
voltage dependence of the conductance of four variants of
NGN junctions, consisting of a graphene strip, which is
coupled in different ways to normal leads of identical width
�Fig. 1�. Starting from exact numerical computations, we
identified conditions of insulating behavior in clean junc-
tions, which can be encountered even when the charge-
carrier density in the central graphitic region and in the
normal-conducting leads is finite. Conceptually, this effect
can be seen as the counterpart of the celebrated minimal
finite conductivity of graphene close to the charge-neutrality
point where the charge-carrier density nominally van-
ishes.5,7,9–18

We identified a simple mechanism for the conductance
thresholds at finite charge-carrier density, namely, the decou-
pling of the propagating modes in the different parts of the

system due to the mismatch of their transverse momenta.
Since these momenta are determined by the dispersion rela-
tion, the conductance thresholds could, in principle, be used
to obtain information about the band structure of graphene if
the dispersion relation in the leads is known. Our numerical
computations show that such an analysis would be robust
against the effects of bulk and surface disorders in the gra-
phitic region and would also tolerate a moderate amount of
imperfection of the interfaces.
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APPENDIX A: TRANSVERSE-MOMENTUM
QUANTIZATION

In a wire geometry, the boundary conditions select a dis-
crete set of W transverse wave numbers ky for a given propa-
gation or decay direction, which we enumerate by a mode
index n=1,2 ,3 , . . . ,W. The details of the transverse-
momentum quantization of graphene ribbons depend on the
chemistry of the edges.46–48 In this paper, we are mostly
concerned with wide graphitic regions, where the transverse
momentum becomes quasicontinuous. When we, in the fol-
lowing, give expressions for W in the tight-binding model
used in the numerical simulations, it should be noted that the
dimension W refers to the width of the interface, which is
identical to the width of the square-lattice leads but differs
from the width of the graphitic region �which is wider by
�3a�G� for zigzag interfaces and by a�G� for armchair inter-
faces�.

On the square lattice, W=1+W /a�r� is the number of sites
in the cross section of the wire, and the set of quantized
transverse wave numbers is given by

ky =
n�

W + 2a�r� . �A1�

On the hexagonal lattice with zigzag interfaces �and hence
armchair boundaries�, W=1+W /�3a�G�, and the set of quan-
tized transverse wave numbers is given by

ky =
n�

W + 2�3a�G� . �A2�

Both sets of quantized transverse wave numbers become
identical when the lattices are matched commensurably, as
shown in Fig. 1�a�, where a�r�=�3a�G�.

More complicated is the case of the hexagonal lattice with
armchair interface �which has zigzag edges�, shown in Fig.
1�b�. At the upper �lower� edge, hard-wall boundary condi-
tions translate into a vanishing amplitude on the A �B� sites
in the first unit cell beyond the wire boundary. Since the
amplitudes on these sites carry a relative phase, which de-
pends on the propagation direction, the quantized transverse

FIG. 6. Density plot of the transmission coefficients 
tnm
 for a
NGN junction with armchair interfaces and lattice-matched leads
�the geometry of Fig. 1�c��, with V�G�=��G� and V�r�=0 �other pa-
rameters as in Fig. 3�c��.
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wave numbers are determined by a transcendental equation,

e2i�W+7a�G��ky

=
�V�G�2

/��G�2
− sin2�3kya

�G�/2� + i sin�3kya
�G�/2�

�V�G�2
/��G�2

− sin2�3kya
�G�/2� − i sin�3kya

�G�/2�
.

�A3�

For 
V�G�
���G� and close to the K points, this equation re-
duces to the condition derived from the Dirac equation given
in Ref. 33. In general, Eq. �A3� has W= �4/3�+2W /3a�G�

independent solutions. For 
V�G�
���G�, this includes a num-
ber of edge states with Im ky �0. For wide interfaces �W
�1�, the real-valued transverse wave numbers are almost
uniformly spaced, but do not coincide with the transverse
wave numbers of the lattice-matched square lattice with
a�r�=a�G�, shown in Fig. 1�b�.

APPENDIX B: INTERFACE HOPPING CONSTANT
FOR A TRANSPARENT INTERFACE WITH A

REAL-SPACE LATTICE

In this appendix, we describe how to model a transparent
interface between a tight-binding lattice and a real-space lat-
tice, as shown in Figs. 1�b� and 1�d�. A simpler variant of
such an interface, well suited for analytical calculations, is
the interface of two commensurably matched square-lattice
leads with different lattice constants, shown in Fig. 7. The
lattice constants in the left and right leads are related by an
integer-valued reduction constant q so that a�R�=a�L� /q; the
continuum limit of the right lead is approached for q→
.
This simple arrangement is representative for couplings of
real space leads to other tight-binding lattices, since only the
sites adjacent to the interface enter the subsequent consider-
ations.

The hopping constants in the left and right leads are de-
noted by ��L� and ��R�, respectively. In our numerical com-
putations, we further made the assumption that these con-
stants are related by the requirement of an identical effective
mass m=�2 / �2��R��a�R��2�=�2 / �2��L��a�L��2�. The hopping
constants in the two leads are then related by ��R�=q2��L�.

Our goal is to determine the interlead hopping constant,
��LR�, so that the lead is transparent for energies in the para-
bolic region of the dispersion relation at the bottom of the
bands of both leads.

We choose a coordinate system where the right lead starts
at x=0, and the origin accommodates one of the lattice sites
that is linked to the left lead. Now, consider a particle arriv-
ing from the left lead at a fixed energy E and transverse wave
number ky, which are both conserved under reflection from
the interface. The wave function

��L��x,y� = Aeikx
�L�x+ikyy + Be−ikx

�L�x+ikyy �B1�

then describes the superposition of the incoming and re-
flected particle, where the longitudinal wave number kx

�L� is
fixed by the dispersion relation �4�.

Upon crossing the interface, the transverse momentum is
conserved modulo reciprocal-lattice vectors. Since the Bril-
louin zone in the right lead is larger by a factor q, one
couples into q inequivalent modes with wave number ky,p
=ky +2�p /a�L�, p=0,1 , . . . ,q−1. For energies close to the
bottom of the bands in both leads, only the mode with p=0 is
propagating while the others are evanescent. We denote the
longitudinal wave number of the propagating mode by kx

�R�,
and the decay constant of the evanescent modes by �p, p
=1,2 , . . . ,q−1. The wave function in the right lead is hence
given by

��R��x,y� = Ceikyy�eikx
�R�x + �

p=1

q−1

cpe−�px+2�ipy/a�L�� . �B2�

The relative amplitudes cp of the evanescent modes are fixed
by the boundary condition on those sites at x=0 which have
no link to the left lead. Since the wave function �B2� would
fulfill the Schrödinger equation when the right lead would be
continued beyond the interface, this boundary condition can
be formally expressed as ��R��−a�R� ,y�=0, where y=a�R�p�,
with p�=1,2 , . . . ,q−1, is the transverse coordinate of in-
equivalent disconnected sites. These boundary conditions
are fulfilled when the amplitudes take the value cp

=e−�pa�R�−ikx
�R�

a�R�
.

The remaining amplitudes A, B, and C are now obtained
from the boundary conditions of the sites on both leads
which are linked to the other lead. Using again the fact that
the wave functions �B1� and �B2� both fulfill the Schrödinger
equation when the leads would be extended across the inter-
face, these conditions can be written as

��RL���R��0,0� = ��L���L��0,0� , �B3�

��R���R��− a�R�,0� = ��RL���L��− a�L�,0� . �B4�

The reflection amplitude r=B /A then follows as

r = −
q̃��RL�2

e−ikx
�L�a�L�

− q��L���R�e−ikx
�R�a�R�

q̃��RL�2
eikx

�L�a�L�
− q��L���R�e−ikx

�R�a�R� , �B5�

where

q̃ = 1 + �
p=1

q−1

cp. �B6�

At the bottom of the band, we can further assume
ky ,kx

�R,L��0, and the decay constants approach the value
a�R��p=arcosh�2−cos�2�p /q��. The condition r=0 for a

left lead right lead

a� �L a� �R

γ� �LRγ� �L γ� �R

FIG. 7. Interface between two commensurably matched square-
lattice leads of different lattice constants �lattice-constant reduction
factor q=5�.

ELECTRONIC TRANSPORT IN NORMAL-… PHYSICAL REVIEW B 76, 115430 �2007�

115430-9



transparent interface then gives the desired expression for the
coupling constant, which after some algebraic manipulations
can be written as

��LR� =���L���R�

2 − s
,

s =
1

q
�
p=1

q−1 �3 − 4 cos
2�p

q
+ cos2 2�p

q
. �B7�

The value ��LR�=7.861��L� used in the numerical com-
putations finally follows when Eq. �B7� is evaluated for
�R=q2�L and a lattice-constant reduction factor q=5.
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