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Orientation variation of surface strain
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Expansion of the surface layers of a facetted hemispherical nanocrystal of Pb is reported at a temperature
just below the melting point. Inversion of the coherent x-ray diffraction pattern yields quantitative three-
dimensional maps of the deformation of the crystal from its equilibrium lattice spacing. Most of the surface of
the crystal has a clear outward displacement, which decays exponentially into the bulk. This is suppressed on
the (111) facet itself and is stronger on the spherical regions, suggesting that it arises from the orientational

variation of the underlying surface stress.

DOI: 10.1103/PhysRevB.76.115425

Thermal expansion of metal surfaces at temperatures
close to melting was investigated using ion scattering and
x-ray diffraction methods in the 1980s (Refs. 1-5) and sub-
sequently explained as due to enhanced anharmonicity.’8
The interatomic potential experienced by an atom in a crystal
surface, with no neighbors above it, is highly anharmonic.
Because they have more degrees of freedom, surface
phonons tend to be softer with typically lower frequency
than the bulk. This results in greater vibration amplitudes at
the surface, and hence, when coupled with the anharmonic-
ity, leads to expanded interatomic spacings. Since this expan-
sion can overcome the natural tendency of metal surfaces to
contract in order to confine their valence electrons,®!'9 it was
termed “anomalous” when it was observed experimentally.?

According to the Lindemann model,"! a material melts
when its vibration amplitudes become a significant fraction
of the interatomic spacing, so the surface anharmonicity can
cause surface melting, involving progressively greater num-
ber of layers as the melting point is approached. The phe-
nomenon of surface melting has also been extensively stud-
ied and can be explained thermodynamically in terms of the
surface energy.'> The crystal-orientation dependence of the
surface energy explains why surface melting is minimized on
the close-packed (111) facets and stronger in other
directions.'? Surface melting leads to a “quasiliquid” layer,
which retains much of the order of the underlying crystal
lattice with additional thermally populated defects that can
also contribute to the lattice expansion.

The Wulff construction, a Legendre transformation of the
crystal-orientation dependence of the surface energy, ex-
plains how the equilibrium crystal shape (ECS) is spherical
with facets.!>!# The facets are atomically flat, as seen in
variable-temperature ~ scanning  tunneling  microscopy
experiments,'>!”1? while the spherical regions are rough in
the sense that there are thermally excited kinks in the steps
present in dynamic equilibrium.!” The ECS of Pb has been
widely studied at temperatures close to melting'>!>-!% and is
known to contain only {111} facets.!®> The anisotropy of the
surface free energy between the round regions with surface
tension 1y, and facets with 7y, is /711 =1.03 (Refs.
13-16) at T=573 K, which gives rise to circular facets sub-
tending an angle of tan™!y2(yy/ y;1,—1)=14°. Since the sur-
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face stresses will, in general, be different between the flat
and rough regions, there will be a pattern of strain expected
inside the crystal, associated with the formation of an ECS.
Continuum elasticity theory tells us that the resulting strain
will take a form analogous to a Rayleigh wave that decays
into the bulk over a distance comparable with the size of the
facet.”’ Recent works on the structure of surfaces containing
step arrays”' and chemically induced variations of surface
stress?? have confirmed this strain distribution. From these
considerations, we might expect to see an orientation depen-
dence of the strain associated with the ECS. The observation
of such a dependence is what we report here.

Coherent x-ray diffraction (CXD) imaging is a powerful
new method of three-dimensional (3D) lensless imaging of
the interiors of small crystals.?® By exploiting the vastly im-
proved coherence of undulator x-ray radiation from third
generation sources of synchrotron radiation, CXD methods
rely on the mutual interference of waves scattered from all
extremes of the crystal under investigation. The rich 3D dif-
fraction pattern so produced can be sampled beyond its Ny-
quist frequency, whereby it can be phased and, hence, in-
verted to a 3D image. Unless the diffraction pattern happens
to be locally centrosymmetric, the resulting image is a 3D
complex function. We recently demonstrated that, while the
magnitude of this image represents the electron density, the
phase of this complex function maps out the projection onto
the momentum transfer vector Q of the deformations of the
crystal from the underlying crystal lattice.?*?> The 3D im-
ages of a 750-nm-diameter Pb crystal were found to have a
bump of negative phase protruding from the flat interface
with the substrate, which was interpreted as due to the strain
field arising from contact forces.?* Since the Q vector was
pointing away from the interface, the negative sign of the
phase arises from a compression of the crystal by the contact
forces. Here, we report that the same nanocrystal also has a
skin of positive phase on its outer surface, which we attribute
to surface thermal expansion, and, furthermore, that the mag-
nitude of the expansion has an interesting dependence on
crystal orientation.

The CXD measurements are sensitive to strain because
they were made with hard x rays at the large diffraction angle
of the (111) Bragg peak.?* In the experimental result, the
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maximum observed phase shift was —1.4 rad relative to the
bulk of the crystal located at a point near the center of the flat
interface with the substrate. The rapid drop off of phase,
moving away from the interface, was found to be consistent
with the theory of continuum elasticity describing the spatial
dependence of strain fields.?%> The novelty of the informa-
tion made available by the imaging technique is that the
function describing the electron density of the interior of the
solid crystal is allowed to be complex, rather than merely
real. According to the Fourier theorem, the complex density
manifests itself in noncentrosymmetry of the intensity distri-
bution of the diffraction pattern. In the case of (111) Bragg
diffraction from our Pb nanocrystal, this symmetry breaking
is local to the mathematical Bragg point or center of the
intensity distribution. The breaking of local symmetry can be
explained as deviations from the ideal lattice underlying the
crystal, most simply described as a field of displacements
from the lattice.?

However, other contributions to the real-space phase must
be considered as well. A recent study of a freeze-dried yeast
cell also revealed a complex density function.?® In that case,
the diffraction intensity data were asymmetric around the
origin of reciprocal space, and so cannot be identified with
strain. Indeed, a yeast cell contains no crystal lattice with
respect to which strain could be defined. The authors of that
study identified “non-Born approximation” scattering as the
cause of broken symmetry. This is the same physical prin-
ciple as optical refraction, which is usually ignored at x-ray
wavelengths, but can be important for optically thick mate-
rials in certain wavelength ranges.?’ In our original work, we
also ignored the refraction effects in deference to the much
more dramatic strain contribution, but here we correct for
refraction in order to visualize further strain features in our
original phase images.

Refraction causes the waves traveling inside the crystal to
have a different wavelength from those traveling in the
vacuum outside. For 8.9 keV x rays used in our work, the
real part of the refractive index n, being the ratio of these
wavelengths, is less than unity by an amount 6=2.23
X 1073, The vacuum wavelength A=0.138 nm corresponds to
a wave vector magnitude of k=45.5 nm~!. The diameter of
the Pb nanocrystal we studied was d=750 nm, over which
distance the electromagnetic wave is retarded in phase, rela-
tive to a parallel one in vacuum, by kd6=0.76 rad. This
value, corresponding to a ray that traverses the thickest part
of the crystal, is a significant fraction of the reported phase
shift due to strain, —1.4 rad.?* We note that the direct x-ray
absorption, kdf, is insignificant for a crystal of this size,
being only 7%, as given by the imaginary part of the refrac-
tive index, 8=2.19X 107 at 8.9 keV.

When Bragg diffraction takes place at some location in-
side the crystal, both the incoming k; and outgoing k; waves
experience refraction. The (Bragg) angle between k; and ky
was 28° for the (111) reflection used here. The combined
effect on our phase maps can be determined by considering
the relative phase of the outgoing wave with respect to an
identical copy of the crystal without refraction. A phase shift
accumulates along both of these paths and so varies with
position within the scattering volume. A spherical crystal of
diameter d=750 nm will have a phase shift of ¢y=kdo
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=0.76 rad for rays scattering from its exact center, the same
as for the transmission case considered above. The phase
shift is less for points above, and reaches a maximum value
of ¢hy/cos 14°=0.78 rad at a point slightly below the center,
where “up” and “down” are defined along or against the
direction of the momentum transfer vector, Q=k—k;. We
assume that the crystal used in our experiment was close to
spherical in shape, and we ignore the cutoff on the bottom by
the substrate plane because both k; and Kk vectors necessarily
lie above that plane.

We model the phase shift due to refraction using the dis-
torted wave Born approximation. For scattering at a general
point r inside the crystal, it is assumed that the refraction
phase shift simply accumulates along the path of the incident
wave vector k;. In a homogeneous medium, the incident
beam is distorted by refraction but retains the structure of its
wave front until it reaches point r, whereupon it scatters into
a spherical wave. The contributions from all points r within
the crystal are detected along the exit wave direction K.
Each scattered wave experiences a phase shift due to refrac-
tion along its exit path. In the Born approximation, there is
only one scattering event, so the path for a given r can be
traced uniquely when k; and k, are known. In this way, we
can assign a refraction phase shift to every point in the crys-
tal. For a sphere, the resulting phase shift at a point p in
dimensionless units p=r/r, as a fraction of the radius of the
crystal, ry, is given by

¢:@2(l§j.p+ ]+(]A(j-p)2—|P|2), (1)

2 oy

where the K’s are unit vectors pointing toward the center of
the sphere in the directions of the incident and exit beams.

In our case, we know an exact 3D representation of the
shape of the crystal from the previous analysis.>* Since the
precise shape and complete information about the directions
of k; and Kk, are known, the phase shift could be evaluated
numerically without adjustable parameters. This function,
which closely resembles the expression for a sphere given in
Eq. (1) above, is plotted in the top panel of Fig. 1. There is
no phase shift only for the points right on the (111) facet that
lies in the direction of the Q vector. The phase shift (path
length) mounts rapidly for points below this plane, reaching
50% of ¢, for depths below about 0.13d. The bulk of the
crystal, away from this region, has a phase shift approaching
the value ¢y. Thus, most of the variation of phase due to
refraction is located on the opposite side of the crystal from
the previously studied phase bulge,?* for which the interpre-
tation is not much affected.

‘We note that the absolute phase of a scattering object does
not usually need to be defined, because the diffraction am-
plitude, given by the magnitude of its Fourier transform,
does not depend on the choice of origin. A logical choice
would be to define the phase to be 7 as this is the phase of
the wave scattered by a point charge (electron) illuminated
by a plane wave.”’ In the absence of refraction, diffraction
from all electrons on the crystal lattice of the sample would
have the same 7 phase shift relative to the incoming wave.

The phasing algorithms used to obtain the image in Ref.
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images with a real-space phase function ¢(r), we used a
constraint of —7r/2 < ¢(r) < /2 during the HIO cycles and
no constraint on the phases during ER. This was considered
to be a minimal constraint; with no constraints at all, the
phases might tend to spin randomly, since the diffraction
amplitude is independent of the absolute phase origin in real
space. The chosen range had the consequence that the result-
ing image was centered with most of the phase values near
@(r)=0.

In this paper, we examine the positive excursions of ¢(r),
which were localized at the “top” of the crystal, near where
the Q vector emerges from the sphere. This is where most of
the refraction effects are seen. The lower panels of Fig. 1
show the phase map before and after subtraction of the re-
fraction phase. After correction, the positive phase structure
becomes more pronounced and is clearly seen to follow the
shape of the edge of the crystal, which is shown superim-
posed in Fig. 1 as a 50% density isosurface. The (111) facet
is clearly visible as a flat edge in this view. A least-squares fit
to the shape of the crystal to a sphere and planes found six of
the eight possible {111} facets in addition to the flat interface
that was noncrystallographic.>*?° The six {111} facets sub-
tended angles of 18.2+2.6°, roughly consistent with the 14°
determined previously for the ECS of Pb near this
temperature.'> We focus our attention on the facet denoted
(111) near the top of the crystal in the same direction as the
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FIG. 1. (Color online) Sections through the center of the 3D
complex density map passing through the (111) facet. The colors
show the variation of the phase inside the nanocrystal, on the same
scale, in the lower two panels. The arrow shows the direction of the
(111) Q vector used for measuring the diffraction onto which the
strain is projected. A 3D view of a single density contour (50%
max) is superimposed to show the shape of the crystal. Note that the
phase becomes very noisy outside the crystal, where the amplitude
of the complex density function vanishes. (Top) Refraction phase
only; calculated from the shape of the crystal. (Middle) Phase map
before correction for refraction. (Bottom) Phase map affer correc-
tion for refraction.

24 employed cycles of Fienup’s?® hybrid input output (HIO)
method followed by support-constrained error reduction
(ER). HIO utilizes a form of feedback based on previous
iterates and the application of a support. To obtain complex
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FIG. 2. (Color online) Line scans across the boundary of the
crystal along the direction of the (111) facet (solid triangles) and
across the spherical part of the surface in the vicinity of the facet,
inclined at 20° (black circles). Three different azimuths are shown
in the lower panel. (a) Amplitude of the complex density function,
representing the electron density, showing a resolution-limited step-
function shape. The flat facet results in the density dropping at
smaller radius (vertical lines). (b) Phase, proportional to the lattice
displacement, showing a divergence. The fit curve (red solid line) is
an exponential with decay length of 90 nm. The extremes of the
fitting range are denoted by red dashed curves with decay lengths of
70 and 110 nm.
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measurement Q vector (arrow in Fig. 1). The phase structure
is considerably weaker on this (111) facet than in the adjoin-
ing regions of the crystal.

The phase is the projection of the lattice displacement
onto the Q vector, and so is sensitive to the normal compo-
nent of strain here. The phase rises from the bulk of the
crystal by A¢p=+1.15+0.1 rad on the vicinal surface. This
corresponds to a net displacement of the surface layers by
(Ap/2m)d,;;=0.052 nm relative to the bulk. A positive
phase implies an expansion of the crystal at its surface,
which we attribute to the high-temperature anharmonicity of
the lattice mentioned above. We believe the relative absence
of strain on the facet itself (+0.47 rad or 0.02 nm) is due to
the compounding effect of stress relief within the ECS: if the
facet underwent a lateral expansion and perpendicular con-
traction, the surrounding region would have a lateral contrac-
tion and perpendicular expansion. Superimposing the net ex-
pansion due to anharmonicity cancels the contraction on the
facet and reinforces the expansion on the vicinal region, as
found.

This pattern of alternating compression and expansion at a
surface is found in the form of the Rayleigh wave solution of
the continuum elasticity equations at a surface.?® The distor-
tions should die off exponentially inside the solid with a
decay length of (1/27)L, where L is the period of the wave
along the surface. Here, we can identify L =470 nm, which
is twice the diameter of the facet, so we would expect the
strain to decay with a 1/e depth of 75 nm. Figure 2 shows
the variation of the amplitude and phase inside the crystal
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along radial lines passing just outside the edge of the facet
along three different azimuths inclined at 20° to the facet
normal. Outside the crystal where the electron density am-
plitude is small, the phase is not well defined. Inside, it fol-
lows an exponential curve with a fitted 1/e depth of
90+20 nm, which is consistent with our expectation of
75 nm.

In summary, we have applied a refraction correction to the
3D phase maps previously obtained by CXD for a
750-nm-diameter Pb nanocrystal. In addition to the negative
phase bulge previously seen at the interface with the sub-
strate, the corrected images have a skin of positive phase
decorating the outer surface of the nanocrystal. The results
are consistent with a general expansion of the surface,
present in all directions except the (111) facet itself, which
has a much reduced expansion. The depth of the strain field
visualized is consistent with elastic relaxation of stresses
arising from the formation of a facetted equilibrium crystal
shape.
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