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The low-frequency electronic excitations of the double-walled armchair carbon nanotubes are investigated
by the random-phase approximation. Both the intertube atomic hoppings and the intertube e-e interactions are
included in the calculations simultaneously. The intertube atomic hoppings significantly alter the low-energy
bands and thus enrich the low-frequency excitation spectra. There are more single-particle excitation channels
and plasmon modes. These excitations strongly depend on the symmetric configurations of the double-walled
system and the transferred momentum, such as the number, the existence, the strength, and the frequency of
plasmon modes.
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Carbon nanotubes have attracted a lot of interesting theo-
retical and experimental studies since the discovery by Iijima
in 1991.1 Owing to the peculiar electronic and mechanical
properties, carbon nanotubes are highly potential materials
for nanoscaled electronic devices in the next generation.2

Carbon nanotubes could exist in the single-walled forms
�SWCNTs� and the multiwalled ones �MWCNTs�.1,3 Among
them, the double-walled carbon nanotubes �DWCNTs� are
the simplest ones in understanding the effects of the intertube
atomic hoppings on electronic properties. DWCNTs are
steadier than SWCNTs in terms of the thermal and chemical
stabilities; they exhibit the greater rigidity supported by the
van der Waals forces.4,5 With the advancement of synthesis
techniques, the high-purity DWCNTs could be produced.6,7

Geometric structures �radius r and chiral angle �� and elec-
tronic properties were determined by various experimental
measurements.8–15 SWCNTs are gapless metals or semicon-
ductors depending on geometric structures.13 A SWCNT is a
rolled-up graphite sheet, the structure of which is thus fully
specified by a two-dimensional lattice vector Rx=ma1+na2,
where a1 and a2 are primitive lattice vectors of a graphite
sheet. The parameters �m ,n�, therefore, uniquely define a
SWCNT. �m ,m� and �m ,0� are, respectively, armchair and
zigzag SWCNTs. All armchair �m ,m� SWCNTs are metallic.
In addition to r and �, the low-energy electronic structure of
DWCNTs is substantially influenced by the intertube atomic
hoppings and the symmetric configurations.16–20 Their main
features would be directly reflected in the low-frequency
Coulomb excitations.

The collective and single-particle excitations in SWCNTs
have been extensively studied experimentally21,22 and
theoretically.23,24 The �-band electrons, which are formed by
the 2pz orbitals, exhibit the �5–7 eV � plasmon.21,22 All
metallic and narrow-gap semiconducting SWCNTs own the
low-frequency plasmons with �p�1 eV.25–28 These collec-
tive excitation modes mainly result from charge carriers in
the low-energy bands near the Fermi level �EF�, and they
belong to acoustic plasmons at finite temperature. The way
the low-frequency plasmons survive in armchair DWCNTs
would be investigated in detail.

As regards the excitation spectra of DWCNTs, most the-
oretical studies were based on the free electron gas

model29–33 or the simple �-band model without the intertube
atomic hoppings.25,26,34–36 These two kinds of models do not
consider the effects of the intertube atomic hoppings on the
low-energy bands and the Coulomb excitations. The previous
studies16–20 showed that the intertube atomic hoppings sig-
nificantly affect the low-energy bands and the distribution of
free carriers near EF. Such carriers could tunnel between two
different carbon nanotubes under the consideration of the
intertube atomic hoppings. The DWCNTs are thus expected
to exhibit rich single-particle and collective excitations.

The low-frequency excitation spectra of the armchair
DWCNTs in the presence of the intertube atomic hoppings
are investigated in this work. The low-energy electronic
structure is evaluated by the tight-binding model. Within the
random-phase approximation �RPA�,24 the intertube atomic
hoppings and the intertube Coulomb excitations are taken
into account in the calculations of excitation spectra simul-
taneously. They both dominate the e-h excitations and the
plasmon modes. The intertube atomic hoppings enrich the
carrier distribution and thus the excitation channels. The
Coulomb excitation spectra strongly depend on the trans-
ferred momentum and the symmetric configurations, such as
the dispersion relations, the existence, the strength, and the
number of plasmons. The predicted results could be verified
by the experimental measurements from the electron energy
loss spetroscopy �EELS�.

The �5,5�-�10,10� armchair DWCNT, with the commensu-
rate graphene stacking, is chosen for a model study. There
are three kinds of symmetric structures �C5, D5h, and S5 in
Figs. 1�b�–1�d��, according to the translational and rotational
symmetries about the nanotube axis. A primitive unit cell
consists of four and eight atoms from the inner and outer
nanotubes, respectively. The �-electronic structure originates
from the 2pz orbitals normal to the nanotube surface. The
DWCNTs own the intratube and intertube atomic hoppings
in the tight-binding model. The former are confined to the
nearest-neighbor interactions, and the latter account for the
interatom distance on the projection surface shorter than the
C-C bond length �b=1.42 Å�. The tight-binding Hamiltonian
is given by
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where cl,i �cl,i
† � is the creation �annihilation� operator for the

ith atom on the lth nanotube. The first and second terms in
Eq. �1�, respectively, correspond to the intratube and inter-
tube atomic hoppings. These two kinds of atomic hoppings
contain the � bonding �Vpp�=−2.66 eV=�0� and the �
bonding �Vpp�=6.38 eV�. Moreover, the major intratube and
intertube atomic hoppings are Vpp� and Vpp�, respectively.
The curvature effect due to the misorientation of the 2pz
orbitals makes the atomic hopping integral h��l,i;l,i�� depend
on the relative angle �l,i;l,i� between two orbitals. Also note
that the increase of the interatom distance �dl,i�;l�,i�� leads to
the rapid decrease of the intertube atomic hoppings in the
exponential form. Parameters W=1/8 and �=0.45 Å are ob-
tained from the comparison with the first-principles calcula-
tions and the experimental data.16,37,38 By diagonalizing the

12�12 Hamiltonian, we obtain state energy En�j ,k� and
wave function 	n�j ,k�=�liun,l,i�j ,k�al,i, with the subband in-
dex n, the quantized angular momentum j, and the longitu-
dinal wave vector k. The Bloch function is the superposition
of 12 tight-binding functions al,i’s.

The �-electronic structure, without the intertube atomic
hoppings, exhibits two pairs of linear subbands intersecting
at EF=0, as shown in Fig. 1�a�. The left- and right-hand
linear bands, respectively, correspond to the �5,5� and �10,10�
nanotubes. The occupied valence bands are symmetric to the
unoccupied conduction bands about EF. Figures 1�b�–1�d�
show the effects of the intertube atomic hoppings and the
symmetric configurations on band structures. The symmetry
between valence and conduction bands is absent. Energy dis-
persion relations in C5 and D5h systems remain linear, while
the intertube atomic hoppings affect the dependence on the
wave vector and the Fermi momenta �kF’s�. The S5 system
owns the parabolic bands with several band-edge states. Both
C5 and D5h systems are gapless metals, while the S5 system
is a narrow-gap semiconductor with Eg�3.2 meV. Appar-
ently, the intertube atomic hoppings in three systems have
changed the excitation energies and the carrier distribution.
Each Bloch function comes from the superposition of the
tight-binding functions on the inner and outer nanotubes. The
hybridization of these functions is strong near kF’s since the
low-energy bands are significantly affected by the intertube
atomic hoppings. The carrier tunneling between two different
nanotubes is deduced to play an important role in the exci-
tation spectra.

When the DWCNTs are perturbed by the time-dependent
Coulomb potential Vmm�

ex �q ,L�, their � electrons would
screen the external field by the dynamic e-e interactions. The
momentum transfer q and the angular momentum transfer L
are conserved during the Coulomb interactions. The effective
Coulomb potential between two electrons on the mth and
m�th nanotubes within the RPA, as shown in Fig. 2, is char-
acterized by the Dyson equation,


0Vmm�
ef f �q,L;��

= Vmm�
ex �q,L� + Vmm�

in �q,L;��

= Vmm�
ex �q,L� + �

m,m�=1

2

Vml
ex �q,L�Pll�

�1��q,L;��Vl�m�
ef f �q,L;�� .

�2�


0=2.4 is the background dielectric constant.23–25,34 The ef-
fective Coulomb potential is the sum of the external and
induced Coulomb potentials. The former Vmm�

ex �q ,L�
=4�e2IL�qr��KL�qr�� /
0 is the bare intratube �r�=r�� or

FIG. 1. The low-energy bands of the double-walled �5,5�-
�10,10� carbon nanotubes for three symmetric configurations: �b�
C5, �c� D5h, and �d� S5. Also shown in �a� for comparison are those
without the intertube atomic hoppings.

FIG. 2. The Feynman diagram of the effective Coulomb poten-
tial within the RPA.
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intertube �r��r�� Coulumb interaction. IL �KL� is the modi-
fied Bessel function of the first �second� kind of order L and
r� �r�� is the smaller �larger� nanotube radius. The latter
Vmm�

in �q ,L ;�� stems from the induced charges on two nano-
tubes. The screening charge density is the product of the bare
response function and the effective Coulomb potential. P

ll�
�1�

��q ,L ;��, the RPA bubble in Fig. 2, is given by

Pll�
�1��q,L;�� = 2�

k
�
n,n�

��
i

unli�j,k�un�li
* �j + L,k + q��

���
i�

unl�i�
* �j,k�un�l�i��j + L,k + q��

�
f�En�j,k�� − f�En��j + L,k + q��

�nn��j,k; j + L,k + q� + �� + i

. �3�

f�En�j ,k�� is the Fermi-Dirac distribution function.
�nn��j ,k ; j+L ,k+q�=En��j+L ,k+q�−En�j ,k� is excitation
energy between the initial and final states. 
 is the energy
width due to various deexcitation mechanisms. Both in-
tratube polarizations �P11

�1� and P22
�1�� and intertube polariza-

tions �P12
�1�= P21

�1�� make contributions to the dynamic charge
screening. They, respectively, correspond to the excited elec-
trons and holes that are located on the same and different
nanotubes. The intertube polarizations would vanish when
the intertube atomic hoppings are neglected.

The effective Coulomb potential in Eq. �2� is associated
with the loss spectrum which represents the intrinsic excita-
tion properties. The probing electrons would transfer mo-
mentum, angular momentum, and energy �q ,L ,�� to the
armchair DWCNTs. Their distribution is assumed to be uni-
form on two nanotubes. The inelastic scattering probability,
which is obtained from the detailed calculations within the
Born approximation, is used to define the dimensionless loss
function,39

Im�− 1



� 	

�
m

Im�− Vmm
ef f �q,L;���

�
mm�

Vmm�
ex �q,L�/2

. �4�

The denominator is the average value of the external Cou-
lomb potentials on two nanotubes. The loss function or the
screened response function in Eq. �4� is useful in understand-
ing the collective excitations of the low-energy � electrons.

Only the low-frequency excitation spectra of the L=0
mode at zero temperature are discussed in this work. They
result from the two pairs of conduction and valence bands
nearest to the Fermi level �Fig. 1�. The bare response func-
tions directly reflect the main characteristics of the single-
particle excitations between occupied and unoccupied states.
Their imaginary parts represent the strength of the e-h pairs.
Im�P11

�1��, the intratube response function due to the excited
electrons and holes on the inner nanotube, could exhibit the

special singular structures, which is illustrated in Figs.
3�a�–3�d� with the four systems at q=0.05 Å and 
→0 by
the dashed curves. These structures are understood from
the joint density of states JD�q ,�� since Im�P11

�1�� in Eq. �3�
is proportional to it. JD�q ,��, defined as 
��nn��j ,k ; j ,k
+q� /�k
�nn�=�

−1 , is mainly determined by the energy dispersion

relations and the critical points in the energy-wave-vector
space. For the independent system, the linear energy disper-
sions �the left-hand two linear bands in Fig. 1�a�� and the
Fermi-momentum states �the critical points� induce two finite
discontinuities at ��1.5bq�0. These two structures are close
to each other since the difference in the slopes of the two
linear bands is inapparent. With the use of the Kramers-
Kronig relations, the real part Re�P11

�1�� exhibits the singular
logarithmic structures. Also notice that the finite discontinui-
ties, the logarithmic divergences, and the square-root diver-
gences would become the peak structures in the inclusion of
the broadening effect �a finite 
, not shown�. The similar
special structures are also found in the C5 and D5h systems
with linear energy bands �Figs. 1�b� and 1�c��. However,
there are more singular structures at ��1.5bq�0, and some
extra singular structures with weak strength would occur at
higher or lower frequencies �Figs. 3�b� and 3�c��. The strong
hybridization of the inner and outer tight-binding functions
leads to more complicated excitation channels among all en-
ergy bands which explains the drastic changes in P11

�1�. As to
the narrow-gap S5 system, the critical points are the band-
edge states, but not the Fermi-momentum states. The excita-
tion energies related to them have the parabolic or linear
dependence on the wave vector. The parabolic bands could
produce the square-root singular structures in Im�P11

�1�� and
Re�P11

�1��. Apparently, the main features of the bare response
functions are drastically changed by the different intertube
atomic hoppings, e.g., the strength, the number, and the fre-
quencies of the singular structures in P11

�1�. The other bare
response functions, P22

�1� and P12
�1� �Figs. 3�e� and 3�f� for the

D5h system�, behave as P11
�1� �Fig. 3�c��, mainly owing to the

intertube atomic hoppings. The only difference is the weaker
strength in the intertube e-h excitations, P12

�1�.
The screened response function is useful in understanding

the low-frequency collective excitations and the measured
spectra from EELS. The loss spectra of the independent sys-
tem are shown in Fig. 4�a� for various q’s. There are two
clear peaks, and each peak corresponds to the collective ex-
citations of charge carriers on two nanotubes. The intertube
Coulomb interactions would make charge fluctuations on
two nanotubes couple each other; therefore, the plasmon
strength at the higher frequency is much stronger than that at
the lower frequency. The intertube atomic hoppings bring
about more complicated collective excitations, as shown in
Figs. 4�b�–4�d�. That the � electrons could be excited be-
tween any two energy bands is the main reason. The loss
spectra exhibit more plasmon peaks �three, four, or five plas-
mon modes�, while their intensities are reduced by the rich
single-particle excitations. Each plasmon mode is associated
with a specific excitation channel from the critical point.
Some plasmon modes might disappear in the increasing of
momentum because of the strong Landau damping. The
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most-energetic plasmons in the D5h and S5 systems own the
strongest spectra, as it could be seen in the independent sys-
tem. However, a simple relation between the frequency and
the strength is absent in three kinds of symmetric configura-
tions. The important differences among these systems in the
screened response functions indicate that the experimental
measurements from EELS could be utilized to identify the
geometric structures.

The transferred momentum dominates the main features
of the low-frequency plasmons. The plasmon frequencies
�p’s strongly rely on q, as shown in Figs. 5�a�–5�d�. This
result directly responds to the important characteristic of the
low-energy bands, the strong dependence on the wave vector.
Plasmons are quanta of the collective electron density oscil-
lations. The dispersion relation with the transferred momen-
tum means that the plasma oscillation of the two-coupled
nanotubes behaves as a propagating wave, with wavelength
2� /q and group velocity ��p�q� /�q. Plasmon is an acoustic
�optical� mode, when its frequency vanishes �maintain a fi-
nite value� at the long wavelength limit q→0. There exist
only two acoustic plasmons in the independent systems, and
they could survive at large q’s �Fig. 5�a��. The intertube
atomic hoppings drastically change the acoustic plasmons
and create several optical plasmons. The C5, D5h, and S5
systems, respectively, have two acoustic plasmons, one

acoustic plasmon, and no acoustic plasmons. The former are
completely suppressed by the serious e-h damping for q
higher than the critical momentum �qc�. The absence of
acoustic plasmon in the S5 system lies in the narrow-gap
characteristic. Most plasmons in three symmetric systems
belong to optical modes. That the single-particle excitation
energies about the critical points have finite values is the
main reason. The main features of plasmons are determined
by the energy gap, the critical points, and the wave-vector
dependence of the low-energy bands. The symmetric con-
figurations can be distinguished by the number, the fre-
quency, and the momentum dependence of the plasmon
modes.

In summary, the low-frequency electronic excitations of
the double-walled armchair carbon nanotubes are studied
within the linear RPA. This work could be further general-
ized to the multiwalled carbon nanotubes with more layers.
The intertube atomic hoppings and the intertube Coulomb
interactions are taken into account simultaneously. The
former significantly affect the low-energy bands and thus
enrich the excitation spectra. The wave-vector dependence,
the critical points, and the energy gap of energy bands domi-
nate the main characteristics of the bare and screened re-
sponse functions. The intertube atomic hoppings induce
more single-particle excitation channels and plasmon modes.

FIG. 3. The real and the imaginary parts of the bare response functions at q=0.05 Å−1, L=0, and 
→0 for �a� P11
�1� of the independent

system, �b� P11
�1� of the C5 system, �c� P11

�1� of the D5h system, �d� P11
�1� of the S5 system, �e� P22

�1� of the D5h system, and �f� P12
�1� of the D5h

system.
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The e-h excitations exhibit the singular structures in the un-
screened response functions, mainly owing to the Fermi-
momentum states or the band-edge states. The plasmon
strength is reduced by the intertube carrier tunneling. The
number, the frequency, the strength, and the momentum de-
pendence of plasmon modes strongly rely on the symmetric

configurations. Most plasmons belong to optical modes, but
not acoustic modes. The experimental measurements of
EELS are predicted to be useful in determining the double-
walled geometric structures.

This work was supported by the NSC and NCTS of Tai-
wan, under Grant No. NSC 95-2112-M-006-028-MY3.

*l2893104@mail.ncku.edu.tw
†jonhsu.ho@hotmail.com
‡mflin@mail.ncku.edu.tw
1 S. Iijima, Nature �London� 354, 56 �1991�.
2 R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Science

297, 787 �2002�.
3 S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science

280, 1744 �1998�.
4 R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S.

Dresselhaus, Chem. Phys. Lett. 348, 187 �2001�.
5 M. H. Park, J. W. Jang, C. E. Lee, and C. J. Lee, Appl. Phys. Lett.

86, 023110 �2005�.
6 T. Sugai, H. Yoshida, T. Okazaki, and H. Shinohara, Nano Lett.

3, 769 �2003�.
7 M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba,

K.-I. Kato, M. Takata, A. Fujiwara, K. Matsuda, and Y. Maniwa,
Phys. Rev. B 68, 041405�R� �2003�.

8 J. Wei, B. Jiang, X. Zhang, H. Zhu, and D. Wu, Chem. Phys. Lett.
376, 753 �2003�.

9 R. M. F. J. Costa, S. Friedrichs, J. Sloan, and M. L. H. Green,
Carbon 42, 2527 �2004�.

10 A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S.
Bandow, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 94,
045504 �2005�.

11 J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara,
Science 300, 1419 �2003�.

FIG. 4. The loss functions at various q’s, L=0, and 
=3
�10−3 �0 for the four systems: �a� independent, �b� C5, �c� D5h, and
�d� S5.

FIG. 5. The momentum-dependent plasmon frequencies for the
�a� independent, �b� C5, �c� D5h, and �d� S5 systems.

LOW-FREQUENCY EXCITATION SPECTRA IN DOUBLE-… PHYSICAL REVIEW B 76, 115422 �2007�

115422-5



12 T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M.
Kappes, S. Rosenthal, J. McBride, H. Ulbricht, and E. Flahaut,
Nano Lett. 5, 511 �2005�.

13 L. C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Phys.
Rev. B 61, 2991 �2000�.

14 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley,
and C. Dekker, Nature �London� 391, 59 �1998�.

15 T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature
�London� 391, 62 �1998�.

16 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys.
73, 494 �1993�.

17 Ph. Lambin, L. Philippe, J.-C. Charlier, and J.-P. Michenaud,
Comput. Mater. Sci. 2, 350 �1994�.

18 Y.-K. Kwon and D. Tomanek, Phys. Rev. B 58, R16001 �1998�.
19 Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and

M. F. Lin, Carbon 42, 3159 �2004�.
20 G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, Carbon

44, 2323 �2006�.
21 T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R.

E. Smalley, Phys. Rev. Lett. 80, 4729 �1998�.
22 X. Liu, T. Pichler, M. Knupfer, J. Fink, and H. Kataura, Phys.

Rev. B 70, 205405 �2004�.
23 M. F. Lin, D. S. Chuu, C. S. Huang, Y. K. Lin, and K. W.-K.

Shung, Phys. Rev. B 53, 15493 �1996�.
24 M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 50, 17744

�1994�.
25 M. F. Lin, D. S. Chuu, and K. W.-K. Shung, Phys. Rev. B 56,

1430 �1997�.
26 F. L. Shyu and M. F. Lin, Phys. Rev. B 62, 8508 �2000�.
27 C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin,

Phys. Lett. A 311, 53 �2003�.
28 C. W. Chiu, C. P. Chang, F. L. Shyu, R. B. Chen, and M. F. Lin,

Phys. Rev. B 67, 165421 �2003�.
29 B. Vasvari, Phys. Rev. B 55, 7993 �1997�.
30 C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B

50, 7977 �1994�.
31 C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B

53, 10225 �1996�.
32 G. Gumbs, A. Balassis, and P. Fekete, Phys. Rev. B 73, 075411

�2006�.
33 D. J. Mowbray, Z. L. Miskovic, and F. O. Goodman, Phys. Rev. B

74, 195435 �2006�.
34 B. Tanatar, Phys. Rev. B 55, 1361 �1997�.
35 A. M. Lunde, K. Flensberg, and A.-P. Jauho, Phys. Rev. B 71,

125408 �2005�.
36 M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 47, 6617

�1993�.
37 S. Roche, F. Triozon, A. Rubio, and D. Mayou, Phys. Rev. B 64,

121401�R� �2001�.
38 K. H. Ahn, Y. H. Kim, J. Wiersig, and K. J. Chang, Phys. Rev.

Lett. 90, 026601 �2003�.
39 J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446

�2006�.

HO et al. PHYSICAL REVIEW B 76, 115422 �2007�

115422-6


