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The transmission through prototype aromatic molecule junctions formed between armchair �metallic� carbon
nanotube electrodes is studied using a tight-binding model with a Green’s function embedding approach.
Analytical and numerical results for transmission near the Fermi energy are obtained for junctions of single
molecules with a one-point contact to each electrode, pairs of such molecules in the junction, and double
stranded molecules with a two-point contact to each electrode. While an ideal single stranded molecule �ideal
polyene� with odd number of atoms gives unit transmission at the Fermi energy, two such strands in the
junction demonstrate significant interference effects, with net transmission varying from near zero to near 2
depending on the specific contact sites at the electrodes. Ideal polyenes with even number of atoms give
nonresonant single-molecule transmission at the Fermi energy and less pronounced interference effects from
their double-molecule junctions. The bonded, two stranded junction �polyacene� also gives nonresonant trans-
mission at the Fermi energy. Allowing for the more realistic bond alternation observed in aromatic molecules
results in nonresonant transmission with exponential length dependence.
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I. INTRODUCTION

Single-molecule junctions are generally formed in nano-
scale gaps between conventional metal electrodes. The con-
ductance is significantly affected by the connection between
the molecule and the metal.1 Most experiments are per-
formed with gold electrodes, using a terminal thiol group to
bond the molecule to the gold electrode surface.2 This ap-
proach takes advantage of a broad base of experience in the
formation of organic layers through the thiol-gold route to
self-assembly.3,4 Unfortunately, there is substantial variation
in the measured conductance of molecular junctions formed
with thiol links,2 possibly due to changes in the local struc-
ture of the Au-S link in different junctions.5 Some research
has been directed to map out alternative electrode materials
to support more selective link motifs, e.g., Ru or Mo carbene
links.6,7 Also, it has been recently demonstrated that amine
linkages to gold electrodes form reliable junctions.8–10 How-
ever, the reproducible formation of a well-defined electrode-
molecule link remains a significant issue in the study of
single-molecule junctions.

Single wall carbon nanotubes �CNTs� present an attractive
alternative electrode for single-molecule junctions. Since
their initial discovery,11,12 these crystalline, quasi-one-
dimensional materials have been widely studied. The struc-
tures are formed by rolling up a section of a single graphene
sheet, a honeycomb network of sp2 bonded carbon �C�, to

form a nanoscale tube. Depending on the orientation of the
roll-up vector, either a metallic or a semiconducting band
structure results.13 The conducting properties of CNTs have
been extensively studied and exploited to form novel elec-
tronic devices with a CNT acting as the conducting
channel.14,15 Recently, CNT electrodes have also been ex-
ploited to form the source and drain electrodes for transistor
structures with nanoscale molecular assemblies forming the
conducting channel.16–18 However, the molecules in the
channel of these structures are not directly bonded to the
CNT electrodes.

In forming a single-molecule junction, the end of a CNT
presents the possibility of a direct bond with a character very
similar to the intramolecular bonding. This may lead to
easier chemical control of the junction structure and a link
with good continuity of electronic character between the
electrode and the molecule in the junction. A specific proce-
dure has now been demonstrated to fabricate a molecular
scale gap in a CNT followed by insertion of selected mol-
ecules linked to the CNT via a dehydration reaction to form
amide linkages.19 Electrical characteristics of junctions
formed by molecules bridging the CNT electrodes were mea-
sured and molecule specific conductance phenomena were
observed.

A junction formed by a molecule covalently bonded to
CNT electrodes presents two distinguishing features. First, in
contrast to a conventional, bulk metal, the CNT electrode has
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just two electronic channels �times two for spin� near the
Fermi energy. Second, the character of the bonding in the
electrode, in the molecule, and at the link can be very simi-
lar. In particular, the C � electron system in the electrodes
that forms the states near the Fermi energy can directly
couple to the � electron states in a molecule in the junction.
One might then ask if the CNT-molecule junction is in some
way more ideal. Under what circumstances does a bridging
molecule attached to one C atom on each electrode restore a
full conductance channel? If two identical molecules bridge
the electrodes, under what conditions does the conductance
double? If there are two points of attachment for a single
molecule, are both channels of conductance restored? What
is the influence of the CNT diameter?

We address aspects of these broad questions by examining
model molecules bridging two armchair �metallic� CNTs in
order to understand the basic trends in the low bias conduc-
tance of CNT-molecule junctions. We consider molecules
that represent fragments of the sp2 bonded C network of the
CNT electrode. Specifically, different length polyenes �single
strand� and polyacenes �double strands� are studied. We also
consider two polyenes bridging the electrodes. These cases
are illustrated in Fig. 1. We confine our attention to the �
electron system treated within a nearest neighbor tight-
binding model and simulate chemical differences at the link
by a variable � electron coupling between the end of the
CNT and the molecule. When the electronic coupling at the
link and within the molecule region is identical to the elec-
trode, one can think of the junction as being formed by se-
lectively removing C atoms from an ideal CNT. By appro-
priate choice of the tight-binding parameters on the
molecule, the more realistic situation of alternating double
and single bond is simulated.

The conductance is evaluated using the Landauer ap-
proach with the transmission calculated using a Green’s
function embedding approach applied within the tight-
binding �TB� model.20 The TB model for the � electron sys-
tem of the CNT electrodes captures the main features near
the Fermi energy.21 A similar approach has been applied to
study transport through different structures composed of rib-
bons of graphene.22–24 A scattering state approach, also based

on a TB model, has been used to study transmission spectra
for selected CNT-wire25 and CNT-C60 �Ref. 26� junctions. A
recent density functional theory �DFT� based study, includ-
ing self-consistent potential effects, examined the I-V curve
for a pseudopeptide bonded to semiconducting CNT elec-
trodes, observing negative differential resistance.27 In a re-
lated study, the impact of lattice fluctuations on ballistic
transport through armchair CNT segments was small for en-
ergies near the Fermi energy, although more significant for
higher energy channels.28 In the present study, the high sym-
metry of the armchair CNT electrodes results in embedding
self-energies with a compact form at energies near the Fermi
energy. The relative simplicity of the TB model allows for
analytical expressions describing the transmission at the
Fermi energy for each of the cases illustrated in Fig. 1. Nu-
merical calculations are used to present a picture of the self-
energies and the transmission over a range of energies.

The rest of the paper is organized as follows. In Sec. II,
the physical model and the theoretical methods are de-
scribed, including the evaluation of the embedding self-
energy that describes the coupling of the armchair CNT elec-
trodes to the molecule. The transmission results for the
different classes of bridging molecules are presented and dis-
cussed in Sec. III. Conclusions are presented in Sec. IV.
Some background details for evaluating the CNT electrode
Green’s function appear in the Appendix.

II. MODEL AND THEORETICAL METHODS

A. Tight-binding model

In the experiments done to date,19 the chirality and de-
tailed geometry of the ends of the CNT electrodes are un-
known. Here, the electrodes are assumed to be metallic arm-
chair CNTs with ideal termination. These are conventionally
labeled by the wrap-up indices �n ,n�. With reference to the
edge illustrated in Fig. 2, there are n C-C pairs �e.g., 4 and 5�
at the end of the �n ,n� CNT. In the schematic picture of the
model junctions �Fig. 1�, we assume that all the dangling �
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FIG. 1. Schematic two-dimensional illustration of the three
classes of armchair CNT-molecule junction: �a� single polyene, �b�
two parallel polyenes, and �c� polyacene with two points of attach-
ment on each side. In a nearest neighbor TB model for the � elec-
trons, the hopping energy is t within each CNT electrode, tj within
the molecule, and �L,R coupling the molecule to the electrodes.
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FIG. 2. �Color online� �a� Portion of an unwrapped �n ,n� me-
tallic CNT, back to the view of a graphene sheet, defining labels and
notation used in the text. �b� Mapping the edge carbon atom sites to
an angular measure � around the circumference of the CNT end.
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bonds implicit in the C sites that are twofold coordinated
have been saturated. Each C atom contributes one p orbital
to the � system that is directly included in the TB model. We
include only the nearest neighbor �pp�� hopping and assume
a uniform hopping energy t throughout the CNT lead. A
separate value � couples the edge of the CNT electrodes to
the central molecule. Finally, interior to the molecule, the
values of the hopping energies are chosen to model different
situations. For the ideal reconnection case, the values are
uniform and equal to that in the CNT electrodes. To simulate
the more realistic effect of bond alternation expected for fi-
nite chains, the values alternate as td, ts. In general, a varia-
tion in the local potential would be expected in the region of
the junction, depending in part on the details of the link
bonding. Potential effects are not included. The on-site en-
ergy of each carbon atom in the CNT and the molecule is
taken as a constant, equal to the CNT Fermi energy EF, and
EF�0. While clearly an idealization, it simplifies the analy-
sis of trends and enables some analytical results to be de-
rived. In the matrix form, the Hamiltonian is indexed by the
sites in the left CNT, the molecule, and the right CNT:

Htotal = �HL �L
† 0

�L HD �R

0 �R
† HR

� . �1�

B. Green’s function approach

In general, the Green’s function embedding approach is
useful in treating finite subsystems �e.g., the molecule here,
HD� coupled to semi-infinite regions by a finite range
interaction.29 It also provides a straightforward connection to
the conductance through the central region.20 In the present
case, the coupling matrices �L and �R have only a few non-
zero elements. At the expense of also requiring part of the
surface Green’s function of the decoupled left and right elec-
trodes,

gsL�R��E� = lim
�→0

��E + i��I − HL�R��−1, �2�

the Green’s function for the coupled system in the central
molecule subspace can be derived:

G�E� = lim
�→0

��E + i��I − HD − �L�E� − �R�E��−1. �3�

The influence of the coupling to the electrodes is captured
through the self-energy functions which are calculated from
the surface Green’s functions of the CNT electrodes:

�L�R��E� = �L�R�gsL�R��E��L�R�
† . �4�

The real parts of the self-energies shift molecular resonances,
while the imaginary parts give the broadening due to the
coupling to a continuum of states in the electrodes. Because
of the finite range of the coupling matrices �L and �R, the
self-energies are only nonzero over a finite range near the
link to the electrodes. Similarly, only a finite range of the
electrode surface Green’s functions gsL,R are required. Fur-
ther details are discussed in the next section.

Once the Green’s function in the molecular region has
been obtained, the imaginary part of the self-energy func-
tions,

�L,R�E� = i��L,R�E� − �L,R
† �E�� , �5�

gives the coupling that enters into the final formula for the
current through the junction:20

IL =
1

�
� dE

2�
Tr��LG�RG†��fL − fR� .

Here, the Fermi functions for the left and right electrode also
enter, with the difference in the two chemical potentials cor-
responding to the applied bias. If we define the transmission
T�Tr��LG�RG†�, then this is equivalent to the multichannel
Landauer formula. In general, the applied bias must be in-
cluded in the Hamiltonian as an appropriate potential distri-
bution and the Green’s function calculated for each bias
level. Here, we focus on the low bias conductance �linear
response regime�:

	 dI

dV
	

V=0
=

2e2

h
T�0� .

To compute the conductance for our model systems,
within the TB model, we first require the surface Green’s
functions. These are discussed in the next section. With the
restriction to nearest neighbor hopping, the nonzero elements
of the self-energy span the number of attachment points. For
the polyene case, it is a single function of energy for the left
and for the right. For the polyacene, it is a 2	2 matrix for
the left and for the right. For example, in the case of an
M-atom polyene with equal bond lengths, the needed
Green’s function is the following M-dimensional matrix:

G�E� =�
E − �L�E� t

t E t

t E �

� � �

� E t

t E − �R�E�
�

−1

.

�6�

The self-energies have an imaginary part, so unless specifi-
cally simulating a dephasing effect, we can safely set �=0.
The numerical results described in the next section are ob-
tained by direct evaluation of G�E�.

In selected cases, a recursion technique can be applied to
obtain analytical results due to the simple form of the Hamil-
tonian and the self-energies in the TB model. For example,
for the M-atom polyene, the transmission depends only on
one off-diagonal element of G:

T�E� = �L,11G1M�E��R,MMG1,M�E�*. �7�

This off-diagonal element can be obtained by iteration of a
block recursion scheme.30 The Hamiltonian is divided into
diagonal blocks and off-diagonal couplings between the
blocks �e.g., the diagonal elements and the t’s above�. Recur-
sion consists of sequentially adjoining blocks and updating
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the needed diagonal �Gj,j
�j��E�� and off-diagonal �G1,j

�j��E��
blocks of the Green’s function for the intermediate system
consisting of j blocks. For the uniform M-polyene illustrated
above, the iterates in this scheme30 are

Gj,j
�j��E = 0� = 


− 1

�L
if j is odd

�L

t2 if j is even,� �8�

G1,j
�j��E = 0� = 


�− 1��j+1�/2

�L
if j is odd

�− 1� j/2

t
if j is even.� �9�

When assembled together, including the possibility that the
self-energy on the right may be different, one obtains

T�E = 0� =
4 Im �L Im �R

��L + �R�2
, M odd, �10�

T�E = 0� =
4 Im �L Im �Rt2

��L�R − t2�2
, M even. �11�

This approach has been used to supply the analytical results
below.

C. Surface Green’s function

In the present nearest neighbor TB model, we only require
the surface Green’s function in Eq. �2� evaluated at the atoms
on the edge of the semi-infinite CNT end �e.g., atoms 1, 4, 5,
etc., in Fig. 2�. Furthermore, in this TB model with uniform
hopping energies and on-site energies throughout the elec-
trode, a recursive equation for the surface Green’s function
components can be set up and solved.31 For the �n ,n� arm-
chair CNT, the recursion equations apply to the 4n	4n
block spanning the atoms 1, 2 , . . . ,4n in Fig. 2. The recur-
sion equations are solved numerically for each energy with
care to choose a sufficiently small value of � �10−7� and a
strict criterion on the norm of the recursion error �10−12� in
the surface Green’s function matrix.

Alternatively, the elements of the Green’s function matrix
in real space can be written in general in terms of the wave
functions and eigenvalues for the semi-infinite CNT:

gs�R,
;R�,
�;E� = 

k�

��k,�;R,
���k,�;R�,
��*

E − 
k� + i�
, �12�

where R and 
 index sites and �=0+ gives the retarded func-
tion. As noted above, we are only interested in few elements
of the matrix: diagonal and off-diagonal components involv-
ing sites 1, 4, 5, 8,…. Furthermore, there is extensive sym-
metry. We specifically examine gs4l,4l�=gs4l+1,4l�+1 and
gs4l,4l�+1.

In the TB model, the wave functions for the semi-infinite
armchair CNT can be derived explicitly from those for the
graphene sheet, as described in the Appendix. Using the ex-

pressions in Eqs. �A4�–�A7� for the amplitudes on the re-
quired sites, one can show that the components correspond-
ing to �
=1,
�=1� and �
=2,
�=2� are given by

gs4l,4l��E� = gs4l+1,4l�+1�E�

=
1

�


k

sin2� k1

2
�ei�2k2−k1��l−l��

	� 1

E − t��� + i�
+

1

E + t��� + i�
� . �13�

The off-diagonal components �
=1,
�=2� are given by

gs4l,4l�+1�E� =
1

�



k

�*

�
sin2� k1

2
�ei�k1−k2�ei�2k2−k1��l−l��

	� 1

E − t��� + i�
−

1

E + t��� + i�
� . �14�

Both the 
+ and 
− branches are included. Under the +ky→
−ky symmetry, the coefficient outside the square bracket goes
to the complex conjugate so the summation on k can be
restricted, taking the real part of the coefficient. With care for
the bands at the Fermi energy, the general expressions have
been evaluated numerically. They give results identical to
those based on the recursion algorithm.

For a single point of attachment �e.g., for the polyene case
in Fig. 2�, we only need a single component, e.g., gs1,1. Fig-
ures 3�a� and 3�b� show the real part and imaginary part of
this component versus energy for the �5,5�, �10,10�, and
�15,15� CNTs. The real part is linear near E=0 �the Fermi
energy of the CNT�, where it passes through zero, while the
imaginary part is finite at E=0 with a weak quadratic part. At
energies further removed from the Fermi energy, there is
structure indicative of the Van Hove singularities in the CNT
density of states.21 As the CNT diameter increases, these
peaks get closer to EF. The slope in the real part near E=0
gets steeper. The magnitude of the imaginary part gets
smaller, corresponding to the reduced density of states, as
shown in Fig. 3�c�. For two points of attachment, an off-
diagonal component is also required. For example, the poly-
acene case depends on gs1,4. For a junction bridged by two
molecules, these off-diagonal components depend on the par-
ticular attachment points. In general, the off-diagonal cou-
pling is only different for the cases where �
=1,
�=2�. As
shown below, and illustrated in Fig. 3�d�, these off-diagonal
Green’s function components depend on the angular separa-
tion of the attachment points. At E=0, they are purely real.

For the special case of E=0, further analytical results can
be derived. From Eq. �13�, the principal parts inside the
square brackets cancel, leaving the residual � function, and
these surface Green’s function components are purely imagi-
nary:

gs4l,4l��E = 0� = gs4l+1,4l�+1�E = 0�

=
− 2i�

�


k

sin2� k1

2
�

	cos��2k2 − k1��l − l�����t���� . �15�
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For a graphene edge, the value is zero, following the vanish-
ing density of states at E=0. For a CNT with a finite diam-
eter, there is a finite density of states �DOS� and the integra-
tion yields

gs4l,4l��E = 0� = gs4l+1,4l�+1�E = 0� = − i
�3

2nt
� − i� . �16�

As illustrated in Fig. 3�c�, � is inversely proportional to n.
This result applies to all values of l; only the two bands
passing through the CNT Fermi energy contribute to the
value of �. With reference to Fig. 2�b�, the corresponding
angular separation � is zero for the diagonal case and �
=2� /n ,4� /n ,6� /n ,… for the non-diagonal case.

For the other off-diagonal case �Eq. �14��, only the prin-
cipal parts in the square brackets remain, showing that these
components of the Green’s function are purely real at E=0:

gs4l,4l�+1�E = 0� =
− 2

t�



k

�*

�
sin2� k1

2
�

	ei�k1−k2�ei�2k2−k1��l−l��P� 1

����
� ��l − l�� . �17�

Since the dispersion goes through zero, care must be taken
about the principal part. However, the integration in this re-
gion can be performed. For example, for the CNT case, the
m=0 band contributes −1/2n independent of l and l�. How-
ever, all of the bands also contribute, giving a smooth depen-
dence on l− l�, as illustrated in Fig. 3�d�. With reference to
Fig. 2�b�, the corresponding angular separations are �
=4� /3n ,10� /3n ,15� /3n ,….

III. RESULTS FOR JUNCTION TRANSMISSION

A. Single polyene junctions

We first consider an idealized junction formed by simply
removing all of the C sites from the central region of an

armchair CNT, leaving a single strand of M sites with equal
bond lengths and electronic hopping energy equal to that in
the CNT electrodes �ts= td= t�. The orbital energies for the
finite length, ideal polyene of length M can be derived from
the corresponding band structure for the infinite polymer, as
illustrated in Figs. 4�a� and 4�b�. Imposing the boundary con-
ditions of zero wave function at sites outside the finite chain
yields the allowed states shown for M odd and even. The
pattern of molecular levels is different. For M odd, there is
always a molecular state at E=0 and with all other states
occurring in pairs bracketing E=0. For M even, there is no
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FIG. 3. �Color online� Properties of the arm-
chair CNT surface Green’s function. �a� Real and
�b� imaginary parts of a diagonal component ver-
sus energy near the Fermi energy �E=0� for three
different CNT diameters. �c� Variation of the
imaginary part of the diagonal component at the
Fermi energy with CNT diameter. �d� Off-
diagonal component at the Fermi energy versus
the separation of site 4l relative to site 1 ex-
pressed as an angle around the CNT circumfer-
ence for three different CNT diameters, as illus-
trated in Fig. 2�b�. The relation between the
surface Green’s function and the self-energy
function is shown in Eq. �4�.
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state at E=0 and the nearest states bracket E=0 symmetri-
cally with a gap that gets smaller with increasing chain
length.

In the coupled system, this pattern is preserved in the
energy region near E=0. The calculated local density of
states in the molecule region and transmission are illustrated
in Figs. 4�c�–4�f�. The coupling to the electrodes both intro-
duces a finite broadening and shifts the position of the reso-
nance, through the self-energies in Eq. �4�. In this case, only
a single, diagonal component of the surface Green’s function
enters and the energy dependence is illustrated in Figs. 3�a�
and 3�b�. In the M odd case, a central peak occurs in the
density of states and in the transmission. The real part of the
self-energies is zero at E=0, so there is no shift, just a broad-
ening. For longer chains, other, symmetrically disposed
peaks are observed. For the M even case, only the symmetri-
cally placed peaks are present. In both cases, the positions of
the transmission peaks are shifted relative to the isolated
polyene orbital energies. For example, for M =2, the isolated
orbital energies are ±t, but the final coupled resonance posi-
tions are closer to ±0.5t, shifted by the real part of the self-
energy in Fig. 3�a�. For energies more than about 0.5t from
the Fermi energy of the CNT, structures from the Van Hove
singularities in the CNT electrodes enter. The transmission at
the Fermi energy �E=0� is always unity in the odd case,
although the width of the transmission peak gets systemati-
cally narrower for longer chains. For the even cases, the
transmission is constant, independent of chain length. How-
ever, it is specifically not unity.

In terms of the single component of the surface Green’s
function, gs1,1�E=0�=−i�, the self-energies at the Fermi en-
ergy are just �=−i�2� �see Eq. �4��. Using the recursion
method, the transmission for a symmetric junction is just
T�E=0�=1 for M odd and

T�E = 0� =
4�4�2t2

��4�2 + t2�2 �18�

for M even. For the ideal case considered in Fig. 4, the
transmission for M even evaluates to T�E=0�=48n2 / �3
+4n2�2 for �n ,n� electrodes. The analytic solution verifies the
length independence and the monotonically decreasing trans-
mission in the even case as a function of CNT diameter. The
length independence of the transmission can be understood
with reference to the polymeric limit of the ideal polyene
which does not have a band gap at E=0. As a consequence,
the states near E=0 in the junction with a finite polyene
segment do not exhibit exponential decay in the molecule
region.34

More generally, the transmission maxima correspond to
the DOS peaks in the energy range near E=0, before the
onset of the Van Hove related structure, and correspond to
one ideal channel, T=1. The uncut armchair CNT has two
bands crossing at the Fermi energy. In the energy range be-
tween the nearest Van Hove singularities, there are just two
electronic channels available for conductance. When a mo-
lecular resonance in the junction falls in this range, it opens
exactly one channel for conductance. Although the peak
transmission on the resonances is exactly unity, the width of

the transmission resonances depends on the length of the
chain. The recursion analysis can be extended to finite en-
ergy, small compared to t, for the odd M polyene to derive

T�E� =
16�4�2/�M + 1 + 2�2��2

E2 + 16�4�2/�M + 1 + 2�2��2 , �19�

where Re gs1,1�E�=−�E is assumed, following the results
shown in Fig. 3�a� which suggest ��1/ t2. This illustrates
the chain length dependence of the transmission resonances.

When the calculations are repeated with a finite value of �
to represent the effects of dephasing on electrons transmitted
through the junction, the transmission resonances are no
longer unity at the peak. The recursion analysis shows that
for the M odd case,

T�E = 0,� � 0� =
16�4�2

��M + 1�� + 4�2��2 . �20�

The dephasing leads not only to increased broadening of the
resonance but also to reduced transmission at the peak.

So far, the analysis has focused on an idealized model
where the single molecular strand was a fragment of the rigid
CNT structure. In practice, a finite molecular wire with de-
localized � states has lower energy with alternately bond
lengths. For simplicity, the bonds are modeled as alterna-
tively shorter and longer than the ordinary C–C bonds in the
CNT, by equal amounts, resulting in td= t+�t and ts= t−�t.
Furthermore, the electronic hopping energy between the end
of the CNT and the � system of the molecule will be modi-
fied by the details of the chemical link �e.g., the amide link-
age utilized in recent experiments19�. This is modeled by
varying �. Finally, the C–C bond lengths will relax at the end
of the armchair CNT as well. A limited exploration of the
impact of CNT end relaxation suggests that it does not quali-
tatively influence the transmission characteristics.

The inclusion of the bond alternation leads to a numeri-
cally calculated transmission versus energy qualitatively
similar to Fig. 4�d�. However, the transmission at the Fermi
energy depends on molecular length. It decreases exponen-
tially as the polyene length increases. The bond alternation
opens a gap of 4�t in the band structure in the polymeric
limit. As the parameters td and ts are modified to open larger
gaps in the DOS, the exponential decay constant increases.
Analytically, the recursion method can be applied, with
slightly more complicated iterates, to derive

T�E = 0� =
4�4�2ts

2e�M

��4�2 + ts
2e�M�2 , �21�

where �=2 ln�td / ts�. In the limit of large M, the transmission
decays exponentially, e−�M, as generally expected.32,33 The
expression for the decay constant agrees with previous
studies.34–36

The impact of the link hopping between the CNT � sys-
tem and the molecule ��� depends on the magnitude of the
surface Green’s function, and hence the diameter of the CNT.
For fixed link hopping, increased CNT diameter leads to re-
duced transmission at the Fermi energy for the bond alter-
nated polyene. The broadening of the molecular resonances
that bracket the Fermi energy is reduced �Eq. �16��. Of
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course, with reference to Eq. �21�, this changes qualitatively
for sufficiently large hopping parameter at the link to the
CNT ���. For the �� t to �� t regime, the transmission de-
creases as 1/d2, while for large hopping parameter, the trans-
mission increases like d2. In fact, for a given magnitude of
the surface Green’s function, the transmission can, in prin-
ciple, be optimized to unity by proper choice of �. In prac-
tice, the link bonding is very unlikely to lead to a hopping
energy that exceeds the � electron hopping energy t within
the CNT electrode.

B. Two-polyene junctions

In experiments, it is often unknown whether a single mol-
ecule or multiple molecules bridge the gap between the two
electrodes. From the theoretical perspective, it is interesting
to understand how quantum mechanical interference effects
influence the transmission properties when multiple mol-
ecules occur in the junction.37 The case of CNT electrodes
considered here offers the advantage of well-defined, single
points of attachment for the molecules. Furthermore, for the
armchair CNT electrodes considered here, symmetry signifi-
cantly simplifies the problem, enabling a clear picture. In this
section, we analyze junctions bridged by two identical poly-
enes.

With reference to Fig. 2�a�, the available attachment
points are atoms 1,4,5,8,…. on the circumference. In general,
the transmission depends on the two attachment points on the
left and on the right: Ti,j;i�,j��E�. The left and right embed-
ding self-energies will be 2	2 matrices and depend on the
attachment points,

�i,j = �� 0

0 �
��gsi,i gsi,j

gsj,i gsj,j
��� 0

0 �
� , �22�

where the link coupling for the two polyenes is assumed to
be the same for simplicity. As discussed in Sec. II C, there
are two distinct symmetry types �4l ,4l+1� according to the
graphene sublattice from which they derive �
=1,
=2�.
While the diagonal surface Green’s function matrix elements
are identical by symmetry, the off-diagonal elements con-
necting a pair of sites on the circumference depend on the
symmetry type and the separation. This results in two distinct
types of embedding self-energy to consider: when the attach-
ment points are from the same sublattice,

�4l,4l��E = 0� = �4l+1,4l�+1�E = 0� = �2�− i� − i�

− i� − i�
� ,

�23�

and when the attachment points are from distinct sublattices,

�4l,4l�+1�E = 0� = �4l+1,4l��E = 0� = �2� − i� ��l − l��
��l − l�� − i�

� .

�24�

We carefully distinguish three distinct types of junction
formed by two bridging polyenes according to the attach-
ment points on the left and on the right: �i� same sublattice
left and right, �ii� different sublattice left and right, and �iii�

same sublattice left and different sublattice right. Specific
examples of cases �i� and �ii� are illustrated in Figs. 5�a� and
5�b�, where the two bridging polyenes are parallel. Before
we discuss each in turn, first note that for either case �i� or
case �ii�, a new basis can be chosen such that the space of the
two contact points at each side is properly expressed in an
odd channel and an even channel.

For case �i�, the embedding self-energy on the left and on
the right �Eq. �23�� are independent of the specific indices of
the attachment points �l , l�� on the right or on the left. Fur-
thermore, the self-energy matrix is singular. In the new basis,

�L�R��0� = �2�− 2i� 0

0 0
� . �25�

The odd channel has no coupling to the electrode and hence
makes no contribution to the transmission. On the other
hand, the self-energy for the even channel is exactly twice as
large as the self-energy for a single polyene, ��E=0�
=−2i�2�. As a result, the transmission through two ideal M
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FIG. 5. �Color online� Transmission of two parallel M =7 ideal
polyenes in the junction versus energy near the Fermi energy for
�5,5� CNT electrodes. The same contact point combination is as-
sumed for both the left and the right electrode, resulting in parallel
molecules. One of the polyenes attaches to each lead at a point
defined by �1=0, while the other attaches to each lead at another
point denoted as �2, with the angular measure defined in Fig. 3. The
top panel visually illustrates the two distinct cases. �a� An example
of case �i�, where the two attachment points on each side are of the
same sublattice, and �b� an example of case �ii�, where the two
attachment points are of different sublattices. �c� Transmission of
case �i�. For comparison, transmission is also shown for a single
polyene in the junction. ��d�–�h�� Transmission of case �ii� for the
specified values of �2.

THEORETICAL STUDY OF TRENDS IN CONDUCTANCE… PHYSICAL REVIEW B 76, 115408 �2007�

115408-7



odd polyenes in this case is still exactly unity at E=0, but
exhibits twice the width. This is illustrated in Fig. 5�a�. Fur-
thermore, this argument generalizes to n ideal M odd poly-
enes in the junction, provided the attachment points to each
electrode are from the same sublattice. For the case of two M
even polyenes, Eqs. �18� and �21� apply for the ideal and
bond alternated chains, respectively, upon substituting 2� for
�. In the physically relevant regime of link coupling �, the
transmission for two molecules is enhanced relative to the
single-molecule case. Thus, the quantum interference effects
are quite simple in this case.

For case �ii�, the embedding self-energy on the left and on
the right �Eq. �24�� explicitly depend on the specific indices
of the attachment points �l , l�� on the right or on the left. In
the new basis,

�L�R��0� = �2�− i� + �L�R� 0

0 − i� − �L�R�
� . �26�

The recursive solution for the effective Green’s function pro-
ceeds as before for the even and odd channels separately. The
transmission is the sum of the contributions from the two
channels. For the case of two ideal M odd polyenes,

T4lL,4lL�+1;4lR,4lR�+1�E = 0� =
8�2

4�2 + ��L + �R�2 . �27�

The real coupling ��l− l�� depends on the separation between
the attachment points, as illustrated in Fig. 3�d�. It governs
the impact on the interference effects, as illustrated for the
special case of �L=�R shown in Fig. 6�a�. The intersite cou-
pling � vanishes for � angular separation, resulting in two
full channels of transmission, T�E=0�=2. However, where
the coupling is nonzero, interference suppresses the transmis-
sion, even to a value less than that for a single molecule in
the junction. Physically, the real intersite coupling through
the CNT electrodes results in a shift of the resonances away
from the Fermi energy. This is illustrated in Figs. 5�b�–5�f�
for a few representative angles where the T�E� can show a
double peak structure.

For a pair of M even polyenes attached to the electrodes
at points from different sublattices, the recursive solution
yields

T4lL,4lL�+1;4lR,4lR�+1�E = 0�

=
8�4�2ts

2e�M

��4�2 − �4�R�L + ts
2e�M�2 + �8�2�R�L

. �28�

This should be compared to the single polyene case in Eq.
�21�. In the limit of zero intersite coupling �, the transmis-
sion is just doubled compared to a single molecule in the
junction. As illustrated in Fig. 6�b�, for a junction with �L
=�R and no bond alternation, the influence of the coupling
through the electrodes is quite modest for the even polyene
case. Physically, the even polyene already exhibits a gap in
the spectrum at the Fermi energy. The additional splitting
between the odd and even channels has a small effect.

For case �iii�, the junction is asymmetrical with the left
side attachment sites being from the same sublattice and the
right side attachment sites being from opposite sublattices. In

this case, although both even and odd channels are coupled
to the right electrode, only the even channel couples to the
left electrode. Thus, only the even channel contributes. For
the M odd ideal polyene,

T4lL,4lL�;4lR,4lR�+1�E = 0� =
8�2

9�2 + �R
2 . �29�

Even in the limit of zero coupling through the CNT on the
right, the transmission never exceeds unity due to the asym-
metry of the junction. For the M even polyene,

T4lL,4lL�;4lR,4lR�+1�E = 0� =
8�4�2ts

2e�M

�2�4�2 + ts
2e�M�2 + 4�8�2�R

2 .

�30�

As in the M odd case, the asymmetry of the junction reduces
the transmission relative to the symmetric case �Eq. �28��.

Since interference effects play a role in the transmission,
it is interesting to ask the extent to which dephasing or struc-
tural fluctuations28 alter those effects. The most sensitive ex-
ample is case �ii� illustrated in Figs. 5 and 6. Physically, the
fluctuations must shift the frontier molecular orbital energies
by an amount comparable to the width or splitting illustrated
in Fig. 5 to have a significant effect. This scale is set by the
structure of the self-energies, e.g., Eq. �24�. One would ex-
pect fluctuations in the orbital energies to be a relatively
small fraction of the � hopping parameter t, of order 0.1t.
For the case of ideal coupling and CNT size illustrated in
Fig. 6, small changes result �less than 10%�. However, the
effective coupling parameter � could be relatively small, de-
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FIG. 6. �Color online� Transmission at the Fermi energy through
a junction containing two ideal polyenes in case �ii� where the two
attachment points on the left and on the right are from different
sublattices. Symmetric junctions are assumed corresponding to par-
allel molecules in the junction. Transmission is plotted as a function
of angular separation between the attachment points. Three different
CNT electrodes are considered, as indicated. Ideal polyenes with �a�
M odd and �b� M even are considered. The transmission is length
independent.
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pending on the details of the actual chemical link. In addi-
tion, � is inversely proportional to the size of the CNTs,
while the real couplings �L�R� only depend on the relative
positions of the attachment points. For any given fluctuation,
the ratio between the fluctuation and ��2, as well as the ratio
��L+�R� /�, would compete to determine the interference. To
fully analyze the expected transport through such narrow
resonances, more details of the effect of fluctuations and
dephasing processes would be necessary.

C. Polyacene junctions

The third type of junction illustrated in Fig. 1 consists of
a series of fused rings �a polyacene� coupled to the CNT
electrodes through two points of attachment at each end. To
be more general, we consider the contact coupling ��� sepa-
rately and also allow for a distinct hopping along the edge of
the polyacene �t1� and between the edges �the upright rungs,
t2�. We consider a series of junctions where the isolated poly-
acene corresponds to the molecules with r=1,2 ,3 , . . . fused
rings: benzene, naphthalene, anthracene, etc. In the simple
TB model, the � electron orbital energies form a symmetric
set with respect to E=0, illustrated in Fig. 7�a�. The states
are superposed on the band structure for the corresponding
infinite polymer. Note that the states with zero energy at the
zone boundary only exist in the polymeric limit, not being
compatible with the boundary conditions for the � states of a
finite molecule considered here. When coupled to the elec-
trodes, the resulting resonances are shifted and broadened,
just as for the polyene case. Numerical results for the trans-
mission as a function of energy are illustrated in Fig. 7�b� for
the ideal case of �= t2= t.

The left and right electrode self-energies are of the same
form as in Eq. �24�, specifically �1,4. The recursion calcula-
tion is simplified by considering the even and odd channels
separately, for the contributions from the two species are just
the same and independent. For a polyacene with r rings, the
result for the transmission at the Fermi energy is

T�E = 0� =
8�4�2

4�4�2 + �2�2� − �r + 1�t2�2 , �31�

which reduces to the result of a two M odd polyenes �Eq.
�27�� when t2→0, as it should. The real part of the self-
energy is negative in this case �from Fig. 3, ��0�. There-
fore, as a function of molecular length �number of rings r�,
the transmission is less than unity and monotonically de-
creasing. As the number of rings is increased, the energy
separation between the acene orbital energies gets smaller.
This is illustrated in Fig. 7�b�. However, the tunneling dis-
tance is also increasing so the transmission at E=0 does drop
with the increasing acene length. However, the decrease is
not exponential, as seen in Fig. 7�c�. In this model, the band
structure in the limit of an infinite polyacene chain does not
have an energy gap. However, the bands forming the even
and odd channels separately do have gaps. Their band edges
coincide at E=0. Thus, the transmission is calculated just at
the band edge. The result is the algebraic length dependence
found here.

From experiment, it is not known whether the polyacenes
show a gap in the limit of long chain length. DFT based
calculations actually show a slight band overlap at the zone
edge, indicative of a semimetal. Correcting for known errors
in the DFT eigenvalues by evaluating the electronic correla-
tion energy in the GW approximation suggests a finite gap.38

In the present TB model, we illustrate this issue by introduc-
ing a third neighbor coupling t3 across each ring parallel to
the vertical rungs of the acene �Fig. 8�. When sign�t3�=
−sign�t2�, there is an energy gap between the even and odd
bands nearest the Fermi energy �E=0�. The numerical results
for the transmission at the E=0 now show an exponential
length dependence. If the sign is the same, these bands over-
lap with the Fermi energy �E=0� crossing both. For special
values of length for the finite molecules, the resonances can
fall near E=0, resulting in transmission resonances.

IV. CONCLUSION

Within a tight-binding model for the � electrons, the
transmission T�E� of simple prototype aromatic organic mol-
ecules covalently bonded to metallic CNT leads presents a
tractable model problem in the field of single-molecule con-
ductance studies. The examples we chose give a clear picture
for the properties of the transmission, on resonance or off
resonance, and the role of interference effects, for multiple
molecules in the junction or for multiple contact points.
These properties result from the interplay among CNT diam-
eter, molecular length, contact strength and location, and the
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molecular dimerization. The basic results for transmission at
the Fermi energy can be obtained analytically. This is supple-
mented by numerical calculations for the energy dependence
of the transmission.

In the most ideal case, one can imagine the junction being
formed by removing C atoms from the junction region, leav-
ing one or more ideal strands. Even so, a single strand �ideal
polyene� leads to unit transmission at the Fermi energy only
in the case of an odd number of atoms. For two such strands,
the transmission is sensitive to the details of the contact sites
due to interference effects. The transmission approaches that
of an infinite CNT �T�E=0�=2� in special cases, while for
other choices it can even yield T�E=0�→0. The odd and
even symmetry channels result in resonances that are split in
energy around the Fermi energy due to the coupling through
the CNT electrodes. If instead, an ideal, bonded double
strand �polyacene� forms the junction, the transmission at the
Fermi energy is low, the opposite of a naive idea of restoring
two full conductance channels. The resonances are separated
from the Fermi energy for the ideal polyacene.

Results for these idealized junctions illustrate that achiev-
ing molecular junctions with a full quantum of conductance
is more subtle than simply maintaining a well matched bond-
ing network. The details of the quantum mechanical coupling
can lead to quite varied transmission values because the spe-
cific bonding networks in the junction tend to result in reso-
nances separated from the CNT electrode Fermi energy. In-
clusion of more realistic details in the model, such as the
bond alternation that is common in aromatic fragments, gen-
erally leads to transmission with off-resonance tunneling
characteristics, e.g., exponential length dependence. More re-
alistic treatment of the electrostatic potential profile �not con-
sidered here� will alter the quantitative characteristics, but
not the overall picture. Finally, the case of semiconducting
CNT electrodes, together with a back gate to tune the chemi-
cal potential, breaks the electron-hole symmetry and may
offer more flexibility to achieve resonant tunneling condi-
tions for molecular junctions.

While the CNT electrodes offer the opportunity for
chemically well controlled junction formation, they also
have a relatively low density of states at the Fermi energy.
This results in modest broadening of the molecular reso-
nances in the junction. With relatively sharp resonances, the
conditions for resonant transmission, the condition under
which a full quantum of conductance will be realized, be-
come rather delicate to achieve. On the other hand, if an
external control mechanism can be realized, this presents the
opportunity for more sharply defined switching and other
nonlinear conductance phenomena.
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APPENDIX: ELECTRONIC STATES FOR SEMI-INFINITE
„N ,N… CARBON NANOTUBE

The �n ,n� CNT surface Green’s function in the text re-
quires a formulation of the wave functions in the nearest
neighbor TB model for the states which satisfy appropriate
boundary conditions at the end of the semi-infinite tube. The
graphene lattice and basic notation are illustrated in Fig. 2.
The TB Hamiltonian for graphene at wave vector k,

H�k� � t�0 �*

� 0
� = t� 0 1 + e−ik·a1 + e−ik·a2

1 + eik·a1 + eik·a2 0
� ,

��� = �3 + 2�cos k · a1 + cos k · a2 + cos k · �a1 − a2�� ,

yields eigenvalues and eigenvectors


k,+ = t���, �k,+ =
1

�2���
����

�
� ,


k,− = − t���, �k,− =
1

�2���
� �*

− ��� � ,

corresponding to envelope wave functions �local orbital sup-
pressed�

�k,±�R,
� =
1

��
eik·R�k,±�
� . �A1�

The normalization factor here � is the total number of unit
cells in the system.
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An armchair edge is formed by cutting the graphene along
the direction of vector R�=a1−2a2 �Fig. 2�. The states for
this semi-infinite system are developed from the degenerate
states at ±kx in the infinite graphene sheet:39 k=k1

G1

2� +k2
G2

2�

and k�=−k1
G1

2� + �k2−k1�
G2

2� :

��k,
;R,
� = c1�k,
 + c2�k�,
. �A2�

The boundary condition imposed requires the wave function
in Eq. �A2� to be zero on the line of sites that fall just outside
the edge in Fig. 2:

��k,
;R0 + lR�,
 = 1� = 0,

��k,
;R1 + lR�,
 = 2� = 0, �A3�

where R0=0, R1=−a2, and l is any integer. With the coeffi-
cients c1= 1

��/4
�k�,��1� and c2=− 1

��/4
�k,��1�, one can show

that the boundary conditions are satisfied. Only those states
indexed by +kx are unique.

The armchair CNT imposes periodic boundary conditions
in the y direction �Fig. 2� such that the allowed k vectors
satisfy k ·nR�=2m�, restricting the hexagonal Brillouin
zone summation to lines of k1−2k2=2�

m
n .13 The dispersion

relation also exhibits +ky to −ky symmetry. The required sur-
face Green’s function components only involve sites 4l and
4l+1. In terms of the graphene lattice, these correspond to

�R=−a1+ lR� ,
=2� and �R=−a2+ lR� ,
=1�, respectively.
The necessary wave function components on these sites are
given explicitly:

��k,
+;R = − a2 + lR�,
 = 1�

=
1

��/4

1

2
�ei�lk1−�2l+1�k2� − e−i�lk1+�2l+1��k2−k1��� , �A4�

��k,
+;R = − a1 + lR�,
 = 2�

=
1

��/4

1

2���
��ei��l−1�k1−2lk2� − ��e−i��l−1�k1+2l�k2−k1��� ,

�A5�

��k,
−;R = − a2 + lR�,
 = 1�

=
1

��/4

1

2���2
���*�*ei�lk1−�2l+1�k2�

− �*��*e−i�lk1+�2l+1��k2−k1��� , �A6�

��k,
−;R = − a1 + lR�,
 = 2�

=
1

��/4

1

2���
�− ��*ei��l−1�k1−2lk2� + �*e−i��l−1�k1+2l�k2−k1��� .

�A7�

Here, �=�k and ��=�k�=e−ik1�.
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