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Anderson’s orthogonality catastrophe �Phys. Rev. Lett. 18, 1049 �1967�� in graphene, at energies close to the
Dirac point, is analyzed. It is shown that, in clean systems, the orthogonality catastrophe is suppressed due to
the vanishing density of states at the Dirac point. In the presence of preexisting localized states at the Dirac
energy, the orthogonality catastrophe shows features similar to those found in normal metals with a finite
density of states at the Fermi level. The implications for the Kondo effect induced by magnetic impurities, and
for the Fermi edge singularities in tunneling processes, are also discussed.
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I. INTRODUCTION

Graphene has attracted a great deal of attention recently
due to its novel fundamental properties and potential
applications.1–5 It is, by now, well established that its elec-
tronic properties at low energies are well described by the
two-dimensional Dirac equation. At half filling, graphene
should be a semimetal, with a vanishing density of states.
This fact implies that many properties of a metal, which are
parametrized by the density of states at the Fermi level, are
different in a clean graphene sample. The description of the
electronic bands in graphene based on the Dirac equation
also leads to localized states in samples with edges6,7 or lat-
tice defects.8,9 These states change the density of states near
the Dirac energy, as they induce a peak at this energy. Hence,
the density of states of graphene at the Dirac energy can
either vanish, in a clean sample, or diverge, if localized states
are induced.

We study here Anderson’s orthogonality catastrophe10

�AOC� in clean and dirty graphene. The AOC can be consid-
ered the simplest nontrivial feature in the response of a
metal, and it is dependent on the value of the density of
states at the Fermi level. The AOC directly leads to many
singularities in experiments which probe the dynamical re-
sponse of a metal, like the Fermi edge singularity in x-ray
absorption11,12 and singularities in the optical and transport
properties of quantum dots and metallic grains.13–16 In
graphene, the interplay between the AOC and Coulomb
blockade may be relevant for the analysis of transport experi-
ments on small quantum dots.5,17

The Kondo effect induced by magnetic impurities in met-
als can be seen as a direct consequence of Anderson’s or-
thogonality catastrophe.18,19 The coupling between the impu-
rity spin and the conduction electrons can be divided into a
transverse term, J�, which leads to spin-flip processes, and a
longitudinal term, J�, which induces an AOC associated with
the same spin flips. This AOC leads to a strong suppression
of spin fluctuations, although the effects of J� prevail at the
lowest temperatures. These two competing processes can be
defined, in a very transparent way, in the dissipative two
level system,20 which is equivalent to the Kondo Hamil-
tonian. The Kondo temperature TK can be seen as the scale at

which spin-flip processes ultimately cut off the AOC. The
formation of a Kondo singlet in semimetallic systems was
studied in Refs. 21 and 22. The vanishing of the density of
states at the Fermi level leads to the suppression of the
Kondo effect and to the existence of a quantum phase tran-
sition above a finite value of the exchange coupling. The
relevance of the energy dependent density of states for the
Kondo effect in graphene was pointed out in Ref. 23.

The AOC is modified in disordered metals24 and ballistic
mesoscopic systems due to the changes in the electronic
wave functions.25,26 We will analyze the AOC in graphene
using the numerical methods explained in Refs. 25 and 26
�see also Ref. 27� and also a phase shift analysis similar to
that in Ref. 10.

We analyze first the phase shifts induced by a local po-
tential, first in clean graphene and then in graphene in the
presence of preexisting localized levels. The next section
presents a numerical study of the full overlap between the
electronic ground state before and after the potential is
turned on, and an analysis of the scaling of this quantity with
system size. The last section discusses the main implications
of our work for the Kondo effect in graphene, and the Fermi
edge singularities associated with tunneling processes.

II. PHASE SHIFT ANALYSIS

The overlap S between the Slater determinants which de-
scribe the electronic wave function before and after a poten-
tial is switched on can be written as10

S � N exp�− �
l

2l + 1

3�2 sin2��l�� , �1�

where N is the number of electrons and �l is the phase shift
induced by the potential in the scattered waves at the Fermi
level with angular momentum l. In a typical metal, a weak
local potential of strength �0��F induces a phase shift in the
s channel which can be approximated by �0	�0N��F��1,
where N��F� is the density of states at the Fermi level.
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This analysis can be extended in a straightforward way to
graphene, where the electronic wave functions can be ap-
proximated by the two-dimensional Dirac equation �see be-
low�:

H 
 vF� 0 ±kx + iky

�kx + iky 0
� , �2�

where the two signs correspond to the two inequivalent cor-
ners of the Brillouin zone of the honeycomb lattice.

We use Eq. �1� in order to describe the dependence of the
overlap on the number of electrons, by computing analyti-
cally the phase shifts induced by different types of potentials.

In the following, we use energy and momentum units such
that vF=1.

A. Clean graphene

We analyze first the phase shifts induced by a circular
potential well in clean graphene, and we describe the elec-
tronic wave functions using the continuum Dirac equation
�Eq. �2��. We expect that this approximation will describe
qualitatively the effects of a local perturbation in the
graphene lattice.

We assume that the potential well can scatter electrons
between the K and K� valleys, as is the case for sufficiently
localized potentials in graphene.

Using cylindrical coordinates, the Hamiltonian in the
clean system can be written as

H 

0 ie−i��r +

e−i�

r
�� 0 0

iei��r −
e−i�

r
�� 0 0 0

0 0 0 − iei��r +
ei�

r
��

0 0 − ie−i��r −
e−i�

r
�� 0

� , �3�

where the two first entries correspond to the K point, and the
two last ones to the K� point.

We add a constant perturbation in the region r�R0:

V 

�0 0 0 	

0 �0 	 0

0 	 �0 0

	 0 0 �0

� , �4�

where �0 is a constant energy shift and 	 is a potential which
induces scattering between the two valleys, and it is compat-
ible with the symmetries of the honeycomb lattice.28

We analyze the scattering of an incident s wave with in-
coming energy k:


inc�r,�� 
 
J0�kr�

− iJ1�kr�ei�

0

0
� , �5�

where J0�x� and J1�x� are Bessel functions of the first kind.
They satisfy limx→0J0�x�	1 and limx→0J1�x�	x /2.

The reflected waves outside the well can be written as


ref�r,�� 
 R1
Y0�kr�

− iY1�kr�ei�

0

0
� + R2

0

0

iY1�kr�ei�

Y0�kr�
� . �6�

Y0�x� and Y1�x� are Bessel functions of the second kind.
They satisfy limx→0Y0�x�	2/��log�x /2�+�� and
limx→0Y1�x�	−2/ ��x�. The first contribution on the right
hand side of Eq. �6� is a reflected wave in the same valley,
and the second term is a wave in the opposite valley as the
incident wave.

Inside the potential well, the spectrum has a gap for en-
ergies �0−	����0+	. Within this range of energies, the
wave function inside the well can be written as
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trans�r,�� 
 T1
�	2 − k�2

�2	
I0�k�r�

+ i
k�

�2	
I1�k�r�ei�

0

1
�2

I0�k�r�
�

+ T2
ik�
�2	

I0�k�r�

�	2 − k�2

�2	
I1�k�r�ei�

i
1
�2

I1�k�r�ei�

0

� . �7�

I0�x� and I1�x� are modified Bessel functions of the first kind.
They satisfy limx→0I0�x�	1 and limx→0I1�x�	x /2. The
value of k� in Eq. �7� is given by �=�	2−k�2. As k=�+�0,
we have k�=�	2− �k−�0�2.

For ��−�0��	, we have


trans�r,�� 
 T1
1

�2	
J0�k�r�

− i
	

�2�	2 + k�2�
J1�k�r�ei�

0

	

�2�	2 + k�2�
J0�k�r�

�
+ T2

i	
�2�	2 + k�2�

J0�k�r�

1
�2

J1�k�r�ei�

	

�2�	2 + k�2�
J1�k�r�ei�

0

� , �8�

and �=�	2+k�2 and k�=��k−�0�2−	2.
The scattering phase shifts are determined by the reflec-

tion coefficients R1 and R2 defined in Eq. �6�. The boundary
conditions at r=R0 are simply the continuity of the spinors,
which define a set of four equations for the four variables R1,
R2, T1, and T2.

For 	=0, we have R2=T2=0 and R1= R̄. As limx→J0�x�
	�2/ ��x� cos�x−� /4� and limx→Y0�x�	�2/ ��x� sin�x
−� /4�, the phase shift � is tan�= R̄. We find

tan� = R̄�kR0�

= −
J1��k − �0�R0�J0�kR0� − J0��k − �0�R0�J1�kR0�
J1��k − �0�R0�Y0�kR0� − J0��k − �0�R0�Y1�kR0�

�9�

and

lim
kR0→

R̄�kR0� = tan��0R0� . �10�

Results for �0R0=0.5 and 	R0=0.1 are shown in Fig. 1. In
all cases, with or without �Eq. �9�� intervalley scattering, the
reflection coefficients vanish at the Dirac point, k=0. This
result can be simply understood by noting that a finite reflec-
tion coefficient implies a reflected wave function with a com-
ponent Y1�kr�, which diverges as k→0. The phase shift van-
ishes linearly as k→0, in agreement with general arguments
based on the vanishing of the density of states at the Dirac
point.

The vanishing of the phase shift at the Dirac point implies
that the overlap between the Slater determinants before and
after the potential is switched on does not scale like some
power of the number of electrons, and the AOC does not take
place at this energy.

B. Phase shift analysis in the presence of a localized state

Next, we study the phase shifts induced by a weak poten-
tial near the edges of a circular void which supports surface
states. A sketch of the model is shown in Fig. 2. We will
neglect intervalley scattering terms, which is justified even
for impurities of an extension of the order equal to or larger
than the lattice spacing. This can be seen easily by a straight-
forward approximation of the impurity by a Gaussian and
subsequent Fourier transformation to reciprocal space.29 The
wave function can, thus, be written as


�r̃� 
 ��1�r̃�
�2�r̃�

� . �11�

The edge of a crack, or extended vacancy, is modeled by the
boundary condition:
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FIG. 1. �Color online� Reflection coefficients R1 and R2 �solid
and broken lines, cf. Eq. �6�� of a circular well with �0R0=0.5 and
	R0=0.1.
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�1�r̃� = 0, r̃ � � , �12�

where � is the boundary of the void.
We analyze a circular void of radius R�. The boundary

condition �Eq. �12�� allows for solutions at zero energy of the
type


�r̃� 
  0

e±in�

rn � , �13�

where the two signs correspond to the two inequivalent cor-
ners of the Brillouin zone.

Equation �12� implies, for s-wave scattering,

�0J0�kR�� + �0Y0�kR�� = 0. �14�

The phase shift induced by the void, before the potential
whose effect we want to calculate is turned on, is �see also
Ref. 30�

�0�k� = arctan��0

�0
� = − arctan� J0�kR��

Y0�kR��
�

——→
k→0

−
�

2

1

ln�kR��
. �15�

Next, we model a weak impurity near the void as an iso-
tropic perturbation of depth �0, defined in the region R�
� �r̃��R. Following Eqs. �5� and �6� and neglecting interval-
ley scattering, the wave function can be written as


�r̃� 
 ��
��J0��k + �0�r� + ��Y0��k + �0�r�

��J1��k + �0�r�ei� + ��Y1��k + �0�r�ei� � , R� � r � R

� �J0�kr� + �Y0�kr�
�J1�kr�ei� + �Y1�kr�ei� � , R � r , � �16�

with boundary conditions

��J0��k + �0�R�� + ��Y0��k + �0�R�� = 0,

��J0��k + �0�R� + ��Y0��k + �0�R� = �J0�kR� + �Y0�kR� ,

��J1��k + �0�R� + ��Y1��k + �0�R� = �J1�kR� + �Y1�kR� .

�17�

These equations allow us to obtain the phase shift of the
combined system, void and circular impurity, as �
=arctan�� /��. The overlap between the Slater determinants
before and after the impurity potential is switched on is de-
termined by the phase difference, �−�0, where �0 is given in
Eq. �15�.

Results for the individual phase shifts � and �0, as well as
their difference, are shown in Fig. 3 for �0=0.1,R�=0.9, and
R=1. In this regime of energies much lower than �0, the
phase shift � seems to approach �0 from below, indicating
that the repulsive character of the void is weakened by the
additional constant potential. For the small energies close to
the Dirac point focused on here, the relative phase shift, �

−�0, is always finite and seems to approach a constant. This
behavior differs strikingly from our findings for clean
graphene, where the vanishing of the phase shift at the Dirac
point �cf. Fig. 1� indicates the suppression of AOC. In the
presence of voids, the small dependence of the phase shift
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FIG. 3. �Color online� Phase shift �0 induced by a void, the
phase shift � resulting from the additional switching on of a con-
stant potential, and the resulting relative phase shift �−�0 induced
by a circular impurity potential surrounding a void �see text for
details�.
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V(r)
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FIG. 2. �Color online� Sketch of the model with circular sym-
metry used to study the AOC in the presence of localized levels. An
infinite potential exists for 0�r�R�, mimicking a vacancy. The
perturbation leading to the AOC is modeled as a constant potential,
�0, for R��r�R �see text for details�.
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induced by an additional external potential on energy near
the Dirac point implies that the overlap between Slater de-
terminants should scale with the number of electrons in a
similar fashion to that in a normal metal with a finite density
of states. We shall see in the remainder of this paper that
there are, indeed, considerable differences between clean
graphene and graphene with localized states that are visible,
e.g., in the behavior of the AOC overlap.

III. CALCULATION OF THE OVERLAP

A. Clean graphene

The overlap between the unperturbed and perturbed Slater
determinants for clean graphene clusters of different sizes
has been calculated using the methods described in Refs.
25–27. The perturbation is a local potential at a given site,
	=�0. Its strength is measured in terms of the scaled pertur-
bation strength �	 /d, with d being the mean level spacing,
6 / ��N�N+1�−2��. Periodic boundary conditions are used in
systems with N�N unit cells, up to N=80; the vertical
stripes visible in Fig. 4 are an artifact of the periodic bound-
ary conditions. The results for the overlap for N=12 and
different potential strengths �ranging from weak to strong for
repulsive as well as attractive perturbations� are shown in
Fig. 4. An effective phase shift can be defined by dividing
the energy shift of the level closest to the Fermi energy by
the average level spacing in that energy range. This phase
shift is also shown in Fig. 4.

The dependence of the overlap with system size is differ-
ent at the Dirac point from that at other energies. This de-
pendence is shown in Fig. 5. The overlap is almost indepen-

dent of system size at the Dirac point �cf. the upper panel�.
This result is consistent with the phase shift analysis, which
shows that the phase shift vanishes at the Dirac point. In-
deed, AOC is suppressed at the Dirac point. Away from the
Dirac point, the conventional behavior of the AOC overlap is
recovered �see the lower panel of Fig. 5�. To this end, AOC
overlaps for fillings ranging from 0.54 to 0.56 were averaged
over. Clearly, the AOC overlap is no longer suppressed and
approaches zero in the thermodynamic limit following the
well-known power-law dependence on the number of par-
ticles ���N�N+1�−2�, cf. inset of Fig. 5�.

B. Graphene with localized states

The method described in Ref. 27 assumes that the wave
functions of all eigenstates of the unperturbed system have
the same weight on the site where the perturbation is turned
on. This leads to a considerable simplification of the calcu-
lation of the overlap between Slater determinants. Generali-
zation of this method to chaotic mesoscopic systems13,25,26

was done based on the statistical properties of the chaotic
wave functions.

In the presence of a defect which induces a localized
state, like a vacancy, the wave functions of the unperturbed
state, where the localized state is already present, do not
possess translational symmetry. Therefore direct diagonaliza-
tion and calculation of the overlap determinants were used
for the study of clusters of moderate sizes.

FIG. 4. �Color online� Overlap and effective phase shift as func-
tion of filling and potential strength �see text for details�.
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panel� and away from the Dirac point �at fixed filling 0.55, corre-
sponding to �F�0.67; lower panel�. See text for details.
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Results for the overlap for clusters with 12�12 unit cells
are shown in Fig. 6. At the Dirac point, the presence of a
vacancy, which induces a localized state, enhances signifi-
cantly the dependence of the overlap on the strength of the
potential. Away from the Dirac point, the difference in the
overlap with and without a vacancy is much less pro-
nounced. We show in Fig. 7 the dependence of the overlap
with cluster size at the Dirac energy. As anticipated in the
discussion of Fig. 3, the presence of a vacancy near the po-
tential which is turned on modifies significantly the results in
comparison with a clean system. In the latter, the dependence
on size is negligible, in agreement with the results shown in
Fig. 5. There is, on the other hand, a substantial dependence
on cluster size when a vacancy induces a localized state at
the Dirac energy.

IV. KONDO EFFECT

The anisotropic Kondo Hamiltonian reads

HK = �
k,s

�kck,s
† ck,s + J�Sz�

k,k�

�ck,↑
† ck�,↑ − ck,↓

† ck�,↓�

+ J��
k,k�

S+ck,↓
† ck�,↑ + H.c. �18�

For J�=0, the model is exactly solvable and the ground state
is twofold degenerate, with a well defined value of Sz. For
Sz= +1, for instance, the electronic wave function is the
product of two Slater determinants, one for each spin com-
ponent, which describe the ground state of noninteracting
electrons in a local potential of magnitude ±J�.

The overlap between the ground state wave functions
which correspond to Sz= +1 and Sz=−1, S+−N= �+N �−N�, is
given by the product of the individual overlaps for each spin
species because these are not coupled. These overlaps can be
expressed in terms of the phase shifts induced by the poten-
tial ±J�, �0
�±J�

and �l�0=0. In a metal, these overlaps tend
to zero as N→ as S+−N�N exp�−2 sin2��±J�

� / �3�2��.
Alternatively, one can take an approach motivated by a

renormalization group analysis and define a hopping related,

energy dependent overlap, s+−�, where only electronic states
with energies � above the Fermi energy are included. This
overlap scales as s+−������ /��exp�2 sin2��±J�

� / �3�2�� with
energy, where � is a high-energy cutoff of the order of the
bandwidth or the range of validity of the Kondo Hamil-
tonian. Expressing this scaling behavior in terms of N�

����−1, it becomes evident that the scaling with N is the
same as that for the Anderson overlap discussed before.

The Kondo effect arises because spin-flip processes, in-
duced by J�, suppress the orthogonality catastrophe de-
scribed above, which, in turn, modifies J�. The low-energy
properties of the Kondo model can be mapped onto bosonic
and electronic models which describe the competition be-
tween quantum fluctuations and decoherence effects due to
Anderson’s orthogonality catastrophe.20,31 The simplest such
model is the dissipative two level model, which describes a
quantum two level system interacting with a dissipative
environment,32,33 which has been extensively studied.34,35

The main physical difference between the Kondo model and
the dissipative two level model is the fact that a spin flip
requires the transfer of an electron from one spin channel to
the other. This situation is similar to the combination of or-
thogonality catastrophe and the excitonic instability found in
x-ray absorption.11,12 Because of it, the relevant divergences
are proportional to sin��±J�

� and not to sin2��±J�
�, as in Ander-

son’s orthogonality catastrophe and the ordinary dissipative
two level system. Finally, the dimensionless parameter
J���F� which characterizes the Kondo temperature, TK

�e−c/�J���F��, can be written in terms of the scattering phase
shifts as J���F��sin��±J�

�.
The previous discussion shows that a knowledge of the

phase shifts which determine Anderson’s orthogonality ca-
tastrophe can be used to estimate the Kondo temperature.
The phase shifts in graphene change qualitatively depending
on the existence, or not, of midgap states. These states are
due to the potential scattering induced by the magnetic im-
purity whose coupling to the graphene band is considered. In
normal metals, the spin independent potential induced by a
magnetic impurity plays no role in the formation of the
Kondo effect. In graphene at half filling, however, a weak
scalar potential leads to a vanishing phase shift so that the
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FIG. 7. �Color online� Dependence of the overlap on perturba-
tion strength, at the Dirac energy, when the perturbation is turned on
near an existing vacancy �circles, black� and in clean graphene �dia-
monds, red�. Large symbols correspond to a 12�12 cluster and
small symbols correspond to a 15�15 cluster.
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FIG. 6. �Color online� Dependence of the overlap on perturba-
tion strength when the perturbation is turned on near an existing
vacancy �empty circles, black� and in clean graphene �filled circles,
red�. Calculations are done for 12�12 clusters. Circles correspond
to one hole in the cluster �Dirac energy, �F=0�, whereas diamonds
characterize a cluster with five holes �corresponding to �F=−0.5 or
a filling of �0.47�.
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spin of the magnetic impurity remains unscreened. When the
potential induced by the impurity is strong enough to induce
midgap states, the Kondo effect is restored, and the spin will
be bound into a singlet at low temperatures.

V. CONCLUSIONS

The results presented here show the existence of two re-
gimes for Anderson’s orthogonality catastrophe in graphene
at low fillings, depending on whether there are localized
states at the Dirac energy or not. In the absence of localized
states, the AOC is suppressed near the Dirac point, in agree-
ment with the vanishing of the density of states at this en-
ergy. When localized states are present, the AOC is qualita-
tively similar to that found in metals with a finite density of
states. The latter behavior is a consequence of the fact that,
when localized states are sufficiently near the Fermi surface,
they contribute to the nonadiabatic response of the electron
gas. This situation is unique to graphene, as, in most metallic
systems, localized states appear at energies well below the
Fermi level.

The features discussed above imply that the Kondo effect
in graphene also depends on the strength of the scalar poten-
tial induced by the magnetic impurity. If the potential in-
duced on the graphene electrons is weak, as when the mag-

netic impurity is at some distance of the graphene plane, we
expect the formation of a Kondo resonance to be suppressed,
and the magnetic impurity will give rise to a free magnetic
moment. On the other hand, if the magnetic impurity lies
within the graphene plane, it will give rise to a strong scalar
potential, and possibly to localized states at the Dirac energy.
Then, the Kondo effect will not be suppressed, despite the
low density of states in graphene near the Dirac energy.

Similar effects can be expected for the Fermi edge singu-
larities induced by electrons tunneling into or out of
graphene quantum dots. The strength of the Fermi edge sin-
gularities depends on the existence of localized states in the
quantum dot. These states will be induced in graphene dots
with sharp and rough edges, where, in addition to Coulomb
blockade, the AOC associated with electron tunneling will
further suppress the conductance at low voltages.14,15
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