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The transfer Hamiltonian approach to the scanning tunneling spectroscopy (STS) is extended in a twofold
direction. First, a theory representing an extension to the case of arbitrary temperature and applied voltage of
the work of Chen [Phys. Rev. B 42, 8841 (1990)] is developed. Within this framework analytical expressions
of the tunneling current and its derivative can be obtained under rather general assumptions for the tip density
of states. In particular, the situation of a general electronic structure of the tip states is considered. The
calculation of theoretical dI/dV curves and conductivity maps, to be compared with experiments and numerical
simulations, becomes possible and these results lead also to the best normalization procedure of the current
derivative to obtain the desired physical information, namely, the sample local density of states, provided the
electronic tip properties are known. Second, a general theoretical description in terms of the system spectral
densities is derived, providing a generalization of the approach developed by Feuchtwang and Cutler [Phys.
Scr. 38, 252 (1988)]. We believe that with these achievements the forecast of STS theory gets significantly

closer to the experimental results.
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I. INTRODUCTION

In the last two decades, after the invention of the scanning
tunneling microscope (STM), a huge amount of experimental
investigations of solid surfaces has been performed, showing
the great potentialities of this kind of probe. One of the most
attractive peculiarities of the STM is the possibility of study-
ing the local surface-projected electronic density of states,
possibly with atomic resolution, performing the so-called
scanning tunneling spectroscopy (STS).!-

From a theoretical point of view great efforts have been
spent in order to build a satisfactory model description of
STM/STS measurements. Generally speaking, to analyze the
physics of tunneling in complex systems, three different cat-
egories of theoretical formulations are available.*~® The sim-
plest one assumes a one-dimensional (or else, a separable)
geometry in which the tunneling between two subsystems is
described in terms of single particle states of the whole sys-
tem and it is solved either exactly (if possible) or by using
the WKB approximation. The second class is based on the
so-called transfer Hamiltonian (TH) formalism, originally
derived from time dependent perturbation theory, by which,
in principle, multidimensional and many body effects can be
included. The third kind of descriptions comprises more
general many body theories, such as Landauer-Biittiker
formalism,’-8 nonequilibrium Green’s function or Keldish
theory,®'0 and generalized scattering approaches.

All these theories were born and grew up before the in-
vention of STM, and all of them have been further examined
and developed in their general foundations, adapted and
used, contributing significantly to gain basic understanding
of the physics involved in STM/STS experiments.

Among the others, the TH formalism, first derived by
Oppenheimer!! from time dependent perturbation theory and
later extended by Bardeen'?'3 to the case of solid junctions,
is the most extensively used. The seminal work of Tersoff
and Hamann,'* the subsequent important generalizations
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achieved by Feuchtwang and Cutler,"” and, above all, the
series of papers of Chen'®!” have provided a quite satisfac-
tory theoretical framework for STM in the regime of low
applied bias. Besides its relative simplicity in the treatment
of three dimensional systems (and also of many body and
inelastic effects in generalized versions), one of the most
attractive features of the TH formulation of tunneling is that
the description is given in terms of the properties of the two
subsystems, i.e., the sample and the tip in the STM case.

Even though a large number of numerical studies founded
on the TH formalism can be found in the STM/STS literature
[essentially based on the full numerical resolution of Egs.
(4)—(9) of Sec. II of this paper, see, e.g., Refs. 18-23], it is
important to note that, so far, most of the TH-based STM
analytical theories have been developed in the limit of van-
ishing applied bias.

On the other hand, STS measurements are routinely per-
formed exploring finite ranges of negative and positive ap-
plied bias. Several important theoretical results have been
obtained in this field.'82*24-26 A common feature of these
analytical STS descriptions is that they are mostly based on
the first class of the tunneling theories mentioned above,
namely, the one-dimensional (1D)-WKB formalism. In addi-
tion to these approaches, several numerical investigations,
largely consisting in first principle calculations, based on the
third class of tunneling theories suitably adapted to the STM
case,?’33 have been conducted,’*3*-3% while only few ana-
Iytical treatments falling into this last category exist, for sim-
plified geometries.***? In most works of this last class the
emphasis is given mainly on the numerical evaluation of the
tunneling current, for the prediction of STM images. Much
less attention is given to the analysis of the most relevant
quantities for STS, namely, the voltage derivative of the cur-
rent dI(V)/dV, as a function of the applied bias at a given
position of the sample, and the so-called conductivity maps,
i.e., two-dimensional dI(V)/dV maps of the sample at con-
stant current and applied bias.
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On the basis of these considerations it can be concluded
that, up to now, a well established and complete analytical
theory, capable of both elucidating the essential underlying
physics of the STS and interpreting STS experimental obser-
vations also quantitatively, is not available yet.

If a better quantitative understanding of STS is desired,
the knowledge of the electronic states of the tip is a must.
Bearing this crucial point in mind, several efforts have been
produced, both experimentally and by computing techniques.
Yet this important goal is difficult to achieve since the tip
preparation is not a completely controllable procedure. In
particular, the tip apex cannot be easily shaped as designed.
Moreover, a realistic numerical simulation of such a compli-
cated and not well known system is still a challenge. Never-
theless, general properties have been established and it
would be very useful to incorporate this knowledge in a de-
scription of the STS.

The principal aim of this paper is to start the development
of a general analytical description of the STS based on the
TH formalism, exploiting, as much as possible, its attractive-
ness in terms of relative simplicity and physical transpar-
ency.

The paper is organized as follows. In Sec. II the theoret-
ical framework will be discussed. Then, in Sec. III, the
theory is developed with the goal of obtaining quite general
expressions of the tunneling current and above all its voltage
derivative, for arbitrary applied bias, assuming a given be-
havior of the tip wave functions and density of states. Dif-
ferent cases, which are likely to be found in tips used in
experimental situations, will be considered, in order to pro-
vide a sufficiently general analysis. It is also possible to de-
rive general considerations about STS by treating the two
subsystems, namely, the sample and the tip, in a more sym-
metric way, following and extending an approach first pro-
posed by Feuchtwang and Cutler; this will be the subject of
Sec. IV. Concluding remarks are left to Sec. V, while the
Appendix deals with an approximate analytical approach for
treating thermal effects in STS.

II. THEORETICAL FRAMEWORK

We start by summarizing the definitions of the physical
quantities of major interest and relevance in STM/STS
theory, namely, the spectral density p(r,r’, )

p(r,r’ &) =—21Im GR(r,r',e) =27, z/;M(r)z/f;(r')5(8M -g),
"

(1)

the local density of states p(r,e) (density of state per unit
volume, LDOS)

1
p(r»s) =——1Im GR(r’r5 8)
v

1
= 27Tp(lr,lr,e)

=2 [, (0)8e, —e), )
y73
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and the density of states p(g) (DOS) of a system
1 R 1 R
p(e)=—— | ImG"(r,r,e)dr = - —Tr[Im G*(g)]
T T

=2 8e,—e) =2 ple,w). (3)

In the above equations, the expressions of the physical quan-
tities are given in the general form, as derived from Green’s
function theory, and in the one-particle approximation, re-
spectively. GR is the retarded Green’s function of the system,
while ¢,(r), &,, and p(e,u)= &(e,—¢) are the eigenfunc-
tion, eigenvalue, and partial density of state (pDOS) associ-
ated with the uth one-particle level (the set is supposed dis-
crete for simplicity); w is the appropriate set of quantum
numbers needed to describe the state while Tr is the trace
operation. We remember that the connection between the two
descriptions is established by noting that G® can always be
expanded, if a complete set of eigenfunctions is known, in
the form GR=2#¢#(I‘)I//;(I")/(8—8M+l'77), where 7 is an in-
finitesimally small positive constant.*3

Let us now consider the following expression of the tun-
neling current I, which will be our starting point for the
subsequent analysis:

4re (**
I= %f 2 |Msu,tp.|2[ft(8 - eV) —fS(S)]

-0 u,v
Xp(e—eV,u)ps(e,v)de; (4)

here, M“,’m|2 is a transmission coefficient which will be dis-
cussed later, fy,)(¢) is the Fermi distribution function of the
tip (sample), indices v and w label sample and tip energetic
levels, respectively, all energies are referred to the Fermi
energy, and V is the bias voltage. Moreover, p, and p, are the
sample and tip electronic partial density of states, respec-
tively.

Equation (4), originally derived under simplifying as-
sumptions or from time dependent perturbation theory, has
been extensively discussed in the theoretical literature (see,
for example, Refs. 13 and 44). Formula (4) provides a quite
general form for the electric current transmitted between two
quantum systems, as can be understood on the basis of the
following considerations.® Under very general assumptions,
it is shown that I can be written as follows (Landauer-
Biittiker formula):

- f () fi(s) - f2(e)]ds. (5)

where Eq. (5) has a very transparent physical meaning: a
quantum of current 2e/h can be carried by an electron in a
single energetic channel (e/h is about 40 nA/meV while the
factor 2 account for spin degeneracy, which will be assumed
in this work); the energetic interval of the allowed states in
which a nonzero net current can flow due to the exclusion
principle is selected by the difference between the two prob-
ability distribution functions f; and f, of the two subsystems;

T(e) is the average transmission probability that an electron
injected at one side of the barrier will transmit to the other

115404-2



TRANSFER HAMILTONIAN ANALYTICAL THEORY OF...

side. If inelastic processes and incoherent transport can be

neglected, T(¢) can be calculated using S matrix and Green’s
function theory, obtaining the following, rather abstract, but
compact form:®

T=TiI ()G} (e)T(8) Gy (&)], (6)

where Gf(A)(g) is the retarded (advanced) Green’s function
of the vacuum barrier and I';(e) is the so-called contact
function of the tip (sample). An explicit calculation proce-
dure (for example, the so-called discrete or tight binding
Hamiltonian method®*}) provides a (more transparent) ex-
pression

T=TiI (e)Gy(e)T(e)Gy(e)] = Talp/(e) M(e)p,()M(e) ],
(7)

where p,)(e) are the spectral functions of the isolated tip
(sample) (the notation here is abbreviated by omitting the
spatial arguments, for the sake of simplicity) and the matrix

element M(e) depends on the Green’s function of the barrier
and its coupling to the tip and sample. Since the spectral
function of a system has a physical meaning which is di-
rectly related to its local density of states [see Eq. (2) and
also the discussion in Sec. IV A], a comparison among Egs.
(5)-(7) and Eq. (4) provides the following useful
identification:®

T="Tip,(e)M(e)p,(e)M(e)']
— 47722 |MSV,[M|2PZ(8 - €V, lu’)ps(sa V) . (8)

v

From these considerations, it is then clear that the quantity
IM, " in Eq. (4) represents the transmission coefficient
between the vth state of the sample and the uth state of the
tip through the vacuum barrier.

In the TH formalism, the matrix element M, ,, is given
by!213

2
] -0 L0

svtu =
" 2m n,

M

- azf,,i(raﬁwj;(rt - r)]ds, 9)

where ¢, (rg-r) and ¢,,(ry) are one-electron stationary
states of the uncoupled sample and tip, respectively. Accord-
ing to the TH theory,'>!® the integral is performed over a
generic surface S located well inside the tunneling barrier
and separating the sample and tip region; r; is a coordinate
referred to a frame fixed on the tip (whose origin, in a frame
fixed on the sample, is located in ro=-r) and d/dn, is the
projection of the gradient operator on the direction of the
outer normal n; to the surface S (see Fig. 1).

The limits of validity of the TH tunneling theory have
been deeply investigated, both before and after the advent of
the STM. Among the others, Refs. 13, 42, and 4447 provide
an extensive investigation of this issue, actually very impor-
tant for practical purposes and also extremely interesting
from a fundamental perspective since it involves profound
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FIG. 1. Schematic view of the coordinate systems and corre-
sponding relevant notations used in this paper.

and subtle concepts (see also Sec. IV A of this paper). Here,
we only say that the TH formalism has proven to be a very
powerful theoretical tool in many physical situations, includ-
ing the description of STM images. Generally speaking, it
always gives a good description in the case of high and thick
barriers; besides this, a modified version of the original
Bardeen approach, still based on expressions similar to Eq.
(9) (but in which the two sets of functions have a different
meaning,® taking into account the reduction of the barrier
height determined by the interaction between the two sub-
systems and the electric field dependence in the vacuum)
further extends the limit of applicability of the formalism
also to more general barrier configurations which can be
quite often realized in STM/STS experiments (see also Ref.
40 for a critical analysis of this issue).

In any case, even though the TH formalism is less general
than other theories [namely, those based on Egs. (5)—(7)], it
has some very attractive features, like its more transparent
physical interpretation and its relative simplicity, which
opens the possibility for analytical investigations.

Two different theoretical approaches based on the TH for-
malism, useful for constructing an analytical description of
an STS measure, will be developed in the next sections. In
Sec. III, specific assumptions about the tip properties will be
considered: in particular, the voltage derivative of the current
dl/dV will be calculated on the basis of a knowledge of the
angular symmetry of the tip states and by modeling the en-
ergetic dependence of the tip DOS. In Sec. IV, no specific
assumptions about the tip will be made; we will show that in
this case general expressions for the dI/dV can be derived, in
terms of the sample and tip spectral densities. In both cases,
a comparison with more simplified treatments, usually
adopted in the literature for STS analysis, will be presented.

III. SCANNING TUNNELING SPECTROSCOPY CURRENT
DERIVATIVE FOR FINITE VOLTAGE AND
ARBITRARY ELECTRONIC TIP STRUCTURE

In this section, we will neglect thermal effects and ap-
proximate the Fermi functions with simple step functions,
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with the consequence that in Eq. (4) the integration is per-
formed over the interval [0,eV]. A general approach for the
approximate treatment of thermal effects in expressions of
the kind of Eq. (4) is given in the Appendix.

Since in Egs. (4) and (9) the wave functions in general
depend on the corresponding eigenvalue, #,,=,,(r¢.&,)
and ¢,,= i, (r,—r,&,) must be calculated at £,=e—eV and
g,=¢, respectively. Moreover, if the applied bias is not neg-
ligible, the wave functions must be calculated in the presence
of V.8 Therefore, M, ,, in Eq. (9) will depend in general on
both & and V? Msv,tuzMsV,t,u,(Sw8M)=Msv,t#(8’8_ev) (for
the sake of simplicity, the further explicit dependence in ¢;,,,
¥y, and My, on V is understood, unless explicitly indi-
cated).

Let us focus on a single channel contribution /,,, to the
current, coming from a particular choice of u and v. If we
calculate the first derivative of the current with respect to the
voltage in Eq. (4), we obtain

i dl,

= 2
4e d(eV) - |MSVJM(8V’O)| p0, ) ps(eV,v)

eV J
+ fo ps(e,v) AeV)

X[|M‘Yv,t,u.(8’8 - eV)|2pl(8 - eV,/.L)]dS.
(10)

It is evident that in Egs. (4), (9), and (10) the sample and
the tip are described symmetrically and, generally speaking,
this already shows the great importance of the tip properties
in determining the information contained in an STS measure.
Actually, by keeping this symmetry in the description of the
system, several interesting general conclusions can be ob-
tained; this approach will be followed in Sec. IV. On the
other hand, the two subsystems, the sample and the tip, are
actually characterized by very different physical properties
and it would be very useful to consider them in order to
develop an STS theory. In particular, the distinctive features
of the tip geometry and LDOS play a crucial role and a lot of
experimental and theoretical work has been conducted in or-
der to obtain a better understanding of the tip properties (see,
for example, Sec. IV B of Ref. 49 and references therein).
Unfortunately, little detailed experimental information is
available, essentially because of uncertainty on tip fabrica-
tion and characterization down to the atomic scale. As a con-
sequence it is also very difficult to perform reliable numeri-
cal simulations of the tip system. However, several general
results have been obtained on the tip LDOS which are fun-
damental for the qualitative and quantitative understanding
of the STM/STS. First of all, the angular symmetry of the tip
apex states is essential in determining the spatial resolution
achievable. While one of the most common assumptions usu-
ally adopted is that of a single s-like tip state which contrib-
ute to the tunneling current,'* in Refs. 16 and 17 Chen put
forward strong arguments according to which only p,- or
dp-like tip states are able to explain the observed atomic
resolution in STM. The tip material is usually a transition
metal, which is dominated by d-type contributions, espe-
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FIG. 2. Pictorial view of the basic qualitative features which can
be found in a realistic tip density of states (dashed line) and its
approximation as adopted in this work (solid lines).

cially in the vacuum region, the relative importance of s, p,
and d states also depending on the energetic interval consid-
ered. Therefore, it is important to evaluate the transition ma-
trix element M,,, for the various angular states which can
characterize a realistic tip, also taking into account the fact
that a number of different tip states can in principle signifi-
cantly contribute to the tunneling current. Another crucial
issue is actually the energy dependence of the tip DOS. The
simplifying assumption of constant tip DOS is predomi-
nantly used in the theoretical interpretation of STS measure-
ments. On the other hand, on the basis of experimental mea-
surements and numerical simulations,'®>* there is a strong
indication that the real DOS of a tip is characterized by
highly localized states too, in the energy intervals of interest
for STS applications (up to several eV around the Fermi
energy). In order to include this kind of information in a
theory of STS, we will consider an idealized model for de-
scribing the tip system, namely, a tip with a DOS character-
ized by three well defined peaks, here approximated by &
functions, [p(e,u)=08(g~e,) with u=1,2,3] in &, <0, &,
=0, and &3>0, superimposed on an almost constant back-
ground p,,; later we will generalize the DOS to the case of
an arbitrary number of localized peaks. We will also assume
that all these components of the tip DOS are characterized by
a well defined angular symmetry, as described below. This
model tip allows the analysis of the different qualitative situ-
ations which can be often found in a real tip, in which the
DOS can have a number of localized states over a smooth
background. Our idealized tip DOS model is sketched in Fig.
2, where it is also indicated how it is representative of the
realistic physical situation.

In this paper, we will mainly investigate the case of a
positive applied bias V (sample positive with respect to the
tip): in this situation the sample contribution is due to the
initially unoccupied, excited levels, while the occupied tip
states which contribute to the current are in the interval
[-eV,0]. At first, we neglect the contribution coming from
the constant background, considering its effect subsequently.
Therefore, from the sum over u we have two contributions,
coming at e=g; and at e=0. From Eq. (10) we obtain

115404-4



TRANSFER HAMILTONIAN ANALYTICAL THEORY OF... PHYSICAL REVIEW B 76, 115404 (2007)

Trapezoidal barrier Effective
B t rectangular barrier
W \
unoccupied 710 a%7
states ™ W-1/2e\ | _ =
v —— T o FPA Y
© + » 7 S i - .
: ~ unoccupied eV & unoccupied
occupied € states occupied © states
states states
occupied occupied
states |g > states
]
Tip Sample Tip Sample

FIG. 3. Left: the application of a positive bias V to the sample produces a trapezoidal barrier to be overcome by an electron which starts
from an initially occupied tip state of energy & and arrives to the corresponding initially unoccupied sample state (only the elastic
contribution is considered). W is the common work function of the two subsystems. Right: the approximation of the trapezoidal barrier with
an effective rectangular one produces a V-dependent barrier height both for the tip (height equal to W—1/2¢V) and for the sample (W

+1/2eV).

hodl, ) v 5
47T€d(€V) |M.§Vl‘0(ev O)| pé(eV V)5(0)+j0 pb(s V)a( V)[|M3Vt1(8 €= €V)| 5(8_6‘/ 81)]d8
eV
M eVO (V500 + [ g1~ (Vo)) M0 = V)l
0

ev
- f ps(e, v){ié(s - (eV+ 81))} M ,n(e,6 — eV)[de,
0 Je ’

(11

where it has been also used the fact that d8(x—y)/dx=-38x—y)/dy. Upon exploiting the properties of the & functions, it is

easy to calculate the integrals
i,
4are d(eV)

Jd
+ |:|Mxv,t1(8»8 - eV)lz_pS(S, V):|
de

e=g +eV

For an evaluation of this expression fully in terms of the
physical properties of the system, it is required to calculate
the matrix elements Mg, (eV,0) and M, (e,e6-eV),
which depend on the spatial sample structure and tip wave
functions. This can be done through an extension of the so-
called Chen’s derivative rules,'®!” by assuming definite an-
gular properties of the tip states. As explained above, it is
particularly interesting to consider tip states with u=s-, p -,
and d»-like behavior. In the limit of negligible applied bias,
Chen'® showed that the matrix elements are given by the
following derivative rules:

27C JLZ
M=, Msv,ts : ‘//sy(l'o) (13)
27C,y, ﬁ 9
M~=DPs Msv,tp _IT//“}(I‘O) (14)
KW

= |Mxv,10(ev,0)|2ps(eva V) 5(0) + ps(sl + EV’ V)|:

|Msvt1(81 + EV 81)|2 Je |Msv,tl(878 - EV)|2|s=sl+eV

deV)
(12)
[
27TCd hz
Iu‘=d22’ My0,= = (i—lK@lﬁw(ro),
e mK%V > 3
(15)

where the C,, are normalization constants related to the am-
plitude of the given tip state, xy= \2mW/# is the decay con-
stant for states at the Fermi energy, and W is the work func-
tion of the system. These relations must be extended in order
to include the energy and voltage dependence of the matrix
elements in the general case of finite applied bias, as
explained above. It is then necessary to consider the
Schrodinger equation of the tip in the tunneling region. In
this paper, we will introduce the presence of V in the sim-
plest way,® namely, by approximating the almost trapezoidal
vacuum barrier with an effective rectangular one, as indi-
cated in Fig. 3 (for the sake of simplicity, the work functions
of the tip and the sample are assumed to be equal). We obtain
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27C h?
My, (80— eV) = ————y (ry,5)
mi, (e —eV)
27C h?
— M (eV,0) = T g (ry.eV),
’ mKIs(O)
(16)
27C,, h?
Mw O T Vis—F— vs\LQs
‘,tpz(sa e ) tp(s—eV)aw (08)
27TC,[,7L
M V0)=—F5—"— (Lo, eV
- sv,tpz(e ) (0) 07 lﬁ ( 0 e )
(17)

Ms‘v,tdzz(z':’ & — EV)

21TC,d”27L2 (92 1
- ( _Kldzz(s - €V)2> 'r//SV(rO’S)

B me’d72(s —-eV) 3
- Msv,td,z(ev: 0)
27TC,d zh (92 1
= mK—(O)< 23 dezz(0)> Us,(rg.eV), (18)
zd

where now «,(e,)=v2m(¢—¢,) represents the decay con-
stant for a generic tip state of energy ¢,, ¢=W-eV/2 being
the effective barrier height with an applied bias for the tip.
These general expressions allow a full computation of Eq.
(12) in terms of the physical properties of the sample. We
can start drawing some general observations assuming the
following general expression for the spatial dependence of
the sample wave functions ¥,

wsv(rs Eps V) = CSV(PSV(rH’ av)dsv(z’ Eyps V) . (19)

@,,(ry,€,) is a function of the coordinate r; belonging to
the surface and d,,(z,e,,V) describes the barrier- and
z-dependent exponential decay of the considered electronic
state. This is a quite general expression which can be
adopted for atomically flat surfaces. Since, from the separa-
tion of the sample Schrodinger equation in the coordinates
1,2, it follows that (#*/dz?)d,,=al(z,¢,,V)d,, (where «a is
the appropriate function obtained by the Schrodinger equa-
tion of the sample), from Egs. (16)—(18) we see that the
general matrix elements are in any case proportional to
ixo), My, ,,=K,(e,V)i,(xrg), where K, depends on the
angular symmetry of the tip functions. The derivative of the
current can then be expressed as a function of the sample
pDOS and partial local density of state (pLDOS) p,(r,e,v)

=4, (r)]*py(e,v) as
hoodi,

Ed(_ev) = A],ups(r(),ev, V) + A2,u(r0)Ps(81 + eV, V)
+ A3/"(r0)pS’ (8’ V)|a=s|+ev» (20)

where the functions A, A,,, and A3,, which depend on &,
V, and W, can be completely calculated by using Egs.
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(16)—(18). Equation (20) tells us that the derivative of the
current with respect to the applied bias is not simply propor-
tional to the sample LDOS calculated in e=eV: other terms
related to the sample LDOS in e=g,+eV(<eV) arise. The
importance of this distortion can be determined by evaluat-
ing the relative weight of the factors A;,, and, above all, the
exponential damping term d,,(z,€,,V) in the wave function
i, [see Eq. (19)], which depends on energy. In general it is
possible to say that, since &, <0, the disturbing terms, pro-
portional to |d,,(z,&,+eV,V)|?, are more damped than the
desired signal (proportional to the sample LDOS at eV), if
V>0.

Let us now discuss the contribution to I and dI/d(eV)
coming from a constant background p;, in the tip DOS. From
Eqgs. (10) and (16)—(18), it is evident that, even though in this
case p, does not depend on V, the second integral term in
dl/d(eV) is in general not zero since M, ,, depends on V
because of the decaying function d,,(z,€,,V) and the nor-
malization factor Cj, contained in ¢, We saw that M, ,,
=K,(,V)i,(ro). We now assume that [0/ ﬂ(eV)]dS,,
—,B(Z e,,V)d,, so that [9/d(eV)]d*,=2B(z.¢,,V)d>, and
[9/9(eV)]C,,=¥(g,,V)C,,, with B and 7y suitable functions
which can be calculated explicitly for specific cases. From
these considerations it follows that

0—,(%‘/)|Msv,tﬂ|2= [W(K2)+2KZ ,8+ '}’) |¢SV(I.)|2

= DM(S, v, V)|¢sv(r)|2'

The contribution to dI/d(eV) due to a constant tip DOS then
reads

i dL,

R )
dmed(eV) p’|:KM(eV)Px(l'o,eV, )

eV
+f D, (&,V,v)py(rg.e,v)de |. (21)
0

The first term is of the same kind of the first term in Eq. (20)
and can be added to it; the second is a background term
which depends on all the sample states contained in the in-
terval [0,eV], weighted by the function D,, which describes
the effect induced by a finite applied bias on the tip and
sample states. Generally speaking, when V becomes an ap-
preciable fraction of the work function, we expect that it will
be important to take these effects into account for a better
quantitative description of the tunneling current.*® When the
action of the applied bias on the system wave functions and
energy levels are neglected D, is zero, the second term in
Eq. (21) vanishes, and then the approximation of constant
tip DOS would lead to a direct proportionality between
dl,,/d(eV) and the sample partial density of states at the
energy eV, which is the most generally adopted description.

We can now generalize the theory to the case of a tip DOS
with an arbitrary number of peaks in the interval [—eV,0]
and a constant background, each state having its own angular
symmetry. This tip determines a dI/d(eV) expressed as a
sum dI/d(eV)=2 dI,/d(eV), with
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o,
4are d(eV)

=A,(eV)p,(ry,eV,v)

eV
+ f D(&,V,v)p,(rgy,e,v)de
0

+ [As,(rg.8,,V)ps(e, +eV,v)
w

+A3,u.(r0’8/_u V)pv’ (8’ V)|s:£ﬂ+eV]' (22)

Equation (22) is one of the main results of this paper. It
shows in which way the key quantity directly measured in an
STS experiment, the derivative of the current, is related to
the sample density of states for a given tip DOS. In particu-
lar, dI/d(eV) when V>0 is a sum of various channels
dI,/d(eV), each of which contains in general three groups of
terms: the first is proportional to the real quantity of interest,
namely, the sample pLDOS evaluated at the tip (center of
curvature) position and at the energy eV; the second is a
background term which is a weighted integral of the sample
pLDOS in the interval [0,eV]; and the third kind of contri-
bution comes from possible localized peaks in the occupied
tip DOS at the energies £, <0, which produce corrections
related to the sample DOS and its derivative evaluated at an
energy shifted with respect to eV, namely, at € M+eV(<eV).
In Eq. (22), the functions A|=2X A, ,, D=X D, (where D
describes the possible presence of background with different
angular symmetry), A,,, and A5, can be calculated explicitly
by using Egs. (16)-(18), depending on the nature of the tip
DOS used. The total current derivative is the sum over the
various sample channels, each labeled by the set of quantum
numbers v. The first term then becomes the total sample
LDOS, while the others in general exhibit a more compli-
cated structure, which can be completely determined for spe-
cific cases. All these contributions present a strong spatial z
dependence, which can be evaluated explicitly in order to
investigate the more appropriate data-normalization tech-
niques for extracting the sample LDOS at the surface, as it
will be discussed in the next section. These considerations
generalize those obtained using a simple WKB expression of
the current, and Eq. (22) allows a quantitative estimation of
these effects. Moreover, using Eq. (22) it is possible to in-
clude also the spatial dependence of the signal, thus en-
abling, for example, the calculation of conductivity maps, to
be compared with experiments. It must be noted that a re-
sidual dependence on V is still contained in the functions A;;
A, is also proportional to the tip LDOS at the Fermi energy,
while A,,, and A;,, are proportional to the intensity of the
peak located in e=¢g,. If ¢, is not too far from the Fermi
energy and the peak intensity is relevant, the resulting dI/dV
as a function of V can be significantly different from the
actual sample LDOS.

Let us now comment on the possible applicability of this
description to the interesting case of a sample which is not
simply an atomically flat surface but a cluster or molecule
adsorbed on it. In order to analytically evaluate the various
transition matrix elements arising for different tip states, we
made the assumption of sample states which can be written
in a separable form like in Eq. (19). This enabled us to es-
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tablish a direct proportionality between the general transition
matrix element and the sample wave function considered,
which leads to a transparent physical interpretation of the
final result contained in Eq. (22). In the case of adsorbates on
the sample surface (or, more generally, for nonatomically flat
surfaces), strictly speaking, such an assumption is no longer
possible. However, if the size of the structures in the direc-
tion normal to the sample surface is small compared to the
tip-sample distance, it is still possible to assume a separable
form of the sample wave function, the presence of the adsor-
bate resulting only in a modification of the functions ¢ and d
in Eq. (19). In this sense, Eq. (22) can be applied also to
these situations. If the adsorbate cannot be considered as a
small perturbation, in general we can conclude that the quan-
titative details in the evaluation of the general transition ma-
trix element change, even if the general features of the prob-
lem as described by the structure of Eq. (22) can still provide
a useful qualitative insight of the physical picture.

If the surface is periodic, we can further elaborate the
general expression of the sample wave functions, Eq. (19), in
the following way, starting from the observation that ¢, (r))
in this case is a Bloch function and each state is then labeled
by the wave vector k;. We can expand the function
i, (r))dy [z, e(k))] into a complete set of basis functions

aﬁ” exp(iGﬁ"rH)dﬁH[Z, e(k)],
Yo (r.8,V) = CkHE ay, expli(Gj + k) - 1 Jdy [z.8 (k)]

(23)

where G| are the set of reciprocal lattice vectors associated
with the two-dimensional periodic surface. Also, as already
explained, we use the simplest model for the sample wave
function in vacuum, describing the vacuum potential as a
constant barrier of height W+eV/2. With these assumptions,
the corresponding quantity in Eq. (19) becomes

dy (r,e,V) = exp{- N2m[W + eVI2 — e(k) VA2 + [k + G
(24)

A further simplification can be achieved if we consider that
an STM measurement probes only a small part of the sample
first Brillouin zone, namely, that in correspondence of the I'
point, k;=0.22% This is due to the fact that the states with
these values of the wave vector decay more slowly in
vacuum and consequently M, k=0 is the most dominant
contribution in the sum of Eq. (4) on the sample states. Also
the nontranslational symmetry operations of the two-
dimensional spatial group of the surface can be used to
greatly simplify the analysis.?>*> Using the nontranslational
symmetry, some of the reciprocal lattice vectors G| become
equivalent, forming a star of reciprocal vectors, each star
being identified by a representative vector Gf. Accordingly,
the expansion over the reciprocal lattice vectors can be re-
duced into a sum over symmetrized star functions. If we
consider only the contribution coming from the lowest stars
[associated with the star vectors Gﬁ)z(0,0) and Gﬁ which
depends on the particular surface], we can use the following
approximate expression of the sample LDOS:
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py(ry,z,8) = Ps,kH:o(ru»Z,S) = b0(8)|dﬁuzo[z,8(ku = 0)]|2

+b'(r),8)|dy o[22y = 0)], (25)

where the z-dependent decay of the two stars is described
by the functions d _g=exp[—zy2m[W+eV/2-e(k;=0)]/%],
d|1<H:0= exp{—z\2m[W+eV/2—e(k) /72 +|G/[ [}, respec-
tively, while the coefficients b° and b' can be expressed in
terms of the relevant coefficients aﬁu expliG| -1r)] of Eq. (23)
(namely, those made equivalent by the nontranslational sym-
metry), if available,”>*® or can be used as fitting parameters
in comparison with first principle numerical calculations or
with experimental data. Then, using Eq. (25), together with
Eq. (22), the derivative of the current can be calculated and
expressed in terms of the electronic structure of a periodic
surface.

A. Local density of states vs dI/dV or vs (dI/dV)/(I/V)
orvs (dI/dV)/?

In the literature STS experiments are usually interpreted
by means of relations which are simpler than either Eq. (10)
or Eq. (22), or those derived in Sec. IV. It is interesting to
compare the expressions usually considered in the literature
with those obtained in this section, with three goals: (i) to
better understand the limits of the simplified theories as sug-
gested by the TH formalism, (i) to interpret the proper
physical meaning of quantities used in the simplified descrip-
tions to the light of the results of the TH formalism, and (iii)
to find an appropriate treatment of an STS measure in order
to obtain quantitative information about the sample investi-
gated.

One of the most commonly used expressions for the tun-
neling current in the presence of a non-negligible bias poten-
tial applied across a solid-vacuum-solid interface is (see, for
example, Ref. 25)

dre

eV
I=== f TE, U(ry)Ips(e)pe —eV)de, — (26)
0

where the quantities py(g) and p,(e —eV) are usually referred
to as “densities of states” (of the sample and tip, respec-
tively), while the transmission coefficient T is normally cal-

culated in a simplified way, for example, in the 1D-WKB
approximation as follows:

TE,U(ry)]= exp(— 24/ %nfzo Ve — U(z)dz), (27)
0

where z, represents the width of the tunneling barrier U.
From Eq. (26), the corresponding expression for the first
derivative of the current is

d
d(eIV) =TeV,U(z0)lp(0)py(eV)

4 (Y

. d[T(E,U(zp)) pi(e = eV) ]
o

d(v)

ps(e)

(28)
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The consequences of Egs. (26)—(28) are discussed in great
detail in Refs. 25 and 26, where it is shown that, because of
the properties of the transmission coefficient, most of the
information about sample “density of states” comes only in
the region V>0, from the first term on the right hand side.
Also, starting from Eq. (28), an approximate analysis of the
different normalization techniques for the extraction of the
surface-projected sample DOS can be conducted (see below).
On the other hand, this kind of description is limited for
several reasons. First of all, being basically a one-
dimensional description, the notion of DOS and LDOS can-
not be clearly distinguished, the quantities involved cannot
be directly related to those of the physical system, with the
consequence that it is also not possible to perform a quanti-
tative analysis of the conductivity maps of a system. Also,
the spatial properties of the tip are not considered. Moreover,
the WKB approximation cannot describe correctly thin and
low barriers, which are often encountered in STM experi-
ments.

The theory as developed in this section allows several
significant generalizations in the analysis, in various direc-
tions.

First, the TH description allows the inclusion of the spa-
tial effects, leading to the fundamental improvement of ex-
pressing the derivative of the current in terms of the proper
physical quantities of the sample, namely, its pDOS and
LDOS [see Eq. (22)]. Besides improving the interpretation of
the experimental data, this fact opens the way for a theoret-
ical evaluation of the so-called conductivity maps, as already
pointed out.

Moreover, since the aim of an STS measurement is the
estimation of the sample LDOS at the energy eV with the
quantity dI(V)/d(eV), it is possible to study in more detail
the relative importance of other disturbing terms which in
general can be present, even if a featureless tip is assumed
[compare the last term in Eq. (28) with the last terms of Eq.
(22)].

A crucial issue is the exponential behavior of STS data for
finite applied voltage, a signature of the tunnel effect which
can substantially hide the information about the sample
LDOS on the surface, the real quantity of interest. In order to
overcome this difficulty, several normalization procedures
have been proposed. By far, the most commonly used in the
interpretation of experimental data is the normalization to the
(experimental) quantity I/V. On the other hand, on the basis
of Egs. (26)—(28), it can be concluded that normalizing to the
WKB-derived transmission coefficient 7 is a more founded
approach which can better unveil the physical properties of
the sample.>>?® This approach has been exploited very rarely
in the experimental literature.’'% Very recently a further re-
finement of this normalization procedure, within the frame-
work of the same 1D-WKB model, has been proposed.’

Our method can be used also to find out the most proper
normalization procedure. We saw that the unperturbed
sample LDOS at the surface, py(r;,z=0,¢), is altered by the
presence of an applied bias since the sample eigenfunctions
change if V#0. The perturbed sample LDOS p(ry,z9,€
=eV) is the quantity contained in the first term of the right
hand side of Eq. (22). The aim is to extract from this term of
dI/dV an estimate for p,y(r;,z=0,¢). Besides being a quan-
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tity which depends on the sample LDOS perturbed by the
presence of the applied bias, dI/dV differs from py(r),z
=0,¢) for at least two other reasons: (i) dI/dV as given by
Eq. (22) is the sum of various terms, only the first of which,
A, (eV)py(ry,eV), can be directly related to the sample LDOS
at e=¢eV; (ii) dI/dV is calculated at a finite tip-sample dis-
tance, zo# 0, which induces an exponentially increasing be-
havior on the applied bias (at least in the proper tunneling
regime, which in turn depends both on V and on z,# 0). The
most suitable normalization procedure should take into ac-
count these two issues. Each sample pLDOS p,(r,e,v) has a
z dependence described by the function |d,,(z,¢,,V)[*. For a
given z, d,, in general is a function which increases expo-
nentially with the difference € —g|, g being the component of
the total energy of the state associated with the motion par-
allel to the surface. Then, the sample pLDOS with the lowest
possible g component is heavily weighted by d, in the sum
over all the sample pLDOS which gives the total LDOS at a
given ¢ (see also the discussion at the end of the previous
subsection in the case of a periodic surface). Therefore, a
natural normalization function for dI/dV is |d,,(zq,&5,V)]?
where v identifies the state with zero g. By applying these
considerations to the case of a periodic surface, the best nor-
malization factor is the z-dependent weighting factor of the
lowest nontrivial (that is, non constant in ry) star function,
namely, dll("=0|2 in the notation used in the previous subsec-
tion. Moreover, since the other disturbing terms present in
dIl/dV have a weaker exponential behavior than the first, this
kind of normalization is also able to produce an overall
damping of all undesired contributions. From the present dis-
cussion it is also evident that a careful treatment of the z
behavior of the sample eigenstates, for example, considering
a better description of the barrier than those usually adopted
(e.g., the exact solution associated with a trapezoidal barrier),
would be helpful in enhancing the best interpretation of an
STS measurement.

B. Example

The following simple model system, though pathological
in some sense, allows an almost complete analytical treat-
ment. We consider a one-dimensional jellium of finite length
L for describing the sample electronic states, while the tip is
characterized by a constant s-like DOS. In the absence of
applied bias, the height of the barrier is equal to the work
function W. The unperturbed sample wave functions inside
the sample (z>0, region I) and in vacuum region (z<<0,
region II) are

2 1/2
Wy = (Z) sin[k(e)z— ¢(k)], z>0,

172 1/2
wﬁi=<%) ?epo%’"(W—s)) } (29)
w

respectively. In the above equations, the wave number £ is
related to the energy level Mthe simple free-electron ex-
pression k=v2me/h, ky=\2mW/#, and ¢(k)=arcsin(k/ky).
In this one-dimensional system degeneracy is absent, thus
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pLDOS and LDOS coincide. Since the density of states in
the k space is L/, the unperturbed sample LDOS p,y(z, ) in
the region z=<0 is given by |¢/}|>(L/ 7)(dk/ds). Introducing
now the dimensionless quantities &/W—¢g, kyz—z, and
(ky! W)'py(,2) — p,(e,2), we have

81/2
psolz.€) = — exp[2z(1 — &)"2]. (30)

When the bias V is applied to the sample, the quantity W is
changed into W+eV/2 and the dimensionless sample LDOS
becomes

172

py(z,€) = 1 exp[2z(1 + VI2—¢)"],  (31)

a1+ V2
where the dimensionless potential ¢V/W—V has been intro-
duced.

Similar considerations apply to the tip, for which the ef-
fective barrier is W—eV/2 (see Fig. 3). From the Schrodinger
equation for the tip the quantity x, of Eq. (16) is equal to
\/Zm(W—eV/Z—s)/ﬁ=kW\f'1—V/2—s. The above relations
can be used to determine the function D in Eq. (21): it reads

D(e,20,V) = Dy — ! + <0
L= T v —e? T 21+ vi2—e) 2
! ] (32)
A+V2)1+Vi2—¢) ]

where  Dy=(m*C2h*)/(m*W?k},). Finally, using Egs.
(30)—(32) and Eq. (21), dI/d(eV) calculated for this system
(where the “1D current” has the dimension of a current den-
sity) is given by

hodl

4
———=pkyDy| ———= vV
4med(eV) Pikw 0[ ps(20,V)

1-Vr2

0

%
+f D(S,ZO,V)p‘Y(zo,e)ds] (33)

Before showing the quantitative aspects of the result, let us
refer to the general discussion developed above in this sec-
tion. The unperturbed sample LDOS at the surface is
ps0(0,€)=¢"?/ 7. Tt is different from the sample LDOS when
a voltage is applied, which is [Eq. (31)] p,(0,&)=¢'?/[=(1
+V/2)]. This last is the only quantity which, in principle, is
made accessible by an STS measurement. Therefore, it is
crucial to evaluate how large is the distortion induced on the
sample LDOS by the presence of the applied bias.*® Obvi-
ously, the distortion becomes a function of V which produces
a first contribution to the functional dependence of the mea-
sured dI/d(eV) vs V. We also saw that, even assuming a
featureless tip, dI/d(eV) is the sum of two contributions,
only the first of which being directly proportional to the (dis-
torted) sample LDOS evaluated in €=V, though even the
complete functional dependence on V in the first term of
dl/dV is in general changed. In the present example these
aspects are described quantitatively by Egs. (32) and (33).
In STS z, is clearly always different from zero. The
z-dependent term in the sample LDOS also varies with the
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FIG. 4. (dI/dV)IT, (solid line), p,(0,V) (dot-dashed line),
ps(0,V) (dotted line), and (dI/dV)/(1/V) (dashed line), correspond-
ing to the example of Sec. III B, are displayed vs V for the case
Zo=2. The maxima of the normalized curves are scaled to the maxi-
mum value of the function p(0, V). A generic Fermi energy of the
sample is also indicated with a vertical line.

applied bias and, for fixed z and varying V, it determines the
exponential growing behavior of the current derivative. It is
this term that a proper normalization procedure should in
principle compensate. From Eq. (31) it is clear that this
quantity is exp[2zo(1+V/2—g)"?],_y=exp[2z,(1-V/2)"].
In the region V>0 the second background term in the nor-
malized current derivative will contain a net exponentially
decreasing dependence on the voltage, helping in the extrac-
tion of the quantity of interest, in accordance with the con-
siderations developed in Sec. III.

These aspects are summarized in Fig. 4. According to the
considerations developed in the previous subsection, the
most suitable normalization factor in this case is the function
T,=exp[2z(1-V/2)"?]. In Fig. 4 (dI/dV)IT, (solid line),
p:0(0,V) (dot-dashed line), and p,(0,V) (dotted line) are dis-
played vs V; also, the dashed line corresponds to the quantity
(dI/dV)/(1/V). The maxima of the normalized curves are
scaled to the maximum value of the function p,,(0, V). It can
be seen that the normalization to T, preserves the qualitative
features of the unperturbed sample DOS, at least in the lower
bias interval. This does not happen with the usual (I/V) nor-
malization. Going to higher values of the applied bias, even
the quantity (dI/dV)/T, has properties which differ signifi-
cantly from the physical quantity of interest (there is a spu-
rious change in the curvature).

IV. CURRENT FOR FINITE VOLTAGES IN TERMS OF
SPECTRAL DENSITIES

It is possible to derive other very general relations for the
tunneling current, expressed in terms of the spectral densities
of the tip and sample. These expressions can be used to
obtain some general conclusions when no specific assump-
tions are made on the tip states and for more realistic numeri-
cal simulations of an STS experiment.
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Coming back to Eq. (9), it must be observed that the wave
functions used in the TH theory are assumed to well approxi-
mate the one-electron wave function of the coupled system,
in the tip and sample, respectively, as well as inside the po-
tential barrier, up to the integration surface. For consistency,
it is then necessary that the energies of the wave functions
 (ry-1) and ,(ry) are the same, and moreover that the
probability density and probability density current are con-
served across the surface S. This implies the continuity of the
logarithmic derivative of the functions as follows:

14 19
Lo _ 1) (34)
{/lv anl S lrlj,u ant S

If we now assume a semiclassical behavior in the vicinity of
S, that is if ¢,(r) =A(r)exp(ig(r,)) with [VA/A|<1, then
we have (1/4,)Vh,~—(1/4,)V ¢, This allows us to ex-
press the consistency relation given by Eq. (34) in the fol-
lowing, approximated, convenient form:!

o) _ Lo,
o, on, | g ‘ﬂﬂ on,

in this way, the quantity |M,,, |* reads

; (35)
S

A ,
|Msv,tu|2 = _2J ¢y(rt - I') wy(rt - l‘)
m-Jgs'

s

>< !
on,on,

[ (), (x)]dSds’.  (36)

Upon substituting Eq. (36) in Eq. (4) and recalling the defi-
nition of the spectral density valid in the case of noninteract-
ing electrons, p(re,r,e)=272,1,(r) lﬁ;(rt’) de,—¢€) (see
Sec. II), the resulting expression reads

4W€(ﬁ2
T A

2 1 +
—> ;f_w [f(e —eV) - f(e)]

2m

* ’ (92 ’ ’
X py(r¢—r,r{ —r,8) —p(r,1{,€ — V)dedSdS',
ss’ on,d

[t

(37

or also, by noting that pj(rt,rt' ,€)=p,(r{,r(,€)

4gre [ H? )2 1 fw
LY (L —eV) -
P <2m 3 [fle—eV) - fle)]
! (92 ! !
X ps(r( —r,r—1,8)—p(r,1{,€ — V)dedSdS'.
55’ on,on,

(38)

Equation (37), which is the generalization of Eq. (2.18) in
Ref. 15, represents the general TH expression of the tunnel-
ing current, valid for arbitrary values of the temperature T
and the applied bias voltage V and for an arbitrary tip. It can
be used in order to calculate a general expression of the first
derivative of the current, dI/dV, the key quantity in STS
experiments. It is given by
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;{ [flo-eV) - o)
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A 47T€( " )2 : X ) V)dedSds’
- = (ry—r,r, —r,e rer,&
d(eV) h 2m —0 Ss’ pilt ¢ 071’l ﬁn (9( V)pt et —¢ e
*df(e—eV .
f % py(rg—r,r{ —r,8) —p(r,r,e— eV)dedeS'}, (39)
—o0 ss’
which, again, can be written as follows:
dl  4Ame( h? )2 f d
= —eV r,—r,r,—r, r,r,,c—eV)dedSdS'
dev) - & ( [fle—eV)— f(S)] ps( ¢ ¢ 8)&1 o’ e V)p,( wTi.e—eV)de
*df(e —eV z?z
f % ps(r{ —r,r - r,s)mpt(rt,r{,s - eV)dstdS’} . (40)
—o ss’ 1
I
Equation (39) can be somewhat simplified by considering 1 J
R
again the limit 7—0, valid if T is well below the Fermi Ap=-—_ lim Im{ —~InDet(1-VG,) [,  (42)
7—0*

energy. Since limy_q df’ (e—eV)/d(eV)— 8(e—eV) (see also
the Appendix) Eq. (39) becomes

a 47T€< h? )2 f f & d
dleV) h 772 s’ pile o'?n 0n! d(eV)

X p,(e—eV)dedSdS'

dare

72 \2 P ,
ﬁ( ) i SS,ps(eV) o —— p(0)dSds’,

t

(41)

where, in order to simplify the notations, all spatial argu-
ments have been omitted. We recall that the quantities ap-
pearing in these equations are referred to the system in the
presence of the applied bias. If the unperturbed spectral den-
sities are known, the variation Ap of the spectral densities
due to a given perturbation V can be obtained by the general
formula*®

ﬁZ 21 o az
_%(E> ?J_m [fle=eV)=fle)l|  pilri-r'r=re)o oy

where G§ is the retarded Green’s function of the unperturbed
system (tip and/or sample).

In principle, the theory presented in this section can be
used for the interpretations of STS data, with the goal of
extracting information about the sample LDOS, but it can
also be compared with simpler descriptions. This second ap-
proach will be discussed in Sec. IV B.

A. Comparison with more general theories

As already anticipated in Sec. II, the TH formalism is
based on some hypotheses not always easy to justify. More-
over, the theory presented is restricted to the case of nonin-
teracting particles. Therefore, in order to check and verify
the validity of the TH treatment developed in this section, a
comparison of its results with more general theories is cer-
tainly appropriate.

Within the TH framework, Appelbaum and Brinkman>*
derived the following expression for the tunneling current in
the more general case of interacting particles, using Green’s
function technique:

, pz(rt’rt,’s —eV)

(s

Jd J
———py(r{ —r',r —r,8)p(r.r{,e —eV) — —pr —r',ri—r,e)—p/(r,ri,e—eV)
on,on, n, on,
J
- —py(r—r',;r(—r,8)—p/(r,r,e—eV)dedSds’. (43)
on, on

t

This would be the expression which can actually be obtained
from Egs. (4)—(9) following the approach described in this
section, but without introducing the consistency condition,
Eq. (34), which considerably simplifies the final result, Eq.

(37). It has to be remarked that this condition, which should
be imposed for consistency using the TH approach, is not
adopted in most of the TH treatments present in the litera-
ture.
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We now consider in further detail the problem of the con-
nection between the TH theory and more general descrip-
tions, which has already been introduced in Sec. II. Probably
the most complete investigation of the tunneling phenomena
in a solid-vacuum-solid interface has been performed before
the invention of the STM/STS, in a series of papers by
Feuchtwang in the 1970s,*46-55-57 making use of the Green’s
function formalism and, in particular, the Keldish theory for
nonequilibrium processes.®'° In this approach, the full, non-
equilibrium Green’s function of the junction is derived and
expressed in terms of the Green’s functions of the uncoupled
systems (which define the zeroth order system) and of a
pseudo-Hamiltonian operator whose matrix elements at the
lowest order of the perturbation expansion coincide actually
with the transition current matrix element of the TH theory,
namely, with Eq. (9): In this framework, it is demonstrated
that this operator, which appears naturally in the theory,
assures the continuity of the full Green’s function across
the interface. The current is then calculated, starting from
its general quantum-field statistical expression, from the
Green’s functions of the system. In the general three-
dimensional case, this theory predicts an expression for the
tunneling current which reduces to Eq. (43) if the full
Green’s function is calculated up to first order in the pseudo-
Hamiltonian operator.

In conclusion, it is possible to say that the results of the
theory presented in this section are, within the limitations
clarified, confirmed by more profound investigations. This
means that the implications of our analysis can be retained to
be valid also under more general hypotheses, namely, also in
the case of interacting particles and without the subtle doubts
posed by the transfer Hamiltonian approach.

B. Comparison with one-dimensional WKB-based
scanning tunneling spectroscopy theory

We now analyze the meaning of the relations derived in
this section and of the physical quantities involved by com-
paring them, in particular, Egs. (37), (39), and (41), with the
expressions obtained by WKB theory, briefly described in
Sec. IIT A [namely, Egs. (26)—(28)]. Several interesting con-
clusions can be derived, which complement the discussion of
Sec. III A.

Actually, Eq. (37) shows that in the most general case, the
current is not simply given by an energetic convolution be-
tween sample and tip density of states, weighted by the trans-
mission coefficient. First of all, instead of the density of
states, the physical properties of the system are described by
the sample and tip spectral densities, as already previously
noted.'> Moreover, in Eq. (37) a transmission coefficient is
not explicitly present at all, because the exponential decay
characteristic of tunneling phenomena is, again, implicitly
incorporated in the spatial dependence of the sample and tip
spectral densities. Finally, in Egs. (26) and (28), it is evident
that the low temperature limit is assumed.

With respect to the low bias potential limit," in the gen-
eral case it is not possible to uniquely identify an average
quantity which can play the role of the mean local density of
state for the sample in Egs. (26) and (28). Since the crucial
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experimental quantity for STS is the first derivative of the
current, it is useful to directly establish a correspondence
between Egs. (28) and (41) introducing the following defini-
tion of mean local density of state for the sample at the
energy eV:

P -1
ps(—r,eV) = J —— pr,r(,0)dSdS’
ss' onon,

Xf py(ry —r,r —T1,6V)
ss’

192 ! !
X——p(ry,1{,0)dSdS

an,dn,
1 (r¢ V)
== ps\I'y —I,I¢—Tr,e
p(0) g T
s , ’
X /pt(rt’r[,o)deS s (44)
on,on,

where the mean local density of state at the Fermi energy for
the tip, p,(0)=/ Ssr{mﬁ—;,p,(rt,rt’,o)deS’, has been also de-
fined. In this way, thé étructure of the two last terms of Eqs.
(28) and (41) are similar, keeping in mind that, as already
noted, in the TH formalism the exponentially decaying be-
havior is contained in the properties of the spectral densities.

On the basis of the theory developed and the above dis-
cussion, it can be argued that in general in a STS experiment
what is possible to measure is a properly defined mean local
density of states of the sample, at the energy level selected
by the bias potential: This effective sample LDOS is actually
a double spatial convolution between sample and tip spectral
densities, evaluated at the bias potential and at the Fermi
energy, respectively.

V. CONCLUSIONS

The possibility of measuring the local (down to atomic
resolution) electronic density of states of a surface [scanning
tunneling spectroscopy (STS)] is one among the most attrac-
tive features of the scanning tunneling microscope. To this
goal a full and thorough knowledge of the quantum states of
the system (sample and tip) subjected to a bias voltage and,
thus, crossed by a tunneling current, would be required. As
such a complete and exact description is not attainable, smart
and physically sound approximations must be adopted. Par-
ticularly crucial is the feedback of the applied voltage onto
the effective interface barrier height and vacuum states. In
the first part we have extended the modified Bardeen ap-
proach to the case of finite voltage and arbitrary temperature
and obtained analytical expressions for the derivative of the
tunneling current vs voltage making only general assump-
tions on the tip density of states. Following this path, we are
naturally led to suggest the best normalization for the above
derivative. A specific simply workable example shows the
relevant differences with respect to previous approaches. In
this paper we have considered only the contribution of the
electrons occupying the ground state levels of the tip and
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flowing into the empty states of the sample through the tun-
neling current. Even though this is the most favorable situa-
tion to extract the sample information from the STS data,
also the reverse process (corresponding to a negative bias)
should be included in a complete theory, as it is foreseen for
a next work. In the second part we have provided a gener-
alization of the results by Feuchtwang and Cutler in terms of
theoretical spectral densities and Green’s functions of the
system. We believe people critically using STS to study real
surfaces should benefit from both these methodologies.
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APPENDIX: APPROXIMATE TREATMENT OF
THERMAL EFFECTS

Let us consider the following integral:
+00
f fle)H(e)de, (A1)

here H(e) is a generic function of the variable & while f(g)
=[exp(e/kzT)+1]7". It can be shown that the integral can be

expressed in terms of the so-called Sommerfeld expansion®
+o0 0
f fle)H(e)de = |  f(e)H(e)de
= 42!
+2 an(kBT)anH (&)] =05
n=1 e

(A2)

where the dimensionless numbers a,, are given by the follow-
ing intergrals:
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X

+%2n d
= f_w (2n)! {_ E(exp(x) + l)_l]dx. (A3)

In most cases, the first term of the series, for which a;
=12/6, is able to describe thermal effects satisfactorily. Con-
sider now the expression

+o0

[f(e —eV) - f(e)]H(e)de;

—%

(A4)

from Eq. (A2), keeping only the first term of the expansion
we obtain

f [f(e—eV) - fle)H(e)de

eV
~ f H(g)de + f(kBT)z
0 6

dH(g)

T ds

X[ dH(¢)
de

] . (A5)
&=0

The first term on the right hand side of this equation gives
the usual zero temperature approximation, while the second
describes thermal corrections. It can be used in connection
with the descriptions developed in this paper for the intro-
duction of finite temperature corrections to the tunneling cur-
rent /. In particular, upon comparison with Eq. (4) of Sec. I
and Eq. (38) of Sec. IV, we can identify the function H(g)
with the quantities X, ,|M,,|*p(e—eV,uw)p(e,v) and
Fsspo(r{=x,x=1,8) 30 p (e, ¥ 5= eV)dSdS,
tively. As a very raw approximation, assume that these ex-
pressions are proportional to the sample LDOS (the limits of
this sentence are discussed in detail in this paper); then, the
inclusion of thermal effects adds to the dI/dV a term which
is roughly proportional to 7%p”(eV). For example, for a
Gaussian peak, such a term will produce an enlargement and
a reduction of its intensity. The results obtained in this paper
can be used to make a quantitative and more general analysis
of this issue.

g=eV
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