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The role of an electric field in electron transmission through a quantum point contact �QPC� in the presence
of a magnetic field is analyzed here, modeling the QPC as a saddle potential. In this paper, we derive the
relevant Green’s function, including the effects of arbitrarily time-dependent electric and constant magnetic
fields. The derivation is carried out using Schwinger’s operator equation of motion approach. In the second part
of the paper, we apply the Green’s function to determine transmission of the electron guiding center through
the QPC in constant electric and magnetic fields.

DOI: 10.1103/PhysRevB.76.115328 PACS number�s�: 73.63.�b, 72.20.My

I. INTRODUCTION

Recent years have seen growing interest in the develop-
ment of smaller and faster semiconductor devices.1 This has
led to intensified study of nonlinear quantum transport for
electrons in nanoscale systems in which point contacts have
been appropriately modeled in terms of a saddle potential in
a high magnetic field, with considerable success in explain-
ing experimental data.2–5 To investigate electron dynamics in
such systems, we analyze the single-particle Schrödinger
Green’s function for a saddle potential with a time-dependent
electric field and a perpendicular static magnetic field. The
derivation is carried out by employing Schwinger’s equation
of motion technique, and the result facilitates the determina-
tion of the transmission coefficient for electrons across a
point contact in the presence of electric and magnetic fields.

II. TWO DIMENSIONAL QUANTUM POINT CONTACT
HAMILTONIAN WITH ELECTRIC AND

MAGNETIC FIELDS

We model the quantum point contact �QPC� as a saddle
potential of the form

VSP�x,y� = V0 − 1
2m�x

2x2 + 1
2m�y

2y2, �1�

where V0 is the potential at the saddle point and the curva-
tures are expressed in terms of the frequencies �x and �y.
The Hamiltonian for an electron in the saddle potential in the
presence of a constant, uniform magnetic field, B=Bẑ, and a
crossed external time-dependent electric field �uniform in
space�, E=E�t�x̂, is given by ��→1�

H =
1

2m
�p + eA�2 + VSP�x,y� + ex · E�t� , �2�

where A= B
2 �−y ,x ,0� is the vector potential in the symmetric

gauge. This can be rewritten in the form

H =
1

2m
�px

2 + py
2� +

1

8
m�c

2�x2 + y2� −
1

2
�c�ypx − xpy�

−
1

2
m��x

2x2 − �y
2y2� + exE�t� + V0, �3�

where �c is the cyclotron frequency.
Following the sequence of transformations employed by

Fertig and Halperin6 �for details see Appendix A�,

X =
1

�m�
�py sin � + m�x cos ��e�1,

P =
1

�m�
�px cos � − m�y sin ��e−�1,

�4�

s =
1

�m�
�m�x sin � − py cos ��e−�2,

p =
1

�m�
�m�y cos � + px sin ��e�2,

which obey the following commutation relations,

�X,P� = �s,p� = i ,
�5�

�s,X� = �s,P� = �p,X� = �p,P� = 0,

with the following definitions for the various parameters,

�2 = ��c/2�2 + �−
2, �−

2 = ��y
2 − �x

2�/2,

�+
2 = ��x

2 + �y
2�/2, � = �+

2/�4�� ,

tan 2� = −
�c

4�
, �6�
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tanh 2�1 =

1

2
� −�� 2 + ��c

4
�2

− �
,

tanh 2�2 =
�

1

2
� +�� 2 + ��c

4
�2

,

we have

H = H1 + H2, �7�

with �H1 ,H2�=0. Here, H1 is given by

H1 = E1�P2 − X2� + F�t�X , �8�

with

E1 = �� 2 − 	1

2
� −�� 2 + ��c

4
�2
2�1/2

�9�

and

F�t� =
eE�t�
�m�

e−�1 cos � , �10�

while H2 is given by

H2 = 1
2E2�p2 + s2� + G�t�s + V0, �11�

where

E2 = 2�	1

2
� +��2 + ��c

4
�2
2

− �2�1/2

�12�

and

G�t� =
eE�t�
�m�

e�2 sin � . �13�

It is important to note here that the two parts of the Hamil-
tonian obey the commutation relation �H1 ,H2�=0. The first
part of the Hamiltonian, H1, represents an electron in an
inverted harmonic potential in the presence of an external
time-dependent “electric field,” F�t�, and describes its “guid-
ing center” motion in terms of X�t�. The second part of the
Hamiltonian, H2, represents a one dimensional harmonic os-
cillator in a time-dependent electric field, G�t�, that describes
the “cyclotron like” aspect of the motion of the electron.

III. ELECTRON GREEN’S FUNCTION IN A QUANTUM
POINT CONTACT IN THE PRESENCE OF

EXTERNAL FIELDS

In this section, we derive the Green’s function for the
problem at hand. The Green’s function for the X motion
�guiding center motion� is described by H1�t� and it may be
constructed using Schwinger’s approach as7

GH1
�X,t;X�,0� = KH1

�X,X��

�exp�− i�
0

t 
X�t���H1�t���X��0��

X�t���X��0��

dt�� ,

�14�

where KH1
�X ,X�� is independent of t and is determined by

magnetic gauge considerations and the initial condition. The
equations of motion for the operators X and P yield the fol-
lowing coupled equations:

dX

dt
= − i�X,H1� = 2E1P �15�

and

dP

dt
= − i�P,H1� = 2E1X − F�t� . �16�

Combining the last two equations, we have

d2X

dt2 − 4E1
2X = − 2E1F�t� , �17�

which can be solved using the method of variation of param-
eters. The general solution is

X�t� = D1 cosh�2E1t� + D2 sinh�2E1t�

+ cosh�2E1t��
0

t

F�t��sinh�2E1t��dt�

− sinh�2E1t��
0

t

F�t��cosh�2E1t��dt�, �18�

where D1 and D2 are arbitrary constants to be determined in
terms of the initial values of X�0� and P�0�. The form of X�t�
and P�t� in terms of their initial values is given by

X�t� = X�0�cosh�2E1t� + P�0�sinh��t�

− �
0

t

F�t��sinh 2E1�t − t��dt�, �19�

P�t� =
1

2E1

dX

dt
= X�0�sinh�2E1t� + P�0�cosh�2E1t�

− �
0

t

F�t��cosh 2E1�t − t��dt�. �20�

Eliminating P�0�, using Eq. �19�, from Eq. �20� we obtain

P�t� = X�t�coth�2E1t� −
1

sinh�2E1t�
X�0�

−
1

sinh�2E1t��0

t

F�t��sinh�2E1t��dt�. �21�
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To determine the Green’s function for H1, we need to
evaluate the matrix element 
X�t��H1�t��X�0��. In the process,
we have to commute the X�0� operator in P2 to the right of
X�t�. This is accomplished by using the commutation relation

�X�t�,X�0�� = − i sinh�2E1t� . �22�

Evaluation of Eq. �14� then yields

iGH1
�X,t;X�,0� =

1
�2	i sinh�2E1t�

exp�i
1

2
�X2 + X�2�coth�2E1t� − iXX�

1

sinh�2E1t�

−
i

sinh�2E1t��0

t

dt�F�t���X� sinh�2E1�t − t��� + X sinh�2E1t���

−
i

sinh�2E1t��0

t

dt��
0

t�
dt�F�t��sinh�2E1�t − t���sinh�2E1t��F�t��� . �23�

Similarly, the equations of motion for the s motion are given
by

ds

dt
= − i�s,H2� = E2p �24�

and

dp

dt
= − i�p,H2� = − E2s − G�t� , �25�

leading to

d2s

dt2 + E2
2s = − E2G�t� . �26�

Following the same technique used above for the X motion,
the Green’s function associated with the s motion �cyclotron
center motion� is given by

iGH2
�s,t;s�,0� =

1
�2	i sin�E2t�

exp�i
1

2
�s2 + s�2�cot�E2t�

− iss�
1

sin�E2t�
− iV0t −

i

sin�E2t��0

t

dt�G�t��

��s� sin E2�t − t�� + s sin�E2t���

−
i

sin�E2t��0

t

dt��
0

t�
dt�G�t��

�sin�E2�t − t���sin�E2t��G�t��� . �27�

Since �H1 ,H2�=0, the Green’s function for the full Hamil-
tonian H=H1+H2 can be written as �Appendix B�

GH�X,s,t;X�,s�,0� = iGH1
�X,t;X�,0�GH2

�s,t;s�,0� .

�28�

IV. ELECTRON TRANSMISSION THROUGH A QPC

We will analyze electron tunneling and/or scattering
through a QPC in crossed fields for the case of a constant
electric field. In conjunction with the Hamiltonian, Eq. �7�,
we consider a general product state �in a representation
where X and s are diagonal� as 
�X ,s�=��X��n�s�. Here,
�n�s� is taken to satisfy a harmonic-oscillator-like equation,

H2�n�s�� = �2
�n��n�s�� = ��n +

1

2
�E2 −

G2

2E2
+ V0��n�s�� ,

�29�

where s�=s+G /E2, and G is given from Eq. �13� as G
= eE

�m�
e�2 sin �. The X part of the product state, ��X�, satisfies

H1��X� = �E − �2
�n����X� , �30�

with E the total energy corresponding to the state 
�X ,s� for
the system described by H.

The time development of an arbitrary state of the system,

�X ,s ; t�, arising from an initial state, 
�X� ,s� ;0�, is given
by �Appendix B�


�X,s;t� = i�
−�

� �
−�

�

dX�ds�GH�X,s,t;X�,s�,0�
�X�,s�;0� ,

�31�

where GH�X ,s , t ;X� ,s� ,0� is the Green’s function derived
above. Specifically, if we choose the initial state as a product
state, 
�X� ,s� ;0�=
1�X� ,0�
2�s� ,0�, the time develop-
ment is described by Eq. �28� as
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�X,s;t� = i�
−�

� �
−�

�

dX�ds�GH�X,s,t;X�,s�,0�
�X�,s�;0�

= ��
−�

�

dX�iGH1
�X,t;X�,0�
1�X�,0��

���
−�

�

ds�iGH2
�s,t;s�,0�
2�s�,0�� , �32�

which indicates that the two parts of such a product state
propagate independently. Following Fertig and Halperin,6 we
choose the s�-dependent initial state to lie in the nth oscilla-

tor level �n�s� of H2. Then, �n�s� ; t��e−i�2
�n�

t has constant
modulus for all t and the transmission coefficient of the two
dimensional problem is reduced to the one dimensional
transmission coefficient associated with the guiding center X
motion. Hence, from Eq. �32� we need only to evaluate

�out�X,t� = �
−�

�

dX�iGH1
�X,t;X�,0��in�X�,0� , �33�

where 
1�X� ,0�→�in �
�X ,s ; t�→�out� is the incoming
�outgoing� state. In the case of constant electric field, the
Green’s function of Eq. �23� for the guiding center motion
reduces to

iGH1
�X,t;X�,0� =� b

2	i
exp�i 1

2c�X2 + X�2� − ibXX�

− if 2E1t − if�c − b��X + X� − f�� , �34�

where f =F /2E1, b=1/sinh�2E1t�, and c=coth�2E1t�.
In regard to the initial “in” state, ��X ,0� is formed from

the even, �e�X�, and odd, �o�X�, solutions of Eq. �30� for the
guiding center motion in a constant electric field,

H1�e,o�X� = �E1�P2 − X2� + FX��e,o�X� = �E − �2��e,o�X� ,

�35�

where, from Eq. �10�, F is given as F= eE
�m�

e−�1 cos �. Com-
pleting the square, Eq. �35� can be written as

� d2

dX�2 + X�2 + ���e,o�X�� = 0, �36�

where X�=X− f and

� =
EG − V0

E1
+

G2

2E1E2
− � F

2E1
�2

. �37�

Here, EG=E− �n+1/2� E2 is the energy associated with the
guiding center motion of the electron and E is total energy.

The solutions for �e,o can be expressed in terms of the con-
fluent hypergeometric function 1F1 �Ref. 8� as

�e�X�� = e−iX�2/2
1F1�1

4
+

i�

4
;
1

2
;iX�2� �38�

and

�o�X�� = X�e−iX�2/2
1F1�3

4
+

i�

4
;
3

2
;iX�2� . �39�

The initial in state �in�X ,0� is taken as a linear combina-
tion of these functions,

�in�X,0� = A�e�X�� + B�e�X�� = A�e�X − f� + B�e�X − f�
�40�

or

�in�X,0� = Ae−i�X − f�2/2
1F1„�; 1

2 ;i�X − f�2
…

+ B�X − f�e−i�X − f�2/2
1F1„� + 1

2 ; 3
2 ;i�X − f�2

… ,

�41�

where the A and B coefficients are determined such that
�in�X ,0� reduces asymptotically as e−i�X − f�2/2→e−iX2/2. Ac-

cordingly, A and B satisfy A
B =−

���*�

2���*+1
2

�ei	/46 and �= 1
4 + i �

4 ,

where ��x� denotes the gamma function. Substituting the
Green’s function, Eq. �34�, and the form of the incoming
state, Eq. �41�, into Eq. �33�, we obtain

�out�X,t� = �1�X,t� + �2�X,t� , �42�

where

�1�X,t� = A� b

2	i
ei�cX2/2−E1f2t�e−icf�X−f/2�

��
−�

�

ei�c−1��2/2e−ib�X−f��
1F1��; 1

2 ;i�2�d� �43�

and

�2�X,t� = B� b

2	i
ei�cX2/2−E1f2t�e−icf�X−f/2�

��
−�

�

ei�c−1��2/2e−ib�X−f��
1F1�� + 1

2 ; 3
2 ;i�2�d� .

�44�

The integrals involved in the time development of �out�X , t�
are performed in Appendix C, with the result

�out�X,t�
B

= � e−i	/2

�*�1 − ��
−

���*�
�������* + 1

2���	

2
�X − f�2�−1ei	�/2e−i�E1tei�cX2/2−E1f2t�e−icf�X−f/2�e−ib2�X − f�2/4, �45�
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which is to be compared with the asymptotic form of the
incoming wave function of Eq. �41� �Appendix C�,

�in�X,0�
B

= − � 1

���* + 1
2� +

1

��1 − ����	

2

��X − f �−2�e−i	��−3/4�/2e−i�X − f�2/2. �46�

The transmission coefficient for the problem at hand can
be written as

T = lim
X→�

��out�2

��in�2
. �47�

The squared modulus of the outgoing wave function is given
by

��out�X,t�
B

�2

=
	

4

e−	�/4

�X − f�� e−i	/2

��1 − �*�
−

���*�
�������* + 1

2��
2

,

�48�

and the corresponding expression for the incoming wave
function is

��in�X,0�
B

�2

=
	e−	�/4

�X − f�����* + 1
2��2 . �49�

Forming the transmission coefficient, we have

T =
1

4� e−i	/2

��1 − �*�
−

���*�
�������* + 1

2��
2����* +

1

2
��2

,

�50�

which can be reduced further using the identity �Ref. 8, p.
256, Eq. �6.1.32��

�� 1
4 + iy��� 3

4 − iy� =
�2	

cosh 	y + i sinh 	y
.

The resulting expression for the transmission coefficient is

T =
1

1 + e−	� , �51�

where

� =
EG − V0

E1
+

G2

2E1E2
− � F

2E1
�2

, �52�

with

EG = E − �n + 1/2�E2.

V. CONCLUSIONS

In summary, we have determined the coefficient for elec-
tron transmission through a quantum point contact in the
presence of crossed electric and magnetic fields, with the
incoming electron state characterized as an appropriate linear
combination of states of the “guiding center” part of the
Hamiltonian, constructed to reduce properly asymptotically.
Our interest has been focused on exploring the role of the

electric field E in the transmission coefficient analyzed
previously6 with the magnetic field alone. Our result, T= �1
+e−	��−1, involves the electric field through � �Eq. �52��,
which may be rewritten as

� =
E − �n + 1/2�E2 − V0

E1
+

1

2E1E2
� eE

�m�
e�2 sin ��2

− � eE

2E1
�m�

e−�1 cos ��2

, �53�

where �, �1, �2, �, E1, and E2 are given in Eqs. �6�, �9�, and
�12� and have no dependence on the electric field. As written,
Eqs. �53� and �52� are valid for �c��2��y

2−�x
2�. �Failing

this, a simple reconsideration of ��out�2 / ��in�2 will provide a
real expression for T.�
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APPENDIX A: TRANSFORMED HAMILTONIAN

In this appendix, we provide a step by step procedure of
transforming the Hamiltonian of Eq. �3�. To this end, we
introduce the operators

a1 =�m�

2
x +

i
�2m�

px, a1
† =�m�

2
x −

i
�2m�

px,

a2 =�m�

2
y +

i
�2m�

py, a2
† =�m�

2
y −

i
�2m�

py ,

�A1�

where

�2 = ��c

2
�2

+ �−
2 ,

�−
2 =

1

2
��y

2 − �x
2� , �A2�

�+
2 =

1

2
��x

2 + �y
2� .

In terms of these operators, �x , px� and �y , py� are expressed
as

x =
1

�2m�
�a1

† + a1�, px = i�m�

2
�a1

† − a1� ,

�A3�

y =
1

�2m�
�a2

† + a2�, py = i�m�

2
�a2

† − a2� ,

and the Hamiltonian, Eq. �3�, can now be written as
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H = ��a1
†a1 + a2

†a2 + 1� −
i�c

2
�a1

†a2 − a2
†a1�

+ � ��a2
† + a2�2 − �a1

† + a1�2� +
eE�t�
�2m�

�a1
† + a1� + V0.

�A4�

Introducing the Bogoliubov transformation,

a1 = ib1 cos � + b2 sin � ,
�A5�

a2 = − b1 sin � − ib2 cos � ,

with

tan � = −
�c

4�
, �A6�

and �=�+
2 / �4��, the b and b† operators satisfy canonical

commutation relations

�b1,b1
†� = �b2,b2

†� = 1

and

�b1,b2� = �b1,b2
†� = 0.

The Hamiltonian in terms of the b and b† operators has the
form

H = ��b1
†b1 + b2

†b2 + 1� + � ��b1
2 + b1

†2� − �b2
2 + b2

†2��

+ 2��2 + ��c

4
�2

�b2
†b2 − b1

†b1�

+
eE�t�
�2m�

��b2
† + b2�sin � − i�b1

† − b1�cos �� + V0.

�A7�

An additional Bogoliubov transformation of the form

�bi

bi
† � = �cosh �i sinh �i

sinh �i cosh �i
��ci

ci
† � , �A8�

with i=1, 2, reduces the Hamiltonian, Eq. �A7�, to

H = E1�c1
2 + c1

†2� + E2�c2
†c2 +

1

2
�

+
eE�t�
�2m�

��c2
† + c2�e�2 sin � − i�c1

† − c1�e−�1 cos �� + V0.

�A9�

Here, the following definitions have been introduced:

E1 = �� 2 − 	1

2
� −�� 2 + ��c

4
�2
2�1/2

, �A10�

E2 = 2�	1

2
� +�� 2 + ��c

4
�2
2

− � 2�1/2

, �A11�

and

tanh 2�1 =

1

2
� −��2 + ��c

4
�2

− �
, �A12�

tanh 2�2 =
�

1

2
� +��2 + ��c

4
�2

. �A13�

From Eq. �A8�, it follows that �ci ,cj
†�=�ij, with all other

commutators vanishing.
Finally, we introduce the canonically paired operators

X =
1

i�2
�c1

† − c1� ,

�A14�

P =
1
�2

�c1
† + c1� ,

with �X , P�= i, and

s =
1
�2

�c2 + c2
†� ,

�A15�

p =
1

i�2
�c2 − c2

†� ,

with �s , p�= i, and �s ,X�= �s , P�= �p ,X�= �p , P�=0. The
Hamiltonian, Eq. �A9�, can now be written in the form

H = E1�P2 − X2� +
1

2
E2�p2 + s2�

+
eE�t�
�m�

�se�2 sin � + Xe−�1 cos �� + V0, �A16�

which can be recast as the sum of two commuting parts

H = H1 + H2, �A17�

with

H1 = E1�P2 − X2� + F�t�X �A18�

and

H2 = 1
2E2�p2 + s2� + G�t�s + V0, �A19�

where

F�t� =
eE�t�
�m�

e−�1 cos � , �A20�

G�t� =
eE�t�
�m�

e�2 sin � . �A21�

APPENDIX B: GREEN’S FUNCTION FOR
A SEPARABLE HAMILTONIAN

In this appendix, we derive the form of the Green’s func-
tion for a system whose time-independent Hamiltonian H
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can be written as the sum of two commuting parts, i.e., H
=H1+H2 with �H1 ,H2�=0. The time evolution of a general
state 
 in the case where H�H�t�, from some initial time t�
to a later time t, is given by

�
�t�� = e−iH�t−t��/��
�t��� . �B1�

Since �H1 ,H2�=0, we have e−iHt/�=e−iH1t/�e−iH2t/�. Moreover,
using the eigenstates of the individual Hamiltonians H1 and
H2,

H1��n� = �1
�n���n� ,

�B2�
H2��m� = �2

�m���m� ,

the eigenstates of H can be written as �
n,m�= ��n���m�. Intro-
ducing the joint product space identity operator

�
n,m

��n���m�
�m�
�n� = I , �B3�

and writing the configuration space kets as �x�= �x1��x2�, with
�xi� the space associated with Hi, we obtain

GH�x,t;x�,t�� = − i
x�e−iH�t−t��/��x�� = − i�
n,m

�
n�,m�


x2�
x1����n���m���
�m�
�n�e−iH�t−t��/���n����m����
�m��
�n����x1���x2��

= − i�
n,m

�
n�,m�


x1��n�
x2��m��
�n�e−iH1�t−t��/���n��
�m�e−iH2�t−t��/���m���
�m��x2��
�n��x1��

= − i�
n,n�


x1��n�
�n�e−iH1�t−t��/���n��
�n��x1�� �
m,m�


x2��m�
�m�e−iH2�t−t��/���m��
�m��x2�� ,

�B4�

whence

GH�x,t;x�,t�� = − i�
n,n�


x1��n�e−i�1
�n��t−t��/��n,n�
�n��x1�� �

m,m�


x2��m�e−i�2
�m��t−t��/��m,m�
�m��x2��

= − i�
n


x1��n�e−i�1
�n��t−t��/�
�n�x1���

m


x2��m�e−i�2
�m��t−t��/�
�m�x2��

= − i
x1�e−iH1�t−t��/��x1��
x2�e−iH2�t−t��/��x2�� . �B5�

Alternatively expressed,

GH�x,t;x�,t�� = − i�iGH1
�x1,t;x1�,t����iGH2

�x2,t;x2�,t���

= iGH1
�x1,t;x1�,t��GH2

�x2,t;x2�,t�� . �B6�

Translating this to the problem considered in this work,
we have

GH�X,s,t;X�,s�,t�� = iGH1
�X,t;X�,t��GH2

�s,t;s�,t�� ,

�B7�

and the time evolution of a general product state
�
�X� ,s� ; t��=
1�X� , t��
2�s� , t��� is given by


�X,s;t� = i� dX�ds�GH�X,s,t;X�,s�,t��
�X�,s�;t��

=� dX�iGH1
�X,t;X�,t��
1�X�,t��

�� ds�iGH2
�s,t;s�,t��
2�s�,t�� . �B8�

APPENDIX C: TRANSMISSION COEFFICIENT

In this appendix, we derive the form of the outgoing wave
and use it to obtain the transmission coefficient. Considering
the evaluation of Eq. �42�, there are two parts. We rewrite the
first part, Eq. �43�, using the integral representation of the
confluent hypergeometric function �Ref. 8, p. 505, Eq.
�13.2.1��,

1F1�a;c;x� =
��c�

��a���c − a��0

1

exuua−1�1 − u�c−a−1du ,

�C1�

so that �1�X , t� is given by

�1�X,t� = A� b

2	i

��1/2�
������2

ei�cX2/2−E1f2t�e−icf�X−f/2��
0

1

duu�−1

��1 − u�−��+1/2��
−�

�

d�ei�u+�c−1�/2��2/2e−ib�X−f��,

�C2�

where we used the � function relation �*�z�=��z*� �Ref. 8,
p. 256, Eq. �6.1.23��. The � integration can be performed
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using Ref. 9, Eq. �3.896.2� �p. 480�, resulting in

�1�X,t� = A�b

2
�1/2 ��1/2�

������2
ei�cX2/2−E1f2t�e−icf�X−f/2�

��
0

1

du
u�−1�1 − u�−��+1/2�

�u +
c − 1

2
�1/2 exp�− i

b2�X − f�2

4�u +
c − 1

2
�� .

�C3�

In the large t limit, c−1=coth�2E1t�−1→0, or c→1, and
the subsequent substitution u=1/ �1+s� reduces the u inte-
gral to

�
0

1

du
u�−1�1 − u�−��+1/2�

�u +
c − 1

2
�1/2 exp�− i

b2�X − f�2

4�u +
c − 1

2
��

= e−ib2�X − f�2�
0

�

dss−�−1/2e−ib2�X − f�2s/4. �C4�

The s integral can be evaluated using Ref. 9, Eq. �3.381.5�
�p. 318�, resulting in

�
0

�

dss−�−1/2e−ib2�X − f�2s/4 = ��1

2
− ��

��b�X − f�
2

�2�−1

e−i	�1/2−��/2.

�C5�

Consequently, Eq. �C3� can be written as

�1�X,t� = A�b

2
�1/2 ��1/2�

������2
e−i�−�+1/2�	/2ei�cX2/2−E1f2t�e−icf�X−f/2�e−ib2�X − f�2

, �C6�

and in the limit of large t �b /2= 1
2 csch�2E1t�→e−2E1t� it reduces to

�1�X,t� = A�	
�� 1

2 − ��
������2

�X − f�2�−1e−i�E1tei	��−1/2�/2ei�cX2/2−E1f2t�e−icf�X−f/2�e−ib2�X − f�2/4. �C7�

A similar procedure applied to �2�X , t� results in

�2�X,t� = B
�	

2

��1 − ��
���1 − ���2

�X − f�2�−1e−i�E1tei	��−1�/2ei�cX2/2−E1f2t�e−icf�X−f/2�e−ib2�X − f�2/4. �C8�

Combining Eqs. �C7� and �C8�, we form the outgoing wave function �out�X , t� as

�out�X,t� = �1�X,t� + �2�X,t� .

To simplify this expression, we use the relation between the coefficients A and B mandated by the required asymptotic
behavior of �in�X ,0�,

A

B
= − ei	/4 ���*�

2���* + 1
2� ,

and obtain

�out�X,t�
B

= � e−i	/2

�*�1 − ��
−

���*�
�������* + 1

2���	

2
�X − f�2�−1ei	�/2e−i�E1tei�cX2/2−E1f2t�e−icf�X−f/2�e−ib2�X − f�2/4. �C9�

We also write the incoming wave function �in�X ,0�, Eq. �41�, for large values of �X− f � as

�in�X,0�
B

= − � 1

���* + 1
2� +

1

��1 − ����	

2
�X − f �−2�e−i	��−3/4�/2e−i�X − f�2/2. �C10�
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