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We investigate and compare different optical probes of a condensed state of microcavity polaritons in
expected experimental conditions of nonresonant pumping. We show that the energy- and momentum-resolved
resonant Rayleigh signal provides a distinctive probe of condensation as compared to, e.g., photoluminescence
emission. In particular, the presence of a collective sound mode both above and below the chemical potential
can be observed, as well as features directly related to the density of states of particle-hole-like excitations.
Both resonant Rayleigh response and the absorption and photoluminescence are affected by the presence of
quantum well disorder, which introduces a distribution of oscillator strengths between quantum well excitons
at a given energy and cavity photons at a given momentum. As we show, this distribution makes it important
that in the condensed regime, scattering by disorder is taken into account to all orders. We show that, in the
low-density linear limit, this approach correctly describes inhomogeneous broadening of polaritons. In addi-
tion, in this limit, we extract a linear blueshift of the lower polariton versus density, with a coefficient
determined by temperature and by a characteristic disorder length.
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I. INTRODUCTION

Since the prediction of Keldysh and Kopaev,' there has
been a long and intense pursuit to realize a condensed phase
in solid state excitonic, and related, systems. In particular,
polaritons in semiconductor microcavities, the coupled
eigenstates of an exciton with a cavity photon,>3 represent
ideal candidates for observing condensation phenomena. The
very light mass of these composite bosonic particles prom-
ises relatively high transition temperatures. In the past de-
cade, improvements in the growth technology of semicon-
ductor heterostructures have made the study of high-quality
strongly coupled planar microcavities almost routine for
IIT-V and II-VI semiconductors. The high degree of external
control of these systems and the possibility of their direct
detection have opened the route toward a new generation of
fast optical matter-wave lasers and amplifiers.*® More re-
cently, concerted experimental efforts have been devoted to
the realization of a Bose-Einstein condensate of microcavity
polaritons.*%-14

On the experimental side, a challenge to the realization of
a condensed polariton phase might be represented by the
finite quality of the cavity mirrors and the resultant short
polariton lifetime, of the order of picoseconds. In addition,
due to the “bottleneck effect,”!® the relaxation of polaritons
to the zero momentum state can be delayed, hindering the
creation of a thermal population in the lowest energy state. It
has, however, been recently shown!>!%1 that thermalization
processes due to particle-particle scattering can be dramati-
cally magnified by increasing the value of the (nonresonant)
pump power and by positively detuning the cavity energy
above the excitonic energy. Under these conditions, the
progress toward a zero momentum quasiequilibrium conden-
sate has been significant,*>°-!3 including a nonlinear thresh-
old behavior in the emission intensity at zero
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momentum,*>*!13 the investigation of the second order co-

herence function,® a characteristic change in the momentum
space distribution above threshold,'®!? and evidence that the
equilibration time is shorter than the polariton lifetime has
been seen.!? Finally, very recently, a clear demonstration of
condensation of cavity polaritons has been achieved in
CdTe.'* Kasprzak et al. have shown that condensation of
equilibrated polaritons can be achieved for effective tem-
peratures around 20 K, and evidence for condensation has
been seen in the occupation function, in the first order coher-
ence (both in time and in space), and in the spontaneous
appearance of linear polarization of the condensate emission.

Alongside the experimental effort, a significant theoretical
effort has been invested in analyzing properties and predict-
ing signatures of polariton condensation.!”?® Much of this
work focuses on modeling the conditions under which con-
densation can occur, both in equilibrium,'7-?*-22 and consid-
ering the effects of pumping and decay.?>?6282° Possible sig-
natures include the nonlinear relation of emission at zero
momentum to pumping power,”” > changes to the
linewidth,?%?72% the photoluminescence (PL) spectrum and
the angular distribution of radiation,?!*? and spontaneous po-
larization of emitted radiation.?*

In this paper, we discuss the optical properties of con-
densed polaritons, focusing our interests on absorption, PL,
and resonant Rayleigh scattering (RRS). From our study, we
conclude that RRS, the coherent scattering by disorder of
polaritons into directions other than that of the original
probe, represents a powerful tool for investigating the con-
densed phase. We will show that signatures of condensation
are visible in the RRS spectrum, allowing a direct probe of
the collective excitation properties of the polariton conden-
sate. In particular, we will show that, above the threshold for
condensation, strong emission from the collective sound
mode both above and below the chemical potential can be
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FIG. 1. (Color online) Contour plot of the disorder averaged
RRS intensity (Ipq(w)) for [p|=|q| as a function of the dimension-
less momentum |p|a, and rescaled energy 2(w—u)/Qp, for zero
detuning, Rabi splitting Q=26 meV, temperature kz7=20 K, and
a disorder strength characterize by an inverse scattering time 1/7
=1.16 meV: (a) noncondensed regime (dimensionless density p
=0), (b) condensed regime (p=7.8x 1073), and (c) condensed re-
gime (p=6.7X1072). (The parameters chosen for these plots are
the same as those used later for spectral weight and photolumines-
cence.) The value of the chemical potential is explicitly marked
[horizontal green (gray) line]. While in the noncondensed regime,
RRS emission is always above the chemical potential, in the con-
densed phase, emission from the collective sound mode is seen both
above and below the chemical potential.

seen in the RRS spectra (see Fig. 1). In contrast, such fea-
tures are expected to be much harder to observe in usual PL
emission spectra, where the spectrum is dominated by the
very strong condensate emission at the chemical potential,
which is likely to mask these more subtle features. In addi-
tion, we will show that the RRS spectra directly reflects the
disorder averaged density of states of excitonic particle-hole-
like excitations, i.e., bound excitons coupled to the coherent
photon field.

Resonant Rayleigh scattering depends on disorder to scat-
ter polaritons between momentum states. In order to carry on
our analysis, we introduce a realistic description of disorder
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and analyze its effects on RRS and, more generally, on other
optical probes, such as absorption and PL. To do this, we
make use of a quantitatively accurate model for exciton
disorder**-3? and numerically evaluate the distribution of ex-
citonic energies and oscillator strengths associated with a
given disorder potential. An accurate treatment of exciton
disorder for quantum wells in microcavities is important be-
cause the large ratio of exciton mass to photon mass means
that those exciton states with the most contribution to the
thermally populated polaritons are strongly localized, i.e.,
cannot be treated within the first Born approximation. Such a
treatment shows that, for a given exciton energy and momen-
tum, there is still a distribution of possible oscillator
strengths. For the exciton states relevant to polariton forma-
tion, the distribution of oscillator strengths varies from a nar-
row Gaussian at low energies (below the band edge) to a
Porter-Thomas distribution at high energies, as is known
from previous works.3*32 Here, we study the effect of this
distribution on the many-body physics and, in particular, on
RRS and PL spectra.

In this paper, we consider the case relevant to the existing
CdTe or GaAs microcavities of high-quality quantum wells,
where the typical excitonic disorder amplitude is smaller
than the Rabi splitting. In this regime, we can make use of
the coupled oscillator model or wave vector conserving ap-
proximation, as explained in Ref. 33. As will be explained in
more detail later on, this corresponds to approximating the
full exciton Green’s function by its momentum-diagonal part
(or, equivalently, considering its disorder average) and treat-
ing perturbatively the off-diagonal terms. In this way, the
translational invariance broken by the presence of the disor-
der is restored, polaritons have a defined wave vector, and, at
high enough densities, polaritons condense in the lowest mo-
mentum state. Such a treatment implies that excitonic disor-
der, being on short length scales, does not lead to spatial
inhomogeneity on the length scale associated with the polar-
iton. Extended polaritons are formed from a superposition of
many localized excitons, therefore recovering translational
invariance at the level of polaritons. At low densities, in the
noncondensed state, many observable properties can be ad-
equately described by the coupled oscillator model and so
can be found from the mean squared oscillator strength at a
given energy. In this limit, our method recovers the well
known results for the inhomogeneous broadening of the po-
lariton PL3-* and—by considering in addition the mean
fourth power of the oscillator strength—the averaged RRS
response.>>3% However, when condensed, there are observ-
able effects associated with the full distribution of oscillator
strengths. In particular, the nonvanishing probability of exci-
tons to have arbitrarily small oscillator strengths has direct
consequences for optical probes, including both RRS and
PL.

In Ref. 25, we considered specific aspects of resonant
Rayleigh scattering arising from the model discussed in this
paper. Here, we provide and compare further experimental
probes of condensation, and discuss the underlying physical
mechanisms involved. All these optical probes, including
RRS, are in addition to a nonresonant pumping of the micro-
cavity polaritons. A related problem is studied in Ref. 39.
There, the Rayleigh scattering of a strong resonant pump is
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considered (treating disorder perturbatively), thus the probe
is the pump. In this paper, in contrast, one has to distinguish
two types of coherence. The first type is the internal coher-
ence of the condensed system, which arises spontaneously
following nonresonant pumping. The second type is the co-
herent scattering of an external laser probe on disorder,
which can be strongly modified by the presence of the con-
densate.

The form of the density of states, optical density, and
distribution of oscillator strengths found from the numerical
calculations is also important in other thermodynamic prop-
erties and probes of polaritons. One such example is the
calculation of the linear blueshift vs density in the low-
density regime. The inclusion of exciton states that couple
weakly to photons extends the validity of the current model
to densities beyond those in similar treatments'”2! and pro-
vides a stronger basis for the use of those models in the
regimes where they are valid.

The paper is arranged in the following sections: We intro-
duce our model of the system in Sec. II, which makes use of
numerically evaluated energies and wave functions of exci-
tons in a disordered quantum well, as evaluated in Sec. II B.
Section III describes the optical probes such as spectral
weight and photoluminescence (Sec. III A) and resonant
Rayleigh scattering (Sec. III C). Conclusions are collected in
Sec. 1V, while the Appendix explains how one can detect
RRS using phase sensitive measurements.

II. MODELING EXCITON POLARITONS IN DISORDERED
QUANTUM WELLS

We make use of a model describing localized excitons
dipole coupled to a cavity photon mode. This model is dis-
cussed in detail elsewhere (see, e.g., Ref. 40 and references
therein), so we will only briefly summarize its properties. We
will set Zi=1 throughout. The interaction between excitons is
approximated by exclusion; i.e., excitons are treated as hard-
core bosons. This approximation is accurate as far as the
occupancy is restricted to the strongly localized Lifshitz
states in the tail below the band edge. All the results de-
scribed in this paper respect this limit. One can, moreover,
show that it is this density regime which is relevant for on-
going experiments in CdTe.'* Higher energy states, beyond
the Lifshitz tail, contribute to the optical response; however,
they are only weakly occupied, and so the above limit re-
mains valid.

As described in Ref. 40, these hard-core bosons can be
represented by two fermionic states, so that the ground state
lg.s.)=a'|0), and an excitonic state |ex)=b'|0)=b a,|gs.).
Imposing a constraint on total fermion occupancy, blba
+a'a,=1, eliminates the unphysical states [0) and a!b’|0).
The effective Hamiltonian is thus

A Eqy +
H=2 2 biba+anay) + 2 oy
a p

1 .
+ ?2 2 (Sapthpbian+He). M)
N a p
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The exciton energies €, and transition matrix elements
8a,p are taken from numerical simulations of excitons in a
disordered quantum well, as discussed below. It is conve-
nient to rescale this coupling according to

—_—
8ap™ 8ap \”Ryxmxlzw’

where N=Ry,.?m,/2m is the inverse level spacing
L*m, /27, measured in units of the excitonic Rydberg energy.
This corresponds to measuring the density of particles per
Bohr radius squared. Using these units, we may write the
total number of excitations

N I . ;
N= 205 bibatasan) + 2 bty 2)

in a dimensionless form by introducing a dimensionless
density of particles p=(N)/N, or, equivalently, p
=((NY/LY)a*4mu/m,, where (N)/L? is the physical areal
density of particles.

What the model Eq. (1) does not include is the Coulomb
interaction between excitons with different energies ¢,, i.e.,
at low densities, on different localization sites R,. This con-
tribution is expected to be small in the low-density regime.
This low-density regime will be observed all the way
through this paper. At the same time, we are not including
double occupancy of a single exciton energy level, which
could be important at higher densities.

A. Exciton states in disordered quantum wells

The problem of an exciton in a disordered quantum well
has been studied at some length in the past two
decades.’03241-% Quantum well disorder can arise due to
interface and alloy fluctuations and affects the properties of
the excitonic linewidth and absorption spectrum. Similar to
Refs. 30 and 31, we will assume the external disorder poten-
tial to be correlated on a length scale larger than the exciton
Bohr radius. Accordingly, we factorize the excitonic in-plane
relative and center of mass coordinates

\Pa(re»rh) = (Pl.v(r)q)a(R),

I _
@,(r) = \r’8/'n'aie 2rlay

and assume that the disorder affects only the excitonic center
of mass motion ® (R), while the internal degrees of freedom
can be restricted to the ground state hydrogenic state ¢, (7).
Here, a,=€/e*u, is the exciton Bohr radius and wu, the re-
duced mass. Neglecting the transverse degrees of freedom
related to the confinement of the excitons in the quantum
well, the energy associated with the wave function W ,(r,,r;,)
is given by the sum of the relative motion energy E, [i.e., the
band gap minus the exciton binding energy, Ry,
=(2u,a))" ' =e*u,/2€%] and the energy related to the center
of mass motion &,:

2
{— ZV?R +V(R) + Ex:| D, (R)=£,D,(R). 3)

Here, the effective disorder potential V(R) represents the mi-
croscopic structural disorder averaged over the electron-hole
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motion.’® This can be approximated, e.g., with a Gaussian
noise correlated on a length scale €,.> a, with variance equal

to o

1/,

(VR)V(R')) = (02212 D, e RR)
q

where L? is the quantization area. It will be convenient, later
on, to introduce the scattering time

1
B 2771/02@’

where v=m,/2 is the two-dimensional density of states in
the clean limit.

In two-dimensional noninteracting systems, all states are
localized by the disorder potential. However, the localization
length and the character of the excitonic wave function
change significantly from below to above the band edge E,.
Well below the band edge, low-energy Lifshitz tail states®
are well localized in deep potential minima with a nodeless
(roughly Gaussian) shape. These states are rare because they
occur due to large, rare, fluctuations of the disorder potential.
In contrast, higher-energy states above the band edge have a
fractal-like shape with many nodes and can be approximated
by a random super;]gosmon of plane waves with the same
momentum  |p|=2m,(e Here, the localization
mechanism is closely related to quantum mechanical inter-
ference effects.

Accordingly, the change of the shape of the center of mass
wave functions across the band edge is accompanied by a
dramatic change in the excitonic oscillator strength.3! The
oscillator strength describing coupling of a quantum well
exciton to light, g, p, is given by the probability amplitude of
finding an electron and a hole at the same position and with
the center of mass momentum equal to the photon momen-
tum p, and is, therefore, proportional to the Fourier trans-
form of the center of mass wave function, ®, ,=(®,|p):

277w

ZWB(PIS(O)q)a,pv (4)

8ap™= Edub
where d,, is the dipole matrix element. The dispersion for
photons in _a microcavity of width L, is given by w,
=\ w)+(cp)?/ €, where wy=2mc/L,, Ve, and can be approxi-
mated, for small momenta, by a parabolic dispersion o,
= wo-q-_pz/ 2my,, with the photon mass given by m
=2mVelcL,,

Because there may be many different exciton wave func-
tions corresponding to similar exciton energies, the oscillator
strength g, , is a random quantity, which varies both in phase
and magnitude. Considering many disorder realizations, we
find a distribution of squared oscillator strengths | gayp|2 as a
function of the energy &, and momentum p. This distribution
reflects the statistical properties of the center of mass exci-
tonic wave functions.

To compare to experimentally relevant observables, we
introduce the density of states (DOS),

Y
ph
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FIG. 2. (Color online) Plot showing the energy dependence of
the excitonic squared coupling strength |ga!p|2 on photons of mo-
mentum (a) |p|=0 (from Ref. 25, for comparison) and (b) |p
=6.3%10° cm™!, where all exciton states are found numerically.
Results are taken from 160 different realizations of disorder poten-
tial, and for (b), coupling strengths from eight different photon mo-
menta (p,,p,) with the same value of |p| are combined. The mean
squared averaged oscillator strength g?(e, |p|) for the same value of
momentum [lower red (gray) points] and the density of states
DOS(g) [upper green (gray) points] are also explicitly plotted. In-
set: Fit of g?(e,|p|) to expression (7) with a renormalized energy

Sp.
DOS(¢) = éE (8le—g,)),

and the mean squared oscillator strength,

e, S |gup20e — 6 >> (s)

DOS( )<

where (...) is the average over different disorder realizations.
These quantities are related to the excitonic optical density
by the relation
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D(g) =DOS(g)g%(,0). (6)

Experimentally, the excitonic optical density can be mea-
sured by dividing the PL emission by the excitonic
occupation.?* We note that in the noncondensed regime, the
full distribution of g, , is unnecessary; the excitonic optical
density is sufficient to derive the polariton dispersion and its
inhomogeneous broadening. However, in the condensed
phase, and in order to correctly describe resonant Rayleigh
scattering mechanisms, we will see that it is of fundamental
importance to consider the full distribution of oscillator
strengths.

Focusing for the moment on average properties, rather
than on the entire distribution, a simple expression exists for
the mean squared oscillator strength in the high-energy limit.
In this limit, where the DOS is flat and energy independent,
DOS(e)=v, making use of the Born approximation, the
squared average oscillator strength g*(e,|p|) does not depend
separately on the disorder potential correlation length €. and
variance o, but instead depends only on the scattering time 7
(see Fig. 2):

1 1
m,7L? (& — sp)2 +(129%

g*(e.lp) = ()
where 8P=Ex+p2/ 2m, is the free particle dispersion. From
this form, and the effectively constant density of states, one
can see that both the mean squared oscillator strength and the
excitonic optical density are symmetrical. The comparison of
this approximate form to the numerical simulation is shown
in Fig. 2;

In contrast, for energies much below the band edge, the
specific asymptotic expression of g*(e,|p|) depends on
whether the correlation length €. is smaller or larger than the
localization length rg(e). In the white noise limit,¥ €,
<rg(e)~(2m,|e—E,|)""?, one can show that the center of
mass wave function ® (R) can be approximated by a Gauss-
ian centered at a randomly distributed site R,

o (R) =g ®R-RI7,

. 2
D,,=r pe'PRaoP) /4

and, therefore, give a squared oscillator strength proportional
to

1

e_‘P‘Z/(A‘mX‘s_ExD'
2mx|8 - Ex|

| pl® =

Thus, here the distribution of squared oscillator strengths is
very narrow, with a mean square value given by the above
form.

Similarly, much theoretical (and numerical) work has
been done to establish the energy dependence of the density
of states. In the low-energy tail, as before, the specific
asymptotic form of the DOS depends on the value of the
correlation length €. In the white noise limit, one can show

that DOS(8)0<|s—Ex|3/26‘1l'slg‘Exl/‘szxd, while in the oppo-
site (classical) limit, €C>r('p(8)~(2€C/2\s"2r2nx|s—Ex|)”2, one,
instead, has DOS(e) o (e—E,)2e~E~EJ720" (see, e.g., Ref.
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FIG. 3. (Color online) Contour plot of the mean (over 160 real-
izations of the disorder potential) squared oscillator strength
g%(e,|p|) versus energy and momentum [or, equivalently, angle @
=tan"!(c|p|/w)]. Note that the scale in angle is not linear. The free
particle dispersion E,+|p|>/2m, [solid green (gray) line] and the
trace of the mean squared oscillator strength for two representative
values of momenta, |p|=0 (6=0°) and |p|=6.3%10°cm™' (@
=82°) [red (gray) plus symbols] are explicitly plotted (cf. Fig. 2).
The figure is adapted from Ref. 25.

43). In general, for the finite values of the disorder correla-
tion length corresponding to typical experiments, the regions
in energy where one of these two analytical regimes applies
are very restricted, and therefore, a numerical analysis is re-
quired.

Numerical analysis is also essential in order to account for
the distribution of squared oscillator strengths | gaqp|2 near the
band edge. This distribution changes substantially from low-
energy states to high-energy ones. As we discuss in more
detail in the next section, for high-energy states, the oscilla-
tor strength distribution is governed by a Porter-Thomas law,
while for Lifshitz tail states, the distribution follows a nar-
row Gaussian-like distribution. Neither of these distributions

02 | ﬁ ]

2
R

D(e)/Q

s
i
0.1 i 1
F
{

0.0 J L L L

-4 -3 -2 -1 0 1 2 3
€-E, (meV)

FIG. 4. Optical density Eq. (6) versus energy. The maximum
value is around &' —E,=-094 meV and the FWHM o
=0.94 meV.
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applies for energies around the band edge. However, it is
those states near the band edge that have the largest optical
density, and so the distribution of oscillator strengths in this
region has a significant impact on derived quantities. It thus
becomes essential to use numerical analysis to find the entire
distribution of oscillator strengths.

B. Numerical analysis

To solve Eq. (3), we exactly diagonalize this problem
within a finite basis set using conjugate-gradient minimiza-
tion with preconditioning of the steepest descent wave vector
(for a detailed discussion of this method, see Ref. 46). We
find the exact eigenvalues and eigenfunctions in a finite basis
on a grid of 120X 120 points for a system of size L=1 um,
o=2meV, €,=166 A, and excitonic mass m,/my=0.08.
These parameters give an inverse scattering time of 1/7
=1.16 meV. For this choice of the grid, one can show that
convergence is reached. From the evaluated eigenvalues ¢,
and eigenstates @, , over 160 realizations of the disorder
potential, we can derive the excitonic density of states and
the oscillator coupling strength and its squared average [Eq.
(5)], which we plot in Figs. 2 and 3, while the corresponding
optical density is plotted in Fig. 4.

The lower panel of Fig. 2 shows the squared coupling
strength | ga,p|2 versus energy for a fixed value of momentum,
[p|=6.3X10° cm™!, corresponding, for a cavity of w,
=1.68 eV, to an angle of f=tan"!(c|p|/w,)=82°. Note that,
because of the presence of disorder in the quantum well, one
photon with a given momentum couples with many exciton
states with different energies. We will see later on, therefore,
that a polariton with a given momentum is formed by the
superposition of one photon state |p) and many exciton states
|® ). These states are more or less strongly coupled, depend-
ing on the distribution of oscillator strength for that given
momentum. As Fig. 2 shows, by probing a quantum well at a
large angle, i.e., with high momenta photons, the excited
excitons with larger oscillator strength are the ones that are
almost delocalized in nature and with a many-node fractal-
like shape. By taking the average over many (160) disorder
realizations, the squared average oscillator strength g*(e, |p))
shown in the inset in Fig. 2 is well described by the Lorent-
zian shape predicted by the Born approximation of Eq. (7),
with a fitted width of 1/7;=1.2 meV in good agreement
with the theoretical value 1/7=1.16 meV. However, the
peak of the Lorentzian does not coincide with the energy of
the clean limit, €, but is renormalized down in value, as can
be shown by employing a self-consistent Born approxima-
tion.

In contrast, as shown in the upper panel of Fig. 2, for
photons with zero momentum, the maximum value of the
oscillator strength characterizes excitonic states below the
band edge, which are more localized in nature. This can be
easily understood by the following qualitative argument: At
very low energies, the excitonic state is strongly localized in
a deep potential minimum and has no nodes. Increasing the
energy, at first the localization length increases [e.g., re(g)
~(2m,|e—E,[)™"? in the white noise limit] and, thus, in-
creases the oscillator strength. However, eventually, the
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wave function starts developing nodes and consequently, the
squared average oscillator strength decreases. When p=0,
only the high-energy side of g%(e,0) can be described by the
Born limit [Eq. (7)]. For the chosen values of the disorder
potential correlation length €. and variance o, an analytical
expression for the low-energy (Lifshitz) tail is not known.

The crossover from localized to more plane-wave-like ex-
citonic states obtained by increasing the value of the photon
momentum is plotted in Fig. 3. At high momenta, the maxi-
mum of the squared average oscillator strength g2(e,|p|)
shown in Fig. 3 follows the free particle dispersion, plus a
renormalization down in energy, which decreases for higher
photon momenta; i.e., these states are described well by free
particles, including disorder in the first Born approximation.
At low momenta, the states which have the stronger oscilla-
tor strength are effectively localized. The crossover, as seen
in the contour plot, happens at relatively large angle, 6
=55°, because of the large ratio of exciton to photon mass:
The crossover momentum is set by exciton mass, but its
conversion to an angle depends on effective photon mass.
For a related reason, the thermally populated polariton states
are formed out of strongly localized (i.e., beyond first Born
approximation) excitonic states. For values of temperature
and photon mass relevant for experiments, thermal popula-
tion of polaritons extends up to around 10° in momentum,
which, as seen in Fig. 3, corresponds to exciton states not
accurately described by the Born approximation. For this
reason, in the following, we will concentrate on the oscillator
strength corresponding to p=0, ga’0|2.

Finally, we plot in Fig. 4 the optical density. For the cho-
sen values of €. and o, the optical density shows a maximum
around &"—E,=-0.94 meV below the band edge, a full
width at half maximum (FWHM) of approximatively o
=0.94 meV, and a clear asymmetry of the line shape. It is
well known®>* that, by indicating with E,=1/2m> the
confinement energy of the lowest state in a typical potential
minimum, the excitonic line shape is determined by the ratio
E./o and, for a finite value of this, the optical density devel-
ops an asymmetry toward higher energies. For our choices of
parameters, E./0=0.85. Asymmetry of the optical density
of quantum well excitons has also been measured experi-
mentally (see, e.g., Ref. 34) by dividing the measured PL by
the excitonic occupation.

As mentioned earlier, the full distribution of oscillator
strengths, and not just its mean squared value, will be impor-
tant. It is useful to discuss here some technical details of how
this is extracted. The numerical analysis provides the exci-
tonic eigenvalues and eigenstates only within a finite interval
in energy. (The lowest energy states arise from rare potential
fluctuations, which would require a larger region of space to
be sampled; the highest energy states have spatial variation
on length scales finer than our grid.) Within the interval of
energies found, averages are performed by making use of the
raw data coming from 160 realizations of the disorder poten-
tial; outside this interval, averages are taken by extrapolating
the numerics. In particular, in the low-energy Lifshitz tail, as
the oscillator strengths have a narrow Gaussian distribution
around its squared averaged value, we approximate the dis-
tribution of |g,|* with a delta function at its extrapolated
value g*(¢,0). In the very high energy region, instead, we
make use of the Porter-Thomas distribution,
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exp[— x/(2x)]

P(x = |ga,0|2) = [ —
\N27xX

where x=g*(¢,0), again extrapolating the fitted value for the
squared averaged oscillator strength. In addition, we fix the
overall scale of |g,/* to match integrated optical intensity
with half the experimentally measured Rabi splitting g
squared:

QZ
f deD(e) = TR. (8)

This normalization accounts for factors other than the wave-
function in Eq. (4).

C. Mean-field theory

In the remainder of this paper, we will discuss optical
probes, with particular emphasis on resonant Rayleigh scat-
tering. Such optical responses are described by considering
fluctuations about the mean-field theory. Thus, to establish
our notation, in this section we will briefly summarize the
mean-field theory of the model in Eq. (1); this mean-field
theory has been discussed in detail elsewhere.!”*" As well as
describing the optical response, fluctuations about the mean-
field theory can also be important in describing, in the ex-
tremely low-density limit, corrections to the mean-field ther-
modynamics. Since the subject of this paper is optical
probes, we will not discuss the subject of fluctuation correc-
tions to the critical temperature here, as they have been dis-
cussed elsewhere.?!

We consider a thermal equilibrium system of polaritons,
with total density fixed by introducing a chemical potential
. Making use of standard path integral techniques, and in-
tegrating out the fermionic fields, the partition function may
be written in terms of the imaginary time action:

’8 )
Slyl = j A7 (3, + @)~ TrIn G )
0 p

Here, G™! is the energy level diagonal, inverse single-particle
Green’s function:

04802 2 8apty/\N
G, ’

a

= , (10)
# w, [
> 8app/\N 5 —& .12
p

where &,=¢,~u and @,=w,—u are respectively the exci-
tonic and photonic energies measured with respect to the
chemical potential.

Although the quantum well excitons are disorder local-
ized, for a weak disorder potential, with o<<{), and in the
absence of strong photon disorder (which in some cases can
also be relevant®®#7), the resultant polaritons are delocalized.
As such, polaritons will be described by a momentum quan-
tum number and condense, as in the usual picture, in the
lowest momentum state. The mean-field theory of such a
state is described by the static and uniform minimum z,lfp(T)
=48, of the action (9) (or saddle-point equation), which
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FIG. 5. (Color online) Phase diagram for the dimensionless
critical temperature 2kpT,/{p versus the dimensionless density p
for effective zero detuning d=wy—& =0 meV (¢ is the energy at
which the excitonic optical density has its maximum, and so as seen
in Fig. 4, =0 implies wy—E,=—0.94 meV) (solid black) and for
positive detuning S=+6 meV (wy—E,=+5.06 meV) (dotted-
dashed black) and Q=26 meV. The mean-field boundaries for the
two different detunings are cut off by the expected linear depen-
dence of the critical temperature, as indicated at extremely low
densities [orange (gray) solid and dotted-dashed lines]. The hori-
zontal dashed line marks the temperature of kz7=20 K, which will
be used in later figures.

has to be solved together with the mean-field equation for the
total number of excitations (2):

tanh BE,

1
Bo=— 2 , 11
Bo= 2 g0l = - (11
1, 1<|1 &, tanhBE,
B N Ll 12
P N¢’2+N§{2 AE, } (12)

Here, E, is the energy of an exciton in the presence of a
coherent photon field and is given by

Eo=(E/2)" +|gaoWPIN. (13)

In Fig. 5, the mean-field critical density is shown. Over
the range of densities shown, the appearance of this mean-
field phase boundary does not differ significantly from the
mean-field results of previous work,!” in which the DOS was
taken to be a Gaussian and, moreover, where the coupling
strength was kept fixed. Despite the similarity of appearance,
there are two differences that the realistic distribution of en-
ergies and oscillator strengths introduces: it gives an absolute
scale for the density and it affects the mean-field phase
boundary at very large densities.

The effect of coupling strength distribution on the density
scale can be understood as follows. By solving the “gap
equation” Eq. (11) in the limit y/— 0, one finds T, as a func-
tion of the chemical potential u, forgetting about the corre-
sponding excitation density. At the phase boundary, where
=0, the squared oscillator strength appears only linearly in
Eq. (11), so this expression depends only on the optical den-
sity D(g). By taking into account the density equation (12),
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the critical temperature can be expressed as a function of the
excitation density rather than as a function of the chemical
potential. This translation to densities makes use of the den-
sity of states. In the standard BCS theory, and in Ref. 17,
there is no modulation of the interaction strength and, there-
fore, no difference between optical density D(e) and density
of states DOS(g). In our system, the asymptotic forms of the
optical density and the density of states do not match. This
difference of asymptotic forms is important in measuring the
density in physical units.

The asymptotic form of the phase boundary at large den-
sities (well beyond the range shown in Fig. 5 and beyond the
validity of our model) is controlled by the fact that the den-
sity of states asymptotes to a constant at large densities, and
the presence of those exciton states that couple only weakly
to light. At smaller densities, such states have little effect on
the phase boundary.

III. OPTICAL PROBES

The optical absorption and emission spectra of a micro-
cavity can be derived by first finding the Green’s function
describing photon propagation. The noncondensate part of
these response functions (i.e., away from zero momentum)
may be found, in practice, by considering the Green’s func-
tion for fluctuations about the mean-field solution, p.w,
= ¢5P~05wh»0+ 5%!%, where w,=2mh/ [ are bosonic Matsub-
ara frequencies, and by expanding the action (9) up to qua-
dratic terms:

i 5‘/’Zh,p )T ( S, q )
5s=L2
2 w%’q <5¢_wh’_p gpq(wh) 5‘//_,,,h »

This gives the Matsubara inverse photonic Green’s function:

(l) (2)
§ (@) K2(w,)
Goh(wy) = (Kf;( f K{;} (w’“h) )

Physical response functions can be found by analytic con-
tinuation of the imaginary time Matsubara Green’s function
to real times.*® The matrix elements of g]_)}l(a)h) can be ex-
pressed in terms of the bare photon energy w, and the exci-
tonic quasiparticle energy E, as follows:

K(l)(wh

Op.qliw), + @p)
_2 apSaq

tanh(BE,) iwy€ J2 — E% — (8,/2)?
E, w; +4E2,

- wh NZ 7apq7 (14)

tanh(BE 1
KO (w )——2 a8 g e EE D)
h a0l apSaq E, wp+4E>

- wh NE Yap.q> (15)

where
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2
Yapg = Bl&aol 8 pSe. ¥ sech sechBE,),
.pq a,p qN 4Ei

It is useful to decompose the photonic Green’s function
into its momentum-diagonal and off-diagonal contributions:

K32 (@) = Ko (@) 8y g + K2(@). (16)

By treating the off-diagonal terms perturbatively, the transla-
tional invariance can be recovered and polariton eigenstates
can be labeled by momentum vectors. In the next section, we
will focus on the diagonal terms, which characterize both the
spectral weight and the photoluminescence emission. Section
III C is then dedicated to RRS, for which we will see that the
off-diagonal terms are necessary in order to describe the
scattering of an incident photon (via the excitonic component
of the microcavity polariton mode) into directions other than
its original direction.?

A. Spectral weight and photoluminescence

Secondary emission from a semiconductor microcavity
after optical excitation is the source of both incoherent PL
and coherent RRS. At short times, this emission is dominated
by RRS, the coherent scattering from disorder, and so is at
the energy of, and coherent with, the incident radiation. At
longer times, phonon and particle-particle scattering destroy
coherence and redistribute the energy, leading to a quasiequi-
librium distribution of energies, and thus, the incoherent PL
emission intensity,

P(w.p) = ng(w)W(w.p), (17)

is given by the Bose occupation factor ng(w) times the spec-
tral weight:

W(w,p) = 2JG” o(@)); (18)

The spectral weight can be interpreted as an absorption
coefficient?! (the probability to absorb a photon minus the
probability to emit a photon), where negative values of
W(w,p) represent gain. In contrast, the PL P(w,p) is always
positive.

In calculating the PL, it is convenient to make an approxi-
mation by neglecting multiple polariton scattering while still
including the effects of exciton-disorder scattering to all or-
ders. This is discussed in Ref. 33, where comparison between
this approximation and exact numerical calculations show
this approximation to be remarkably good. Physically, this is
a good limit to consider because the typical exciton-disorder
scattering times are very short compared to the inverse fre-
quencies considered in PL. As PL depends on the
momentum-diagonal part of the photon Green’s function, ne-
glect of multiple scattering means, in practice, averaging
over disorder realizations at the level of the inverse photon
Green’s function, g;(ll(wh). Since off-diagonal terms in the
inverse Green’s function [Eq. (16)] break translational in-
variance, they average to zero, and so scattering between
different photon momentum states can, thus, be neglected.
The off-diagonal terms neglected here will, however, play a
crucial role in the case of RRS response, as discussed below.

zwh——w—l n
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FIG. 6. (Color online) Left column: Contour plot of the spectral
weight W(w,p) as a function of the dimensionless momentum |p|a,
and rescaled energy 2(w—u)/Qp, for zero detuning S=wy—g"
=0(wy—E,=-0.94 meV), Q=26 meV, kzT=20 K, and photon
mass mthRaf/2=0.Ol. Right column: Plot of the quasiparticle
DOS for the same choice of parameters as the left column, respec-
tively: (a) noncondensed (p=0, E,—u=27 meV) (the bare exciton
and photon dispersions [blue (dark gray) dotted line] and the upper
and lower polariton dispersions [red (gray) solid line] obtained from
the effective coupled oscillator model are shown for comparison),
(b) condensed (p=7.8X 1073, E,— =11 meV), and (c) condensed
(p=6.7X10"2, E,;—u=7 meV).

The spectral weight calculated from this formula, along
with the quasiparticle density of states, is shown in Fig. 6.
We first discuss this in the noncondensed case, where =0,
and so Kﬁ;(wh)zo, and the photon’s Green function becomes
diagonal in particle-hole space and simplifies to

Goply) = iwh+&3p—f dsD(s)mI_lh(ﬂ,

—_o lwh+§

This expression describes the coupling of one harmonic os-
cillator (the photon mode) to many harmonic oscillators (the
exciton modes). In the limit of small density, the chemical
potential is far below all exciton modes, and so tanh(Bg/2)
== 1. In this limit, the result is identical to a bosonic descrip-
tion of excitons, sometimes also called the linear dispersion
model. The underlying fermionic structure appears as a re-
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duction of the effective exciton-photon coupling, due to satu-
ration effects described by the tanh(Bg/2) term, and is dis-
cussed in more detail below.

From this linear dispersion model, describing one oscilla-
tor coupled to many, there are, in general, two broadened
modes at high and low energies—here, these are the lower
polariton (LP) and upper polariton (UP)—and a continuum
of modes associated with the exciton optical density. How-
ever, when considering the corresponding spectral weight,
modes are weighted by their photonic component, so one
primarily sees the LP and UP modes, and only weak emis-
sion near the bare excitonic states—the excitonic “dark”
states. These three features are clearly visible in Fig. 6 and
have been previously predicted by Houdré et al.,** making
use of a simplified and exactly solvable model. Note that in
the limit of an infinitely narrow spectral width, these dark
exciton states become entirely dark, having vanishing photon
component. The presence of dark exciton states coexisting
with strong coupling polaritons can explain the simultaneous
observation of large Rabi splittings and long decay times
seen in some experiments.>"

When the Rabi splitting is substantially larger than the
exciton inhomogeneous broadening (in our case we have
0z=26 meV and the FWHM of the optical density o
=0.94 meV), there is a substantial difference between broad-
ening of lower and upper polaritons. This is because the
high-energy tail of the optical density decays as a power law,
while the low-energy Lifshitz tail decays exponentially.
Thus, the optical density has a larger value at the UP mode
than at the LP mode, giving a larger broadening compared to
the almost vanishing width of the LP. This description of the
polariton linewidth due to the excitonic inhomogeneous
broadening coincides with that of Whittaker,?3 and it has
been well tested experimentally.*

In addition, the location of the LP and UP can be found by
making use of an effective two-oscillator model, i.e., assum-
ing a narrow deltalike optical density,

Q.\2 .
D(g) — (f) Se—e"),

where £ is the location of the maximum optical density and,
effectively, the exciton energy. In this case, the system re-
duces to two coupled oscillators, giving unbroadened LP and
UP poles at

o+ 1 [ oo =
ELP,Upz_%iE (wp_8)2+927 (19)

where ﬁizgi tanh(B€7/2) is the reduced Rabi splitting,
due to saturation effects at higher densities. The reduction of

Q splitting, thus, translates directly into a reduction of the
LP-UP splitting, and thus, a blueshift of the LP, which at
small densities can be shown to be linear. For comparison,
the results of this formula are shown by the solid (red) lines
in Fig. 6(a). In Sec. III B, we will discuss the calculation of
this linear blueshift in the low-density regime by evaluating

Qy, as a function of density, making use of the full density of
states.
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FIG. 7. (Color online) Contour plot of the spectral weight
W(w,0) for p=0 as a function of the detuning 6= wy—&" and energy
w-E,, for a fixed and very low value of density (p=0, E,—u
=27 meV) and kzT=20 K (2kzT/Qx=0.13). The bare exciton and
photon dispersions [blue (dark gray) dotted line] and the upper and
lower polariton dispersions [red (gray) solid line] obtained from the
effective coupled oscillator model are explicitly shown.

Let us now turn to the signatures of condensation as seen
in the spectral weight, and thus, in the PL emission (but
which are most probably masked in the PL emission by
strong emission from the condensate mode). When con-
densed, the polariton modes are replaced by new collective
modes:?!'>> The lower polariton becomes the linear Gold-
stone mode, and two branches appear below the chemical
potential. The appearance of new excitation branches below
the chemical potential is generic to condensation;’! however,
the experiments required to probe these modes are not easy
in other Bose condensed systems, such as atomic gases. For
this reason, let us briefly discuss the physical origin of these
new branches and the reason why they may be observed in
optical response of polariton systems. The Bogoliubov spec-
trum arises because of the possibility of processes that spon-
taneously either create or destroy two noncondensed par-
ticles. (Such processes arise due to scattering from or to the
condensate.) As a result of these processes, there is mixing
between the propagation of an extra particle or propagation
of a missing particle (i.e., a hole). (Such a language of par-
ticle and hole refers to the normal state quasiparticles; in the
current case, the normal state polaritons.) In the normal state,
one can separately calculate the spectral weight of particle
excitations, which have weight only above the chemical po-
tential, and hole excitations, which have weight only below
the chemical potential. When condensed, as the “particle”
and “hole” spectral weights become mixed, this mixing can
lead to a spectral weight below the chemical potential that is
associated with particle propagation. To observe this weight,
it is, however, necessary to have the ability to inject a par-
ticle which is not a quasiparticle of the condensed system,
i.e., not a Bogoliubov quasiparticle. In atomic experiments,
this is hard to achieve, but for polaritons can be naturally
achieved by injecting a photon. These new branches below
the chemical potential are seen as optical gain in the spectral
weight (see Fig. 6). Note that the presence of pumping and
decay will modify the linear dispersion of the Goldstone
mode at low momentum, making it diffusive,”® and that
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quantization by disorder may also have some effect.’?

The spectral weight also contains information about the
excitonic quasiparticle DOS of the system. As discussed
above for the noncondensed case, this is visible via the ap-
pearance of dark exciton states [see Figs. 7 and 6(a)]. When
condensed, there is a coherent field that modifies the energies
of these excitonic quasiparticle states, as given in Eq. (13),
and thus modifies their density of states. The density of states
given by taking the energy of such modes is shown by the
right column of Fig. 6, and can be compared to the corre-
sponding faint features seen in the photon spectral weight in
the left column.

The change to the quasiparticle density of states that oc-
curs on condensation requires some explanation. As men-
tioned earlier, the change of this spectrum is similar to that
seen in the BCS theory of superconductivity, as such it is
surprising that there is no gap in the density of states of Fig.
6. In fact, there would be a gap if the distribution of oscilla-
tor strengths were replaced with the mean square oscillator
strength. In that case, there would be a branch cut and a (E
—g/\VN)~™"? singularity in the density of states. However,
with the full distribution of oscillator strengths, one finds that
there is always a nonvanishing probability of arbitrarily
small oscillator strengths. (Note that if the oscillator strength
were zero, the corresponding state would not contribute to
any photon response, but for an arbitrarily small coupling, it
has some contribution.) Thus, the contribution of these
weakly coupled exciton states in effect smoothes out the gap.
Thus, this system can be vaguely described as “gapless fer-
mion condensation,” analogous to “gapless superconductiv-
ity” but through a mechanism very different from the stan-
dard  Abrikosov-Gor’kov  mechanism considered in
superconductors. 848

As one moves away from the chemical potential, the mix-
ing of particle and hole modes described by the Bogoliubov
spectrum decreases. As a result, far above the chemical po-
tential, the modes are the same as the uncondensed case, and
far below the chemical potential, the new modes disappear.
To explain this quantitatively, it is clearer to discuss the case
of weakly interactin% Bose gas.’! Writing the Bogoliubov
mode energy as &,=/€,(€,+2u), where u=gi? is the mean-
field value, the spectral weight is given by

W(w,p) = ME(?((»— fp) _ m5(w+ fp)-

2§, 2§

P
It is, thus, clear that at large momenta, where §p =€yt M, the
coefficient of the first delta function (modes above the
chemical potential) will approach 1, and the coefficient of
the second (modes below) will be suppressed to zero
(roughly quadratically in energy).

In contrast to the power law suppression of the spectral
weight of modes far below the chemical potential, the PL
signal from modes far above zero is suppressed exponen-
tially by the thermal occupation of these modes [see Eq.
(17)], while below the chemical potential, there is no such
decay. However, this discussion neglects emission from the
condensate mode, which should be included at zero momen-
tum, as defined in Eq. (17). To see a noticeable change of the
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FIG. 8. (Color online) Contour plot of the incoherent PL P(w,p)
as a function of the dimensionless momentum |p|a, and rescaled
energy 2(w—pu)/Qg, for detuning wy—E,=-0.94 meV, Qp
=26 meV, kgT=20 K, and mthRa)z(/ 2=0.01: (a) noncondensed
(p=0, E,—pu=27 meV), (b) condensed (p=7.8X1073, E,—u
=11 meV), and (c) condensed (p=6.7 X 1072, E,—u=7 meV).

normal modes requires a relatively large condensate density.
Due to instrumental broadening, the presence of emission
from this large condensate density might obscure emission
from the normal modes, so they may only be weakly visible,
as shown in Fig. 8. As discussed below, RRS may provide a
means of escape from this problem.

B. Lower polariton blueshift

Before discussing the RRS response, let us briefly discuss
a point mentioned above—the calculation of the LP blueshift
as a function of density, making use of the full density of
states, and our model of saturation effects (1). This can be
observed in PL experiments by the change of blueshift as a
function of intensity of the nonresonant pumping.

In the noncondensed regime, the blueshift of the LP in our
model is a consequence of the saturation of the (disordered)
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FIG. 9. (Color online) Normalized density of states DOS(g)/v
and thermal occupation factor [red (gray) line starting at top left]
for E,—u=5 meV and kp7=20 K.

energy levels. Following the narrow bandwidth limit de-
scribed in Eq. (19), this saturation blueshift can be found if
one has an expression for the chemical potential at a given
temperature and density. In the low-density limit, the expres-
sion for density p as a function of u [Eq. (12) with =0] can
be inverted in terms of elementary functions. As illustrated in
Fig. 9, in the low-density limit, the chemical potential is far
below the band edge. Thus, there are two significant contri-
butions to density: one from low energies, in the tail of the
DOS, but at large occupation, and one from high energies, in
the tail of the occupation, but at large DOS, thus

N oo
p= de e—ZS/Wp+f de o~ (e=m/kgT (20)
—0 Ryx 0 Ryx

Here, W,,/2=0.32 meV is the energy which characterizes the
exponential decay of DOS in the tail of the Lifshitz states—
this coefficient is extracted by an exponential fit to our nu-
merical DOS. At a temperature of kz7=20 K=1.72 meV, the
dominant contribution to the density is given by the second
integral and the chemical potential increases logarithmically
with the density:

kgT
p= %e“’kﬂ. (21)
X

From this expression, and from the coupled oscillator expres-
sions of the LP Eq. (19), we can explicitly derive the reduced
Rabi splitting due to saturation effects,

Q=0 (1—2 e kgl ) ,
R R e kBTp

and the LP blueshift, which is thus linear in this low-density
regime,

OE1p = Epp(p) — E1p(0) ~ Qgn (22)

mkaT’
where we have reintroduced here the density n per unit vol-
ume. Remaining at small densities, but now considering the

low temperature limit, Wp/ 2> kT, then the dominant term
in Eq. (20) is the first, and so Eq. (22) should be modified by
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FIG. 10. (Color online) Contour plot of the spectral weight
W(w,0) for p=0 as a function of the dimensionless density p and
the rescaled energy w-—w, for zero detuning (wy—E,=
—0.94 meV) and kgT=20 K (2kgT/Qr=0.13). The rescaled chemi-
cal potential (u—w,) [green (light gray) dashed], the noncondensed
lower and upper polariton modes from the two coupled oscillator
model [blue (dark gray) dotted], and the critical density for conden-
sation p,=3.7 X 107 [vertical solid red (dark gray) line] are shown
for comparison.

replacing the thermal length (m,kzT)~! by a characteristic
disorder length (m,W,)™".

It is instructive to compare this result with that for a clean
system; in this case, blueshift of the LP has been attributed
either due to Coulomb interaction®® or to saturation effects>*
(where the expression given here is valid only in the dilute
limit):

5Eg ~ Ryxnai,

oul

0 2
OE,, ~ Qgna.

Because the excitonic Rydberg Ry, can be of the same order
of magnitude as the Rabi splitting (), in a clean system the
two shifts can be expected to be of the same order of mag-
nitude. Considering just saturation effects, the difference be-
tween clean and dirty systems is that, at low temperature, in
a clean system blueshift depends on exciton number per
square Bohr radius, while in a disordered system, the rel-
evant length is that characteristic of the disorder potential,
which is, in general, larger than the Bohr radius. Finally, we
wish to observe that there is a distinction between Coulomb
and saturation effects: Coulomb interactions result in a blue-
shift of both the LP and UP, while saturation leads to a blue-
shift of the LP and a redshift of the UP, i.e., a collapse of the
Rabi splitting. Thus, these effects can be experimentally dis-
tinguished and their relative magnitudes determined.

In the condensed regime, the equivalent of the LP is the
Goldstone linear mode, which by definition starts at the
chemical potential. Thus, the observed blueshift is a direct
observation of chemical potential vs density. Figure 10
shows the variation of the spectral weight at zero momentum
as a function of density, from which the energy of the zero
momentum LP and UP modes can be extracted. Also shown,
for comparison, is the chemical potential vs density (dashed
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FIG. 11. (Color online) Excitonic speckle pattern

|K(1:)(wh)|2|iwh:_w_,-,7 for a single disorder realization (gray dotted
lineg’ and its disorder average (black cross symbols) versus energy
for |p|=|q|=36° and a 90° azimuthal angle, p=(0,6.3
X 10% em™ and q=(6.3x10*,0) cm™'. For comparison, we also
plot the excitonic optical density [green (light gray) plus symbols].

green line). The locking of the LP mode to the chemical
potential beyond the critical density (red solid line) is clearly
visible, and the behavior of the LP mode vs density allows

the extraction of density from an experimental measurement
of LP blueshift.

C. Resonant Rayleigh scattering

As described in Refs. 35 and 36, the RRS intensity de-
scribes the probability to inject a photon into the cavity with
momentum p and detect a coherent photon at q with p #q.
The intensity of such a signal may be written as

Ipq(w) = |g11)1]|2|iwh=—w—i77' (23)

Since this involves the off-diagonal momentum space com-
ponents of the Green’s function, it is necessary to include the
off-diagonal momentum components of the inverse Green’s
function Eq. (16). However, as discussed in Sec. III, we will
consider only a single polariton scattering and again neglect
multiple polariton scattering (but include all orders of
exciton-disorder scattering). Such an approximation is rea-
sonable for the same reasons discussed at the start of Sec. III.

In the following, we propose using the RRS signal to
probe the excitation spectrum in the presence of a polariton
condensate. It is, therefore, necessary to be able to separate
the RRS signal from the strong photoluminescence that
would arise from the equilibrium state with large polariton
density. Further, since a condensed polariton system may
have a strong nonlinear response to an applied probe (i.e.,
stimulated scattering if the probe significantly affects the
population of polariton modes), it is necessary to use a weak
RRS probe. Fortunately, the coherent nature of RRS allows
exactly this: one can detect a weak RRS signal by phase
sensitive measurement, as is discussed in detail in the Ap-
pendix. Hence, the limit on intensity of the probe is provided
by the sensitivity of the charge coupled device camera and

115326-12



ABSORPTION, PHOTOLUMINESCENCE, AND RESONANT...

not by the incoherent photoluminescence background. This,
therefore, allows a probe sufficiently weak that only the lin-
ear RRS response is seen and nonlinear effects are avoided.

When noncondensed, the single polariton scattering ex-
pansion of the photon Green’s function in the off-diagonal
terms gives

Tpg(@y) = |K(1)0(wh)|2 (24)

1
|K(1)( ] |K(1)( Wl
The factors |K< (w,)| 7% appearing here can be interpreted as
a filter, allowmg a response only when the outgoing (or,
equivalently, incoming for ¢ — p) momentum has an energy
close to the polariton mode at the given energy. This means
that |p|=|q| and so is responsible for the ring-shaped RRS
signal observed in experiments.’’*® In contrast, the term
|K;1,;)(wh)|2 describes scattering between momentum states
via polariton-exciton-polariton scattering. This term has a
large variation from disorder realization to disorder realiza-
tion, and is the reason for the speckle seen in RRS experi-
ments. This speckle and the disorder averaged RRS intensity
are shown for comparison in Fig. 11. As the precise speckle
pattern depends on the precise disorder realization, the most
we can reasonably do is to describe the statistical properties
of this speckle; thus, the disorder averaged RRS signal
shown in Fig. 1 would, in experiment, represent the envelope
of the RRS speckle pattern.

When condensed, the expression for the RRS intensity
becomes more complicated, but can still be written in the
form of a filter and a scattering part:

Lpg(@) = = FySpqFqs (25)

where the filter and scattering terms are respectively

1 2 -
Fy=lIKpl? - (k)1
o 1)* 1o* 7A2) A2) 2)0 2) pA1)*
|K( K K( +K( KPPKflq K;’ K;JPK(](]
+ Ky K(”)I2 (26)

As in the noncondensed case, the filter function F, restricts
the allowed incoming and outgoing momenta to those for
which the normal modes have the injected energy. However,
as discussed earlier, in the presence of a condensate, the
normal modes supported are no longer the LP and UP, but
are, instead, the new Bogoliubov-like quasimodes.

The decay of spectral weight associated with modes far
below the chemical potential, as discussed in Sec. III A, still
applies (this can clearly be seen in Figs. 1, 6, and 8). How-
ever, since the energy of the RRS signal is controlled by the
energy of the incident photon, it is possible to study modes
far above the chemical potential, which would have negli-
gible equilibrium occupation and, thus, negligible weight in
the PL signal. Both for this reason and because of the ability
to discriminate between the coherent RRS signal and in-
choherent photoluminescence, RRS provides a very powerful
tool to study the interesting properties of condensed polar-
iton systems.
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IV. CONCLUSIONS

In this paper, we have analyzed and compared different
optical responses of a condensate of microcavity polaritons.
One of the conclusions of this work is that, compared to
photoluminescence studies, the energy- and momentum-
resolved resonant Rayleigh scattering spectra provide many
advantages in probing a condensed phase and in studying the
associated coherent excitation spectrum. In particular, reso-
nant Rayleigh scattering, by collecting the signal at a differ-
ent angle from that at which the system is probed, allows one
to look directly at characteristic features of the condensed
phase excitation spectrum. Such features, like the Goldstone
modes both above and below the chemical potential, are
weak in photoluminescence emission and are likely to be
masked by the strong emission from the condensate in the
lowest momentum state. In contrast, Rayleigh scattering, be-
ing coherent with the probe, can be distinguished from con-
densate emission.

One may ask why the accurate description of excitonic
disorder considered in this paper is necessary, when the mi-
crocavity photon introduces a long length scale that averages
over disorder. One might also compare this system with
other excitonic systems, such as double quantum wells,>
where the high density of dipole-dipole interacting excitons
quickly screens the disorder.’®>” The answer to this question
is that the large ratio of exciton to photon mass means, first,
that exciton density required for condensation in microcavi-
ties is far less than in double quantum wells, and second, that
those exciton states involved in forming the thermally occu-
pied polariton modes are strongly localized exciton states
(i.e., influenced by disorder beyond Born approximation).
One of the consequences of an accurate treatment of disorder
in microcavities is that the blueshift of the lower polaritons
due to saturation effects depends on a length scale character-
istic of disorder and temperature, which can be much larger
than the Bohr radius, this length playing an equivalent role in
the clean system. This effect can be important in determining
the polariton densities from the measured blueshift in current
experiments.

An important consequence of disorder is that the exciton-
light coupling strength is characterized by a full distribution.
In the noncondensed phase, the optical density alone deter-
mines the photoluminescence response, while for resonant
Rayleigh scattering, the averaged fourth power of the oscil-
lator strength is required. However, in the condensed phase,
one has to consider the entire distribution for each exciton
energy. For energies close to and above the band edge, there
is always a nonvanishing probability of an arbitrarily small
oscillator strength. For this reason, in contrast to examples
like BCS superconductivity, one can show that the quasipar-
ticle spectrum does not have a hard gap.

In conclusion, we have considered how an accurate treat-
ment of disorder on the single-particle excitonic level, when
elevated to the many-body problem of interacting microcav-
ity polaritons, leads to a variety of interesting features in
various optical responses and probes of the condensed phase.
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APPENDIX: PHASE SENSITIVE DETECTION OF
RESONANT RAYLEIGH SIGNAL

In this appendix, we show how the coherent nature of the
resonant Rayleigh signal allows a weak coherent probe to be
detected in the presence of strong incoherent photolumines-

cence. The Rayleigh scattering probe is a perturbation, H
=H,+V, which in the rotating wave approximation may be

written as

V=Ag(e™ + dpe™™). (A1)

This describes a probe at wave vector p, frequency (), of
strength A,. The RRS signal is the coherent scattering of this
probe to other wave vectors. To isolate the part of the emis-
sion that is coherent with the probe, one may use a homo-
dyne measurement, interfering the emission with part of the
probe signal. This corresponds to measuring the spectrally
resolved emission intensity:

Plw,q) = f dte’'P(t,q), (A2)

where

P(t,q) = 2 PTEX | [ (1) + A1 D[4, (0) + A |n),

and where A is the strength of the homodyne mixing and ¢
is a phase delay introduced between the probe and the ho-
modyne signal. The states |n) are the eigenstates of the sys-

tem without the probe, given by Ho|n)=E,|n); F is the free
energy, for normalization.

The principle of phase sensitive detection is to vary the
phase delay and to extract the part of P(w,q) that depends on
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this phase delay. Since the background PL does not depend
on the phase delay, this allows one to separate a small but
phase-dependent signal from a strong but phase-independent
background.

The part of the signal that depends on phase is

P,(t.q) =A,> eB(F—E,l)[<n|l2/(Tl(t)|n>ei¢+ (n|zAﬂq(O)|n>e"'(¢+‘1’)],

(A3)

Standard first order time-dependent perturbation theory, us-
ing the perturbation in Eq. (A1), yields

.. (| g [ m)(m| |y

kj _ Mgl pl

(nlo(0ln) =402 {EH—E,,,— Q-in

_ <”|’Zp|m><m|'zg]‘|f"‘>:|e—inr+ [.. _]eiﬂz_
E,-E,-Q-in

(Ad)

The term written [...] is similar to the first term, but with
Q—-Q and ¢, 1//; Inserting this signal into Eq. (A3) and
then into Eq. (A2), it can be seen that such a term gives a
signal at frequency w=-(), and so can be clearly separated
and ignored. Inserting the first term into Eq. (A3), one can
write

S AEE | i(0ln) = 3 P E 1 - eBEE)

n,m

Jaldmyom i)

, AS
En_Em_‘Q’_in ( )

which is the definition of the retarded Green’s function,*®
G}prq(ﬂ)= Qll,il iw,=0-in By repeating the same analysis for
the second term in Eq. (A3), one can then write

P y(1,q) = 24, A¢| Gl ()]cos(p + e ™,

where ¢, is the phase of the retarded Green’s function.
Hence, the phase-dependent part of the luminescence is
given by the off-diagonal in momentum space part of the
retarded Green’s function, i.e., the RRS signal.

(A6)
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