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We present a quantum Monte Carlo study of the quantum correlations in the parametric luminescence from
semiconductor microcavities in the strong exciton-photon coupling regime. As already demonstrated in recent
experiments, a ring-shaped emission is obtained by applying two identical pump beams with opposite in-plane
wave vectors, providing symmetrical signal and idler beams with opposite in-plane wave vectors on the ring.
We study the squeezing of the signal-idler difference noise across the parametric instability threshold, account-
ing for the radiative and nonradiative losses, multiple scattering, and static disorder. We compare the results of
the complete multimode Monte Carlo simulations with a simplified linearized quantum Langevin analytical
model.
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I. INTRODUCTION

In the past years, semiconductor microcavities in the
strong exciton-photon coupling regime1,2 have been attract-
ing a considerable deal of interest because of their remark-
able nonlinear parametric interactions:3–7 taking advantage of
a triply resonant condition, ultralow parametric oscillation
thresholds have been observed in geometries which look
very promising in view of applications. Very recently, experi-
mental and theoretical investigations are starting to address
the genuine quantum optical properties of the polariton para-
metric emission.8–14 The signal-idler pairs generated by the
coherent scattering of two pump polaritons are expected to
have nonclassical properties, such as entanglement and two-
mode squeezing, which are interesting, e.g., for quantum
teleportation. The main limitation of the original nondegen-
erate parametric scheme where the cavity was pumped by a
single incident beam at a finite “magic” angle9,14,15 was the
strong intensity asymmetry between the signal and idler pho-
ton emission. This signal-idler asymmetry is, in fact, strongly
detrimental in view of the observation of significant extra-
cavity quantum correlations to be used for continuous vari-
able experiments.

This difficulty has been overcome in recent experiments16

by using a pair of identical pump beams with small and
opposite in-plane wave vectors. In this degenerate parametric
scheme, a pair of perfectly symmetric signal and idler beams
are emitted at the same frequency and with opposite wave
vectors. For symmetry reasons, the momentum-space para-
metric luminescence pattern is in this case a ring, with ap-
proximately the same radius as the pump wave vector. Inter-
estingly, this kind of ring-shaped polariton parametric
luminescence can be obtained also with a single pump at
normal incidence �zero in-plane wave vector� on a multiple
microcavity with multiple photonic branches.17 In order to
quantify the performances of this system as a source of cor-
related photons, it is then important to characterize the ro-
bustness of the quantum correlations in the parametric lumi-
nescence against competing effects such as radiative and

nonradiative losses as well as multimode competition and
multiple scattering processes. Given the unavoidable imper-
fections of any solid-state system, it is also crucial to assess
the impact of a weak static disorder on signal-idler correla-
tions: disorder is, in fact, known to be responsible for the
so-called resonant Rayleigh scattering of pump photons,18

which also produces a ring-shaped pattern in momentum
space, yet without any quantum correlation.

In this paper, we make use of the Wigner quantum Monte
Carlo method13 for polaritons in semiconductor microcavi-
ties to numerically tackle these key issues. The paper is
structured as follows. In Sec. II, we present the model
Hamiltonian and quantum Monte Carlo technique used to
calculate the observables. Results for the ring-shaped polar-
iton parametric luminescence with or without a static disor-
der are reported in Sec. III. Corresponding numerical results
for the quantum correlations are presented in Sec. IV and
then compared to a simplified quantum Langevin analytical
model in Sec. V. Finally, conclusions are drawn in Sec. VI.

II. HAMILTONIAN AND QUANTUM MONTE CARLO
TECHNIQUE

In this paper, we consider the quantum field Hamiltonian
introduced in Ref. 8:

H =� dx �
ij=�X,C�

�̂i
†�x��hij

0 + Vi�x��ij��̂ j�x�

+
�g

2
� dx�̂X

†�x��̂X
†�x��̂X�x��̂X�x�

+� dx�Fp�x,t��̂C
† �x� + H.c., �1�

where x is the in-plane spatial position. The field operators

�̂X,C�x� respectively describe excitons and cavity photons.
We assume an exciton density far below the saturation den-
sity nsat,

19 so the field operators obey the Bose commutation
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rules: ��̂i�x� ,�̂ j
†�x���=�2�x−x� ��i,j. The linear Hamiltonian

hij
0 is

h0 = �	�X�− i � � �R

�R �C�− i � �

 , �2�

where �C�k�=�C
0 �1+k2 /kz

2 is the cavity dispersion as a
function of the in-plane wave vector k, and kz is the quan-
tized photon wave vector in the growth direction. The exci-
ton dispersion is assumed to be momentum independent, i.e.,
�X�k�=�X

0 . The quantity �R is the vacuum Rabi frequency
of the exciton-cavity photon coupling. The eigenmodes of
the linear Hamiltonian h0 are called lower and upper polari-
tons �LP and UP, respectively�. Their energies are respec-
tively ��LP�k� and ��UP�k�. The nonlinear interaction term g
is due to the exciton-exciton collisional interactions, which
are modeled by a contact potential.19 For the sake of simplic-
ity, we restrict ourselves to the case of co-circularly polarized
pump beams, which allows us to ignore the spin degrees of
freedom and the complex spin dynamics.20–22 The potential
due to the static disorder is included in VX,C�x�.

The polariton dynamics is studied by means of numerical
simulations based on the so-called Wigner quantum Monte
Carlo method, explained in detail in Ref. 13. Within this
framework, the time evolution of the quantum fields is de-
scribed by stochastic equations for the C-number fields
�X,C�x�. The evolution equation includes a nonlinear term
due to interactions, as well as dissipation and noise terms due
to the coupling to the loss channels. Actual calculations are
performed on a finite two-dimensional spatial grid of nx
�ny points regularly spaced over the integration box of size
Lx�Ly. The different Monte Carlo configurations are ob-
tained as statistically independent realizations of the noise
terms.

Expectation values for the observables are then obtained
by taking the configuration average of the stochastic fields.
As usual in Wigner approaches,13 the stochastic average over
noise provide expectation values for the totally symmetrized
operators, namely,

�O1 . . . ON
W �
1

N!�P

�ÔP�1� . . . ÔP�N�
 , �3�

the sum being made over all the permutations P of an en-

semble of N objects. Each operator Ôa represents here some
quantum field component, while Oa is the corresponding
C-number stochastic field.

The relation between real- and momentum-space opera-
tors is

�̂C�x� =
1

�LxLy
�
k

eikxâk, �4�

�̂X�x� =
1

�LxLy
�
k

eikxb̂k, �5�

where âk �b̂k� represents the photonic �excitonic� destruction
operator for the k mode and satisfies the usual Bose commu-

tation rules �âk , âk�
† �= �b̂k , b̂k�

† �=�k,k�. The expectation value

of the in-cavity photon population n̂k= âk
†âk in the k mode

reads

�n̂k
 =
1

2
�âk

†âk + âkâk
†
 −

1

2
= �	k�2 −

1

2
, �6�

where the overlined quantities are stochastic configuration
averages, and 	k is the C-number stochastic field value cor-
responding to the operator âk Because of the weak but still
finite transmittivity of the cavity mirrors, all observables for
the in-cavity field transfer13,23,24 into the corresponding ones
for the extracavity luminescence at the same in-plane mo-
mentum k.

III. RESULTS FOR THE RING-SHAPED LUMINESCENCE

A. In the absence of disorder

In this work, we will consider the following excitation
field:

Fp�x,t� = Fp�e−ikpx + eikpx�e−i�pt. �7�

This field describes two identical monochromatic plane-
wave pumps with opposite wave vectors oriented along the x
axis. Both beams have the same values for the amplitude Fp
and the frequency �p. This latter is chosen to be resonant
with the LP branch, i.e., �p=�LP�kp�. Figure 1 depicts the
dispersion of the polariton branches and the position of the
pump wave vectors. The scattering process between a pair of
±kp pump polaritons via the nonlinear interactions gives rise
to a pair of signal/idler polaritons of opposite wave vectors
±k. Modulo the weak blueshift of the modes due to interac-
tions, the energy-momentum conservation �phase matching�
is trivially fulfilled if �s=�i=�p and �k�=kp, that is, on the
�k�=kp parametric luminescence ring.
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FIG. 1. Solid lines: energy dispersion of the lower and upper
polariton branches. Dashed lines: the bare quantum well exciton
and cavity photon dispersions. The filled circles indicate the wave
vectors of the two pumps �p1 and p2�. Note that in the chosen
configuration, the photonic fraction of the lower polariton at the
pump wave vector is �0.46. Cavity parameters: ��R=2.5 meV,
��C

0 =1400 meV, ��X
0 =1400.5 meV, and kz=20 
m−1. Pump pa-

rameters: kp=0.6981 
m−1 and �p=�LP�kp�=1398.2 meV.
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Figure 2 shows the numerical results for the stationary
state photon population inside the cavity for a value of the
pump power below the parametric oscillation threshold: the
ring-shaped parametric luminescence pattern is apparent.
The interaction-induced blueshift of the polariton modes is
responsible for the ring radius being slightly smaller than kp.
Other interesting features can be observed in addition to the
main ring: the strong spots at k= ±3kp are due to four-wave
mixing processes �kp ,kp�→ �±3kp , �kp�; because of the
stimulated nature of the underlying process, these spots fully

inherit the coherence of the pump beams. Some lumines-
cence is also observed along the x axis in the vicinity of kp.
Parametric scattering processes involving polaritons from the
same pump beam �kp ,kp�→ �kp+�k ,kp−�k� with ��k�
� �kp� are responsible for this emission. As the pump beams
are not tuned at the so-called magic angle, this emission is
much weaker than the one on the ring.

In the following, we will focus our attention on signal-
idler pairs with wave vectors on the ring and close to the y
axis �kx�0�. To minimize discretization effects, we will av-
erage the signal/idler observables on the rectangular areas
Ds,i sketched in Fig. 2, which indeed contain quite a number
of pixels. The corresponding photon population operators

N̂s,i are defined as

N̂s,i = �
k�Ds,i

âk
†âk = NDn̂s,i, �8�

where ND is the number of modes inside Ds,i, and n̂s,i, are the
average photon population operators. In terms of the stochas-
tic field, the latter reads

�n̂s,i
 =
1

ND
�

k�Ds,i

	�	k�2 −
1

2

 . �9�

The density of pump excitons 
p= �b̂±kp

† b̂±kp

 / �LxLy� and

the signal/idler populations ns,i are shown as a function of
pump power in the left and right panels of Fig. 3, respec-
tively. As previously discussed,13,25 the pump density 
p
smoothly increases up to the threshold for parametric oscil-
lation. The sublinear dependence on power stems from the
optical limiting effect due to the blueshift of the ±kp modes
by the repulsive interactions.8 Around the threshold at
Fp /��5.75 
m−1, 
p shows a downward kink, while the
signal/idler populations have a sudden increase. For the re-
alistic parameters used here, note how the density of excitons
at the instability threshold remains moderate and much lower
than the exciton saturation density, 
kp

�109 cm−2�
sat.
This shows the efficiency of the considered parametric
process.
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FIG. 2. �Color online� QMC results for the in-cavity photon
population nk. Pump amplitude Fp /�=5 
m−1 �just below the para-
metric instability threshold�. The number of Monte Carlo configu-
rations is 330. The two rectangles denote the areas where the signal
and idler are integrated. Cavity parameters: ��R=2.5 meV, ��C

0

=1400 meV, ��X=1400.5 meV, kz=20 
m−1, ��R=2.5 meV,
��C,X=��=0.1 meV, and �g=10−2 meV 
m−2. Pump parameters:
kp=0.6981 
m−1 and �p=�LP�kp�=1398.2 meV. Integration box
size Lx=Ly =90 
m with nx=ny =64 points; integration time step
dt=1.7 fs. Using such a short time step has been necessary in order
to obtain sufficient numerical precision on fourth-order field corre-
lation functions.
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FIG. 3. Left panel: QMC re-
sults for the density of the pump

excitons 
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 / �LxLy�.

Right panel: signal/idler photon
populations ns,i in the presence
�solid line� or absence �dashed
line� of the disordered potential.
Same cavity and integration pa-
rameters as in Fig. 2.
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In Fig. 4, we can see the temporal spontaneous buildup of
the signal and idler luminescence starting from the vacuum
fluctuations. For Fp /�=5 
m−1, the population of the signal/
idler modes is still small, ns,i�1, while stimulated paramet-
ric scattering starts to be effective for Fp /�=5.5 
m−1 when
the occupation number is comparable to or larger than 1. The
parametric oscillation threshold has already been crossed for
Fp /�=6 
m−1. While the emission ring below threshold has
the almost homogeneous intensity profile shown in Fig. 2, a
symmetry breaking takes place above the threshold: a few
modes are selected by mode competition effects and a mac-
roscopic population concentrates into them, as shown in Fig.
5. It is interesting to note that the number of Monte Carlo
configurations needed to obtain a given precision in the con-
figuration average strongly depends on the regime under ex-
amination: as expected, much less simulations are required
above the threshold.

B. In the presence of static disorder

The results in Figs. 2, 4, and 5 have been obtained in the
absence of static disorder, i.e., for VC=VX=0. An arbitrary
potential can be easily included in our calculations. As a
specific example, we have considered the disordered photo-
nic potential reported in Fig. 6, consisting of a random en-
semble of photonic point defects.26 The corresponding emis-
sion pattern is shown in Fig. 7 for the same pump parameters
as in the clean system of Fig. 2. The main effect of the
disorder appears to be a significantly enhanced intensity on
the luminescence ring. This occurs because of the resonant
Rayleigh scattering of each of the pumps. Note also the weak
“eight-shaped” pattern19 due to the parametric amplification
of the resonant Rayleigh scattering ring.

The signal population as a function of the pump power is
plotted in the right panel of Fig. 3: below threshold, the
photon population in the presence of disorder is much larger
than in the clean system. On the other hand, the difference
between the two populations is much less important above
threshold when the nonlinear stimulated parametric scatter-
ing dominates over the linear Rayleigh scattering processes.
Despite the very different low intensity behavior, the thresh-
old is reached in both cases at values close to Fp /�
�5.5 
m−1.

IV. QUANTUM CORRELATIONS

In the present section, we study the correlation properties
of the signal and idler emissions. For the sake of simplicity,
we restrict our attention here to those fluctuations which are
associated with the intrinsic losses of the parametrically
emitting system, and we neglect all other possible noise
sources that may appear in actual experimental setups, e.g.,
pump intensity fluctuations. To characterize the quantum na-
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ture of the correlations23 between the signal and idler modes,

it is useful to consider the quantity N̂±= N̂s± N̂i, i.e., the sum
and difference of the signal and idler photon populations.
The corresponding normalized noise �± reads

�± =
�N̂±

2
 − �N̂±
2

�N̂+


=
�N̂s

2
 − �N̂s
2 + �N̂i
2
 − �N̂i
2 ± 2��N̂iN̂s
 − �N̂s
�N̂i
�

�N̂i
 + �N̂s

.

�10�

Hence, the fourth-order moments of the fields �N̂jN̂k

=�k�Dj,k��Dk

�n̂kn̂k�
 �where j ,k� �s , i�� play a key role in
the determination of the quantum behavior of the system. In
terms of the averaged stochastic quantities, neglecting the
correlations between different points within the same spot,
we have

�N̂j
2
 =

1

6 �
k�Dj

�âk
†âk

†âkâk + âk
†âkâk

†âk + âk
†âkâkâk

† + âkâk
†âk

†âk

+ âkâk
†âkâk

† + âkâkâk
†âk

†
 −
1

2
�âk

†âk + âkâk
†


+ �
k,k��D j

�n̂k
�n̂k�
 − �
k�Dj

�n̂k
�n̂k


= �
k�Dj

��	k�4 − �	k�2� + � �
k�Dj

	�	k�2 −
1

2

�2

− �
k�Dj

	�	k�2 −
1

2

2

, �11�

with j= �i ,s�. The intensity correlation between signal and
idler modes is

�N̂sN̂i
 =
1

4 �
k�Ds

k��Di

��âk
†âk + âkâk

† − 1��âk�
† âk� + âk�âk�

† − 1�


= �
k�Ds

�
k��Di

�	k�2�	k��
2

−
ND

2 	 �
k�Ds

�	k�2 + �
k��Di

�	k��
2 −

ND

2 
 . �12�

For uncorrelated and shot-noise limited signal and idler
beams, one would have �±=1: this value is the so-called
standard noise limit.24 Having �−�1 means that nonclassical
correlations exist between signal and idler, in particular, a
squeezing of the difference intensity noise.27,28 As the polar-
iton states are half photon, half exciton, the optimal noise
reduction of the photon field is reduced by half with respect
to an ideal ��2� purely photonic parametric oscillator
system;29 noise reduction does not concern, in fact, the pho-
ton field taken independently, but rather the whole polariton
field. As long as we neglect multiple scattering and disorder
effects, this is the main difference compared to standard ��2�

parametric oscillators; an analytical model for these issues
will be provided in Sec. IV. Note that throughout the present
paper we are interested in one-time correlations: the differ-
ence noise is, therefore, integrated over all the frequencies
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and no frequency filtering is considered. Some frequency
filtering around �=�p would purify the squeezing as the
quantum correlations are largest around this value of the
frequency.30

In Fig. 8, we have plotted the time dependence of the
normalized noises �± for a given Monte Carlo realization
and in the absence of disorder. The stationary-state average
values for the same quantities are plotted in Fig. 9 as a func-
tion of the pump intensity. Quantum correlations �−�1 exist
in the difference noise at low intensities, while it monotoni-
cally increases toward �−=1 for higher intensities, making
the signal/idler correlations almost purely classical well
above threshold.27 No specific feature is found in this quan-
tity at the threshold.

On the other hand, the sum noise �+ is always above the
standard noise limit and shows a sudden increase at the para-
metric threshold. The fact that well above the threshold it
does not go back to the standard noise is due to the presence
of several competing parametric oscillation modes. Depend-
ing on whether the oscillating modes lay inside or outside the
selected regions Ds,i, the signal/idler populations ns,i vary
between 0 and their maximum value, while remaining almost
equal to each other. This implies that the sum noise �+ is
large, of the order of the signal/idler populations ns,i, while
the difference noise �− remains small.

In Fig. 10, we have analyzed the sum and difference

noises in the presence of a disordered potential. For the same
value of pump intensity, the difference noise �− is now
somehow larger than in the absence of disorder: the resonant
Rayleigh scattering creates, in fact, unpaired photons into the
luminescence ring and deteriorates the pair correlations be-
tween the signal and the idler. For very low intensities, the
dominant contribution comes from the Rayleigh scattering
processes, implying that both the sum and difference noises
have to tend toward the standard noise limit �±=1. Because
of the competition between Rayleigh and parametric scatter-
ings, the difference noise �− attains its minimum in the vi-
cinity of the threshold and then increases because of the in-
creasing noise of the two beams. As disorder is able to mix
the modes, respectively, inside and outside the selected re-
gions Ds,i, the difference noise can grow above �−=1 at high
pump powers. For the same reason, the sum noise �+ has a
weaker growth above the threshold than in the absence of
disorder. This physical interpretation of the role of the disor-
der has been confirmed by several other simulations �not
shown� performed with different realizations of the disor-
dered potential.

V. SIMPLIFIED ANALYTICAL MODEL

The aim of this section is to compare the results of the
complete quantum Monte Carlo calculations to a simplified
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Fig. 2.
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as a function of the pump intensity
in the presence of disorder. The
lines are a guide for the eye. Same
cavity and integration parameters
as in Fig. 2.
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input-output analytical model31 based on a linearization of
the Hamiltonian. This is done by treating the intense pump as
a classical, undepleted, field, i.e., replacing the pump mode
operators with their mean-field expectation values.32–34 Ob-
viously, this approximation is valid only well below the para-
metric oscillation threshold. Concentrating our attention on
those processes which satisfy the phase-matching condition
and neglecting all the nonresonant processes, we can write
the linearized Hamiltonian in the following simplified form:

H = �
k�kp

���C�k�âk
†âk + ��̃Xb̂k

†b̂k + ��R�b̂k
†âk + âk

†b̂k�

+ ��b̂k
†b̂−k

† � + b̂kb̂−k�*�� , �13�

where b̂k is the exciton creation operator, �̃X=�X
0

+ 2g
LxLy

��P1�2+ �P2�2� is the blueshifted exciton frequency be-
cause of interactions, and �= g

LxLy
P1P2 is the effective para-

metric interaction constant in terms of the pump fields

P1,2e−i�pt= �b̂±kp
�t�
. Taking the standard vacuum as the ini-

tial state of the photon and exciton fields, the expectation
values of the quantum Langevin forces are

�F̃cav,k���F̃cav,k�
† ���
 = 4��cav������ − ����k,k�, �14�

�F̃exc,k���F̃exc,k�
† ���
 = 4��exc������ − ����k,k�, �15�

where � j��� is the complex broadening due to the coupling
to the external bath. Since the relevant spectral domain in the
degenerate parametric process is concentrated around �p, we
are allowed to simplify the treatment by taking frequency
independent linewidth �ph,exc���=�C,X /2. The quantum
Langevin equations in frequency space read

Mk,�,�p�
ãk���

b̃k���
ã−k

† �2�p − ��

b̃−k
† �2�p − ��

� = − i�
F̃cav,k���

F̃exc,k���

F̃cav,−k
† �2�p − ��

F̃exc,−k
† �2�p − ��

� ,

�16�

with the matrix Mk,�,�p
defined for i=X ,C as

Mk,�,�p
=�

�C��� − i�C/2 �R 0 0

�R �X��� − i�X/2 0 �

0 0 − �C�� − 2�p� − i�C/2 − �R

0 − �* − �R − �X�� − 2�p� − i�X/2
� , �17�

in terms of �i���=�i−�.
The relation between the time dependent and frequency

dependent operators is

âk�t� =� d�

2�
ãk���ei�t, �18�

where ãk��� is the component at � of the photonic destruc-
tion operator for the k mode. In the following, we will set
G�k ,��=−iMk,�,�p

−1 . The signal photon population operator
n̂s�t� inside the cavity can be written as

N̂s�t� = �
k�Ds

� � d�

2�

d��

2�
ãk

†���ãk����e−i��−���t, �19�

which leads to

�Ns
 = �
k�Ds

� d�

2�
��C�G13�2�k,�� + �X�G14�2�k,��� .

�20�

To calculate the sum and difference noises, the second-

order momenta �N̂s
2
− �N̂s
2, �N̂i

2
− �N̂i
2, and �N̂iN̂s
+ �N̂sN̂i


−2�N̂i
�N̂s
 are needed. After some algebra, we obtain the
final expressions �for j= �s , i��:

�N̂j
2
 − �N̂j
2 = �

k�Dj

� d�

2�
��C�G13�2 + �X�G14�2��k,��

�� d��

2�
��C�G11�2 + �X�G12�2��k,��� ,

�21�

�N̂sN̂i
 − �N̂i
�N̂s


=� � d�1d�2

�2��2 �
k�Ds

��CG11
* �k,2�p − �1�G13

* �− k,�1�

+ �XG12
* �k,2�p − �1�G14

* �− k,�1��

���CG11�k,2�p − �2�G13�− k,�2�

+ �XG12�k,2�p − �2�G14�− k,�2�� . �22�

The results for �− and �+ are plotted in Fig. 11. The
qualitative similarities between these results and those of the
quantum Monte Carlo �QMC� �without disorder� of Fig. 9
are apparent for pump intensities up to the parametric thresh-
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old. Here, the linearized model breaks down as it predicts a
diverging signal/idler intensity. Although the predictions for
the threshold pump intensity differs from that of the QMC by
approximately 20%, still the analytic value in the low inten-
sity limit �−�0.75 is well within the �quite large� error bars
of the QMC simulations without disorder.35 In this limit, the
analytical calculation, which neglects interactions between
the signal and idler modes, becomes indeed exact and pro-
vides a more precise estimation than the QMC calculation.
As we have already mentioned, partition noise due to the half
photon, half exciton nature of the polaritons is responsible
for a significantly larger value of �− than in standard ��2�

parametric emitters.29 While in the QMC calculations the
inclusion of static disorder has been done straightforwardly,
the simplified analytical model cannot be extended easily to
the disorder case, and, most of all, it would lose all its sim-
plicity.

VI. CONCLUSION

In conclusion, we have presented a quantum Monte Carlo
study of the quantum correlations in the ring-shaped para-
metric luminescence from semiconductor microcavities in
the strong exciton-photon coupling regime. Our results sug-
gest that even in the presence of multiple scattering, realistic
losses, and static disorder, the signal and idler beams main-
tain a significant amount of quantum correlations. The de-
pendence of quantum correlation on the pump intensity has
been characterized across the parametric instability thresh-
old, showing the regime where the nonclassical features are
maximized.
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