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At low densities, electrons confined to two dimensions in a delta-doped heterostructure can arrange them-
selves into self-consistent droplets due to disorder and screening effects. We use this observation to show that,
at low temperatures, there should be resistance oscillations in low density two dimensional electron gases as a
function of the gate voltage, which are greatly enhanced in a magnetic field. These oscillations are intrinsic to
small samples and give way to variable range hopping resistivity at low temperatures in larger samples. We
discuss recent experiments where similar physical effects have been interpreted within a Wigner crystal or
charge density wave picture.
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I. INTRODUCTION

The interplay between disorder and interactions in spa-
tially inhomogeneous electronic states is an important ingre-
dient in the physics of many strongly correlated electronic
materials. Two dimensional electron gases �2DEGs� provide
an ideal laboratory to gain insight into the effects of disorder
and interactions as device properties such as disorder or car-
rier concentration can be tuned in the growth process or by
external means such as a gate. Recent experiments1 on small,
disordered, delta-doped devices suggest a new set of unusual
resistance oscillations in a perpendicular magnetic field. The
resistance as a function of gate voltage is featureless at zero
magnetic field, but at nonzero fields develops peaks that are
evenly spaced in gate voltage and whose magnitudes grow
with increasing magnetic field while the positions of the
peaks are relatively unaffected. Similar effects have been
previously observed in low density 2DEGs2–4 and arrays of
quantum dots.5

In earlier work on the same devices,1–3 there was the re-
markable observation that the electron tunneling distance
�extracted from the magnetoresistance� is directly propor-
tional to the average electron separation ree in the 2DEG.
This was used to argue in favor of a charge density wave
�CDW� or Wigner crystal �WC� picture.6 The value of rs in
these devices is around 5, which is much less than the pre-
diction of rs=37 for Wigner crystallization in two dimen-
sions in a clean system, but close to the prediction of rs
�7.5 in disordered systems.7

A number of theoretical studies have shown that the
charge distribution in disordered delta-doped heterostruc-
tures at rs�1 but too small for a WC is likely to be neither
Fermi liquid nor WC, but a droplet8–11 or “emulsion”
phase.12 The simplest picture for the droplet phase is one
where nonlinear screening by electrons is unable to dominate
the disorder-induced potential barriers between regions of
localized electrons.8–10 A dropletlike phase may also arise at
comparatively higher electron densities in disordered quan-
tum Hall insulators4,11 due to the interplay of the localization
effects of disorder and screening, where the screening is now
sensitive to whether or not the electrons in different parts of
the system belong to a partially or completely filled Landau

level. A third, and somewhat different, picture proposed for
low disorder is one of an emulsion or stripelike phase with
crystalline regions in an electron liquid background.12

Nanoscale electronic inhomogeneity has also been ob-
served in diverse strongly correlated electron systems.13

Some of the above mechanisms might be responsible for
phase separation in many of these systems. In particular,
electronic inhomogeneity in the superconductor BSCCO has
been attributed to localization effects of the disorder in oxy-
gen doping.14

In this paper, we use the first of the above mentioned
droplet pictures to argue that the experiments in Refs. 1–3
manifest Coulomb blockade effects greatly enhanced by a
magnetic field. We ignore quantum Hall physics in our treat-
ment of the droplet phase taking note of the fact that com-
pared to quantum Hall insulators believed to have a droplet
phase, these experiments were performed on devices with
strong disorder and low electron density, and no quantum
Hall effect was seen at high fields. We make specific predic-
tions about the conditions under which this magnetic-field-
induced Coulomb blockade will occur, and find that our
model is very successful in explaining resistance versus tem-
perature data in Ref. 1. In particular, such a Coulomb block-
ade should be a signature of an electron droplet phase.

In previous work,10 we derived expressions for the physi-
cal parameters of electron droplets in the nonlinear screening
regime that is relevant to the experiments of interest here,
and applied this picture to explain the experimentally ob-
served density dependence of the tunneling distance without
invoking a CDW picture.

We propose here that the resistance oscillations arise from
the decrease of interdroplet tunneling due to shrinking of the
localization length in strong magnetic fields. The decrease in
interdroplet conductance is sufficient at larger magnetic
fields to lead to a visible Coulomb blockade effect in samples
where this is not clearly resolved at zero magnetic field. Con-
sidered together with our earlier explanation10 for the density
dependence of the tunneling length, we believe that our
simple picture provides a complete description of the experi-
ments in Ref. 1 without invoking ordered electronic states.
The experiments we study fall in a parameter regime where
WC ordering is not expected theoretically, hence more con-
vincing evidence for WC ordering in these experiments is
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needed than has been offered to date. Our work does not
preclude the possibility of WC ordering in heterostructures
with low density and high mobility that have higher values
of rs.

The remainder of the paper is organized as follows. In
Sec. II, we briefly describe the model and experimental pa-
rameters. Section III recapitulates the magnetic field and
density dependences of the interdroplet tunneling conduc-
tance obtained in earlier work. The main analysis of the pa-
per, namely, magnetic-field-induced Coulomb blockade, is
presented in Sec. IV, and in Sec. V we give a discussion of
the results.

II. MODEL AND EXPERIMENTAL PARAMETERS

Unless otherwise specified, we assume the following de-
vice parameters: the �-doping density is nd=1012 cm−2, the
2D electron density is ne�1011 cm−2, �=50 nm is the dis-
tance of the � layer from the 2DEG, and d=300 nm is the
distance of the metallic gate electrode from the 2DEG.

The important parameters describing the spatial extent of
the electron droplets are10 Rc=nd

1/2 / ��1/2ne�, the length scale
on which potential fluctuations are screened by electrons and
Rp=�aB��+z0��30 nm, the mean droplet radius, where z0

�50 nm is the extent of the wave function in GaAs perpen-
dicular to the surface. This is to be contrasted with earlier
predictions that Rp��.8 Increasing the electron density has
little effect on the droplet size. Extra electrons are accommo-
dated by increasing the density of droplets.8,10 The separation
between droplet centers, lip=2�nd

1/2Rp /�1/2ne�1/2=2�RcRp,
decreases with increasing ne, and lip�85 nm. The droplets
merge at high enough ne when Rp� lip.

The important energy scales for the droplets are Ebarrier
�58 K, the difference between the binding energy EB, and
the highest occupied energy level �=�2��nd /2mRp�36 K.
The typical number of electrons in a droplet is Ne=��ndRp
�6, which implies a mean level spacing in the droplets of
��� /Ne=6 K. The distance r between the surfaces of two
neighboring droplets is r= lip−2Rp�20 nm. The localization
length for interdroplet tunneling can be obtained from the
size of the barrier, �=� /�2mEbarrier�10 nm, which is of the
order of the Bohr radius in GaAs but should be regarded as a
coincidence. For our chosen parameters, r does not exceed �
by a large amount.

III. MAGNETIC FIELD AND DENSITY DEPENDENCE
OF INTERDROPLET TUNNELING

Having summarized the physical properties of the elec-
tron droplets, we briefly review their implications for mag-
netotransport. Unlike a dirty semiconductor where the elec-
trons are localized at pointlike impurity sites,15 lip is
comparable with the droplet diameter. This scenario was
studied in Ref. 16 where it was shown that the resistance
between two droplets behaves as

R�B�
R�0�

= e�B/B0�2 1

cosh2�B/B1�
, �1�

with10 B0�	0 / ��y0lip� and B1�2	0 / ��lip
2 �. We estimate

that the spread of the wave function under the barrier in the

direction perpendicular to the tunneling is y0���r. B1 is the
field below which interference effects are significant. The
magnetoresistance data in Ref. 1 can be explained with Eq.
�1� without invoking a CDW or WC scenario. In particular,
B0

−2�Aree
3 , which was the primary motivation for suggesting

a CDW. The good agreement with experiment is strong evi-
dence for the existence of electron droplets. Equation �1�
expresses the inverse of the barrier transparency between
droplets, and at large fields, the transparency decreases ex-
ponentially with increasing B. This implies that droplets be-
come isolated from each other with increasing field, and it is
then natural to expect that Coulomb blockade effects will
strengthen with magnetic field, similar to those recently ob-
served in a lattice of quantum dots.5

IV. MAGNETIC-FIELD-INDUCED COULOMB BLOCKADE

We now consider the properties of the magnetic-field-
induced Coulomb blockade. The charging energy of a single
droplet, Ec, differs from the bare value Ec

0=e2 / �8�
0�Rp�
�that of a single metallic sphere� if there is a gate voltage Vg
that couples to the droplet through the gate capacitance Cg to
give a gate charge qg=CgVg, which takes values in the inter-
val �0,1 /2�. For nonzero qg, Ec�qg�=Ec

0�1−2qg�, and hence
the charging energy takes values between 0 and Ec

0�20 K
�for Rp�30 nm�.

In the devices of interest, there are many neighboring
droplets which have a depolarizing effect, renormalizing the
bare charging energy. There is charge screening for distances
greater than Rc, and if Rc�7Rp �easily realized in experi-
ment, since Rp�0.6Rc�, one can assume that the droplet ar-
ray only has nearest neighbor interactions. For a hexagonal
array, we estimate the effective charging energy as Ec

eff

�0.22Ec
0�4.4 K, and so expect strong renormalization of

the droplet charging energy.
To calculate the excitation energy of an Ne-electron drop-

let, we need to consider the level separation � as well as the
effective charging energy �1−2qg�Ec

eff. Due to the small size
of the droplet, the Fermi energy EF can lie between levels
Ne+1 and Ne

, corresponding to Ne+1 and Ne electrons in the
droplet, respectively. The energy to add an electron to the
droplet is thus

Eexc
Ne+1,Ne = �1 − 2qg�Ec

eff + min�Ne+1 − EF,Ne+1 − Ne
� .

�2�

The gate voltage tunes both qg and EF, so that the first term
oscillates between 0 and Ec

eff and the second between 0 and
�. Equation �2� is for an isolated droplet, and tunneling into
the droplet will reduce Eexc.

In a magnetic field, the energies Ne
are modified due to

both Zeeman splitting and orbital effects. For fields of the
order of a tesla, as is the case in Ref. 1, the Zeeman splitting
g�BB�� can be ignored. Orbital excitations will generically
be affected by a magnetic field, and when the cyclotron en-
ergy ��c=�eB /m��, one can use the Darwin-Fock theory17

to determine the single-particle energy levels. In our case, for
B=1 T, ��c /2�10 K is of the order of ��6 K. However,
at our level of analysis, such an improvement in accuracy
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does not strongly affect our results. This is also borne out by
experiment, where the positions of the Coulomb blockade
peaks and/or troughs in a resistance versus gate voltage plot
do not shift with field in the magnetic field range
considered.4

Treating electron droplets as effectively quantum dots, we
now turn to consider the resistance that arises due to tunnel-
ing between droplets as a function of temperature. The tun-
neling rate � between two droplets or between a droplet and
leads is proportional to the corresponding transmission prob-
ability �and hence both droplet spacing and magnetic field�
and the density of states on either side of the barrier.
For sequential tunneling at temperatures T such that ��
�kBT�� ,Eexc, the Coulomb blockade gives rise to the drop-
let conductance18,19

GCB =
G0

cosh2� Eexc

2kBT
	 , G0 =

gse
2

4hkBT

�l�r

�l + �r
, �3�

where G0 is the peak value of the conductance of a droplet
connected through �forward� scattering rates �l,r with its left
and right neighbors and gs is the spin degeneracy. At tem-
peratures lower than �� /kB, G0 saturates to gse

2 /h. In Eq.
�3�, magnetic field controls �, whereas density �or EF� con-
trols Eexc. There are also parallel conductance channels, such
as resonant cotunneling20,21 which is 1 order higher in the
�small� tunneling probability and significant only at very low
temperatures. For a single droplet �say the ith�, the transmis-
sion probability Tcotunn associated with cotunneling is �when
kBT����

Tcotunn
�i� =

�l
�i��r

�i�

2��l
�i� + �r

�i��
��i�

�Eexc
�i� /��2 + ���i�/2�2 , �4�

where the total decay width ��i� includes inelastic as well as
the elastic contributions, �l,r

�i�. As inelastic processes are usu-
ally present, ��i���l

�i�+�r
�i�.

For a string of N droplets, the total cotunneling transmis-
sion T is the product of the cotunneling transmissions, T
=
i=1

N Tcotunn
�i� , of individual droplets in the string, and hence

the cotunneling conductance is Gcotunn=gs�e2 /h�T. This con-
tribution is thus small unless there are uniformly spaced
identical droplets, in which case there can be a contribution
at resonance.21

The relative importance of cotunneling and activated con-
duction changes as the droplet separation, lip−2r, decreases
toward �, implying that �� approaches Eexc. This allows co-
tunneling to contribute to conductance at low temperatures.
Assuming both contributions acting in parallel, we estimate
the droplet resistance as

R �
cosh2� Eexc

2kBT
	

G0 + Gcotunn cosh2� Eexc

2kBT
	 . �5�

Equation �5� is not valid in the high or very low temperature
limits since it implies R→0 as 1/T→0 and does not include
the fact that G0 saturates as T→0. We use Eq. �5� to fit

resistance versus T data from Ref. 1, and in so doing addi-
tionally assume a series resistance R0, so that the total resis-
tance R=R0+R. We also assume a phenomenological form
for Gcotunn=Gcotunn�T=0��1+cT+aT2�, with a and c non-
negative fitting parameters. Physically, the quadratic-T de-
pendence comes from inelastic cotunneling and the linear-T
dependence arises from the linear suppression of the tunnel-
ing density of states due to the Anderson orthogonality ca-
tastrophe when the droplet is coupled asymmetrically to the
leads,22 which is the generic situation. We find excellent
agreement with experiment at almost all densities, as is evi-
dent in Fig. 1, and we extract Eexc�1 K at most values of ne.
We note that extrapolation of the resistance in the Coulomb
blockade regime to B=0 leads to a resistance that is always
greater than h /2e2, implying that there is, effectively, never
more than one conductance channel open for transport, in
agreement with the success of Eq. �5� in fitting the data.

As Vg is varied, the droplet energy levels cross EF, and
since Eexc also depends on Vg �see Eq. �2��, the excitation
energy for a droplet will vary between 0 and Ec

eff+�. If there
are many droplets, which we believe is the case here, we
assume that the excitation energies are uniformly distributed
in the interval �0,Ec

eff+��. In Fig. 2, we plot resistance as a
function of ne for illustrative purposes. We used Eqs. �3�–�5�,
along with the schematic form Eexc=

E0

2
�1+ f cos� 2��ne−n0�

�n
��,

where 0� f �1 �we choose f =0.6 here�, E0=1 K, T=1 K,
�n=0.6�1010 cm−2, and n0=0.5�1010 cm−2. We assume
that �l=�r=� and the ne and B dependence of � is deter-
mined by Eq. �1�. The behavior seen in Fig. 2 can be de-
duced very easily by looking at limits of Eq. �5�. In the limit
that G0�Gcotunn, R� 1

Gcotunn
, whereas when G0�Gcotunn, R

� 1
G0

cosh2� Eexc

2kBT
�. We expect that both Gcotunn and G0 will de-

crease with ne, but G0 will decrease faster since ��i� includes
inelastic as well as elastic contributions, which are likely to
be less density dependent. This would imply a crossover
from oscillations to increasing resistance with decreasing
density, exactly as shown in Fig. 2.
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FIG. 1. �Color online� Temperature dependence of resistance
data from Ref. 1 fitted to Eq. �5� with an additional series resis-
tance. The fits yield an excitation energy Eexc�1 K��sample. The
electron densities ne are shown in units of 1010 cm−2.
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The temperature dependence of thermally activated trans-
port depends on the size of the sample. For a sample large
enough to contain many droplets, there will be some with
arbitrarily low activation energy, in which case transport will
proceed via variable range hopping �VRH�,23–25 and we do
not expect to see Coulomb blockade oscillations.26 The
crossover length for Arrhenius to Mott VRH behavior may
be estimated as follows. For Mott VRH in two dimensions,
the characteristic hopping distance DMott is given by DMott
= �� /��kBT�1/3, where � is the density of available localized
states per unit area:

� �
1

��lip/2�2�� + Ec
eff�

. �6�

This gives DMott�60T−1/3 nm K−1/3, and at T=50 mK,
DMott�160 nm. In Ref. 1, an Arrhenius law in temperature is
observed, implying that the active device area should be less
than DMott

2 . The total number of droplets Np in an area �DMott
2

is

Np =
4DMott

2

lip
2 = �2��� + Ec

eff�
lipkBT

	2/3

, �7�

which is about 15 for the typical parameters we assume.
Some low density samples do show VRH behavior,27 and
hence we assume that the effective size of the sample is of
the order of DMott, so the mean level separation in the sample

is approximately �sample�
�Ec

eff+��

Np
, which is about 0.75 K. The

separation of the magnetoresistance peak from a trough cor-
responds to an energy scale of �1 K, in good agreement
with both the activation energy deduced from experiment
and with �sample.

As Vg is varied, excited states in different droplets succes-
sively come into resonance; these resonances are associated
with the minima of resistance. In between the minima, if the
sample is small, no droplet in the system is in resonance with
EF and the resistance will show a maximum. The observabil-
ity of resistance oscillations therefore crucially depends on
the samples being small. This seems to be borne out in
experiment.1

At large electron densities, the oscillations will be less
visible for two reasons. First, as ne increases, lip decreases, as
does Ec

eff, which reduces �sample. This reduces the contrast
between resonant and Coulomb blockaded states. Second,
the interdroplet tunneling distance, D�1/�ne, decreases10

and hence � increases. Ultimately, when the localization
condition, D /��1, cannot be satisfied, the system becomes
well conducting and no Coulomb blockade oscillations are
possible.

Increasing magnetic field reduces �, with relatively little
effect on excitation energies which improves the visibility of
the Coulomb blockade. In experiment, the resistance oscilla-
tions tend to appear above a threshold field, which we esti-
mate to be where the magnetoresistance switches from nega-
tive to positive, in the vicinity of B1�ne, where B1 is defined
below Eq. �1�.

V. DISCUSSION

In some respects, the issues discussed here are similar to
observations in one dimensional wires of variations in the
conductance periodic in ne.

28 These were initially described
in terms of a CDW, whereas later investigations appear to
have convincingly demonstrated that the oscillations are due
to Coulomb blockade effects.29,30 It was found that the Cou-
lomb blockade effects strengthened as a magnetic field was
applied, consistent with the picture proposed here.30 How-
ever, the Coulomb blockade did not rely on magnetic field
for visibility.

We did not discuss how nonlinear screening is affected by
the presence of a magnetic field. The screening of 2D elec-
trons in a disordered potential in a magnetic field was dis-
cussed in Refs. 31 and 32, focusing on the regime where
disorder is not too strong. We note that experiment appears to
provide some of the solution. Measurements of localized
states in the quantum Hall regime4 that support a dotlike
picture at low densities find the local electronic compress-
ibility to be essentially independent of magnetic field. We
also ignored possible correlations of donor charges in the
dopant layer—including these worsened the agreement with
experiment.10 However, donor correlations are likely to be
relevant in some cases.33

In summary, we use the picture of electron droplets to
establish that for low density 2DEGs in disordered delta-
doped heterostructures, there can be a magnetic-field-
induced Coulomb blockade. We provide evidence for this
picture by using a model for resistance as a function of tem-
perature based on the idea of electron droplets acting like
quantum dots to successfully fit experimental data. The ideas
we present here may have wider applicability in inhomoge-
neous strongly correlated electron systems.
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FIG. 2. Plot showing magnetic-field-induced Coulomb blockade
calculated using Eq. �5�. For small values of the magnetic field, the
interdroplet tunneling is strong enough to wash out Coulomb block-
ade effects. Large magnetic fields reduce the interdroplet tunneling
by shrinking the localization length, leading to an enhanced visibil-
ity of Coulomb blockade oscillations.
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