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By using first-principles pseudopotential methods, we have studied the electronic properties of hydrogen-
passivated silicon nanowires along the �100�, �110�, and �111� directions with diameter up to 3.4 nm. It is found
that as the diameter decreases, the energy band gaps are distinctly enlarged due to the confinement effect. The
valence-band maximum moves down while the conduction-band minimum moves up compared with the bulk.
By using the many-body perturbation theory within the GW approximation, we have also investigated the
self-energy correction to the energy band gaps. Our calculational results show that, although the band gap
values strongly depend on both the diameter and orientation, the GW corrections are mainly dependent on
diameter and less sensitive to the growth orientation. The effective mass as a function of diameter is also
discussed.
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I. INTRODUCTION

Silicon nanowires �SiNWs� are one of the promising
building blocks for future nanoelectronic and nanophotonic
devices, and have attracted extensive attention in recent
years due to their compatibility with Si-based electronic
technology.1–6 Nanoscale devices based on individual homo-
geneous nanowires have been demonstrated in experiment,
such as field-effect transistors,2 logic circuits,7 sensors,8

lasers,9 and light-emitting diodes.10 As the diameter of syn-
thesized SiNWs shrinks to a few nanometers,3,4,11,12 the
quantum size effect becomes important. Photoluminescence
data revealed a substantial blueshift in nanowires with de-
creasing size.13,14 Recent scanning-tunneling spectroscopy
data3,4 also showed a significant increase in the electronic
energy gap for very thin semiconductor nanowires, explicitly
demonstrating the quantum size effect. Recent experiments
have shown that SiNWs can be grown along the �100�, �110�,
�111�, and �112� directions.2,4,10

Due to the strong quantum confinement effect in ultrathin
SiNWs, the electronic properties in this system may show
different features as opposed to a bulk material, and conse-
quently affect the nanoelectronic device characteristics. In
fact, recent calculations have already shown that the para-
bolic effective-mass model with bulk effective masses sig-
nificantly overestimates the threshold voltages of ballistic
silicon nanowire transistors �SNWTs� when the wire width is
less than 3 nm.15,16 Therefore, it is strongly desirable to
study the quantum size effects on the electronic properties
�e.g., effective mass, band gaps, and band edges� in order to
better understand the mobility of carriers and to facilitate the
design of nanoelectronic devices.

Previous density-functional calculations have been per-
formed to study the electronic structure of �001� and �111�
oriented SiNWs with diameters less than 1.5 nm,17–20 in an
effort to understand the photoluminescence of porous silicon
in the visible range. However, the diameters of the wires
considered in these first-principles studies were too small to
study the transitional trend to the bulk. More recently, Vo et
al.21 performed first-principles simulations for the �100�,
�110�, and �111� SiNWs, focusing mainly on the effect of

surface reconstructions on the structural and electronic prop-
erties of the nanowires. By density-functional calculations of
�100� SiNWs, Rurali et al.22 found that the specific surface
reconstruction can even lead to the surface states crossing the
Fermi level and consequently make the wire metalic and/or
semimetalic. The electronic structures and optical properties
near the gaps for SiNWs with the �001� and �111� orienta-
tions are also reported.23 In addition, Cao et al.24 investigated
the stable geometries for pristine Si nanowires grown along
the �100� axis and found that Si nanowires with diameters
smaller than 1.7 nm prefer a shape with square cross section.

In this paper, we present a comprehensive study on the
hydrogen-passivated SiNWs oriented along the �100�, �110�,
and �111� directions using the density-functional theory
�DFT� with the local-density approximation �LDA� and the
many-body perturbation method based on the GW approxi-
mation. Some related results have been published in Ref. 25.
In this work, we focus on the modification of the electronic
properties. We will address in detail the following two ques-
tions: �i� how the electronic properties depend on the size of
the nanowire, and �ii� how the electronic properties change
with respect to the different orientations of the nanowires.
The organization of the paper is as follows: we first give the
calculational details in Sec. II. We then discuss our results in
Sec. III and conclude in Sec. IV.

II. CALCULATIONAL DETAILS

A. Local-density approximation calculations

Silicon nanowires with various cross-sectional shapes and
axial orientations have been synthesized by different experi-
mental groups.4,26,27 These SiNWs usually have an approxi-
mately cylindrical shape with chemical passivation on the
surface. We construct our cylindrical wire models from the
bulk and passivate all Si dangling bonds on the surface by H
atoms in such a way that no complex of SiH3 is present.
Relaxations are performed to reduce the forces to within
0.02 eV/Å, and the lattice constant along the z direction is
optimized by minimizing the stress. Summarized in Table I
are the diameters �after relaxation� of the wires and the num-
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ber of atoms in the supercells used in our calculations. The
diameter d is defined as twice the average distance of the
terminating hydrogen atom to the wire center. For the two
�100� SiNWs with d=0.91 nm and d=1.29 nm, the cross
sections are not exactly cylindrical, which will strongly af-
fect the effective masses of electrons and holes.

Our LDA calculations within DFT are carried out using
norm-conserving pseudopotentials28 with a plane-wave basis.
Periodic-boundary conditions are employed in the xy plane
with a supercell large enough �the wire separation is more
than 6 Å in LDA calculations and more than 12 Å in GW
calculations� to eliminate the interaction between neighbor-
ing wires. The energy cutoff for the plane waves is 12 Ry.
This energy cutoff has been tested to converge the energy
gap to within 0.05 eV in LDA calculations. The convergence
of the GW energy gap is found to be within 0.04 eV. The
Monkhorst-Pack k-point mesh of 1�1�8 is found to pro-
vide sufficient accuracy for the calculated total energies and
forces. For the following GW calculations, the 1�1�16
k-point sampling gives a converged energy gap. After the
atomic configurations of SiNWs are fully relaxed, the elec-
tronic structure of SiNWs is calculated. The LDA wave func-
tions and eigenvalues are employed as a starting point for the
following GW calculations.

B. GW calculations

The Kohn-Sham energy gap can be corrected by evaluat-
ing the self-energy operator in the GW approximation.29 In
this calculation, dynamic dipole-dipole interactions between
the supercells can occur even for systems without permanent
dipoles. This interaction is long ranged and attenuates very
slowly with respect to the supercell size. Therefore, the con-
vergence of GW calculations for atoms and clusters with
respect to the supercell size can be very slow �see, e.g., the
discussion by Onida et al. in Ref. 30�.

In this study, we truncate the Coulomb interaction be-
tween neighboring nanowires in a cylindrical geometry.31,32

Specifically, the Coulomb interaction v�r�=e2 / �r� in real
space is truncated as

vc�r� =
e2

�r�
��� − �c����z� − zc� , �1�

where �=�x2+y2 is the radial coordinate perpendicular to
the wire axis �ẑ�. This kind of Coulomb truncation tech-
niques has been successfully employed to study, e.g., the GW
corrections as well as the excitonic effects in carbon
nanotube.32 In our calculations, the truncation cutoff �c
equals to half the center-to-center interwire distance R, en-
suring that dmax��c�R−dmax, with dmax the maximum di-
ameter of the nanowire. This requires that the supercell on
the xy plane be at least twice as large as the wire itself: R
�2dmax. As for the cutoff zc, it has to be smaller than the
effective supercell size along the wire direction, which is
dictated by the number of discretized k points used to sample
the Brillouin zone along ẑ. We found that the GW corrections
in Si nanowires are not sensitive to this parameter, whereas
its importance in studying the excitonic effects has been
demonstrated.32

We have calculated the GW quasiparticle gaps �Eg
GW� for a

few thin SiNWs: d=1.08 and 1.74 nm silicon nanowires in
the �110� direction; d=1.16 nm in the �111� direction; and
d=0.91, 1.05, and 1.29 nm in the �100� direction. A GW
calculation is also performed for bulk silicon as a reference.

III. RESULTS AND DISCUSSIONS

A. Band structure and band gaps

In Figs. 1–3, we show typical energy bands for the �100�,
�110�, and �111� nanowires, respectively. One evident feature
is that for the thin SiNWs, all the band gaps are direct. Bulk
Si is known to have an indirect band gap of 1.17 eV, with the
conduction-band minima located at about 85% along � to X.
Therefore, there are six equivalent conduction-band minima
on ±x, ±y, and ±z axes, with a transverse mass �0.1905 of the
free-electron mass me� much less than the longitudinal mass
�0.9163me�.

For the �100� wires, four minima on ±y and ±z will be

projected onto �̄ due to band folding and thus yields a direct
band gap, as shown in Fig. 1. When �110� wires are formed,

two of these minima on ±z will be projected onto the �̄ point
of the one-dimensional Brillouin zone. Based on the

TABLE I. Diameter d �in nm� and the number of Si and H atoms
for the wires in our calculations. The diameter d is defined as twice
the average distance of the terminating hydrogen atom to the wire
center.

100 110 111

No. d Si H No. d Si H No. d Si H

1 0.91 16 18 1 1.08 16 12 1 1.16 38 30

2 1.05 21 20 2 1.74 42 20 2 1.60 74 42

3 1.29 30 26 3 2.31 76 28 3 2.04 122 54

4 1.40 37 28 4 2.81 110 36 4 2.60 218 78

5 1.87 69 36 5 3.46 172 44 5 3.02 302 90

6 2.26 97 44 6 3.40 398 102

7 2.60 137 52

8 3.34 221 68

-2

-1

0

1

2

3

4
(b) d=1.87 nm

E
ne

rg
y

(e
V

)

Γ Z
-2

-1

0

1

2

3

4

E
ne

rg
y

(e
V

)

Γ Z

(a) d=0.91 nm

FIG. 1. Energy band structure in LDA for SiNWs along �100�
with diameters of �a� 0.91 nm and �b� 1.87 nm. The valence-band
maximum has been shifted to zero.
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effective-mass approximation, both the large and the small
masses appear in the confinement plane, with the larger lon-
gitudinal mass being the relevant effective mass for describ-
ing the confinement effect in the cross-section plane. On the
other hand, the four remaining minima will be projected to a
point between � and the zone boundary �Z�, with the effec-
tive mass on the confinement plane being a value between
the longitudinal and transverse masses. Therefore, the
conduction-band edge at � is expected to have a smaller
upward shift induced by confinement and the band gap be-
comes direct.

In contrast, the projection along the �111� direction is ex-
pected to produce an indirect gap in large �111� wires. The
�111� nanowire shows an indirect to direct transition as the
diameter of SiNWs decreases. The transition occurs at about
d=2.2 nm, as can be seen in Fig. 4. However, the difference
between the indirect and direct gaps is very small �less than
0.05 eV�, making the determination of the exact transition
point difficult.

Figure 5 summarizes the LDA �direct� band gap versus
diameter of SiNWs, showing the size dependence of the
band gap for the �100�, �110�, and �111� wires. Apparently,
the energy gap is significantly increased for thin nanowires
by quantum confinement. In addition to the size dependence,
the energy gap also shows different change with respect to
the growth orientation. The band gaps of �100� and �111�

nanowires are rather close, while distinctly larger than that
for the �110� wires.

In Fig. 5, we also show the GW corrections to the energy
band gaps for several thin SiNWs. For bulk silicon,
Eg

LDA=0.58 eV, as indicated by the solid line in Fig. 5. The
GW correction is about 0.5 eV, which uplifts the gap to
1.08 eV. Both the LDA gaps and the GW corrections greatly
increase as d decreases, clearly showing the effect of quan-
tum confinement. The dependence on the diameter d can be
described by

Eg = Eg,bulk + C�1/d��, �2�

as proposed by Delerue et al.,33 where Eg,bulk is the bulk gap
value from LDA or GW. The exponent � is expected to be
equal to 2 using an effective-mass particle-in-a-box approach
when the barrier height is infinite.34 The fitted results are
smaller than 2, as listed in Table III. The fitting data set has
included the bulk value as the limit, i.e., Eg

g,bulk=0.58 �LDA�
and 1.08 eV �GW� for d=� �in real fitting, d=8 nm are
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FIG. 2. Energy band structure in LDA for SiNWs along �110�
with diameter of �a� d=1.08 nm and �b� d=2.81 nm. The valence-
band maximum has been shifted to zero.
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FIG. 3. Energy band structure in LDA for SiNWs along �111�
with diameters of �a� 1.16 nm and �b� 2.60 nm. The valence-band
maximum has been shifted to zero. Horizontal dotted line indicates
conduction edge at �.
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FIG. 4. Direct and indirect energy gaps versus diameter for the
�111� SiNWs.

FIG. 5. �Color online� Energy band gap versus diameter for the
�100� ���, �110� ���, and �111� ��� SiNWs, compared with the
measured gap for a �110� wire ���. The dashed, dash-dotted, and
short dashed lines are fitted to the data points �see text�. The fitted
results are listed in Table III. The LDA band gap of bulk Si is
indicated by the solid line, and the bulk GW gap is marked around
d=8.0 nm.
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used�. From Table III, we can see that for LDA � is found to
be approximately 1.7, while for the GW � is 1.4, smaller
than the LDA result. Clearly, the dependence of GW correc-
tions on the size of nanowires is different as compared with
LDA results.

The calculated GW corrections are listed in Table II. It
can be seen that these are much larger than the correction
found in the bulk. With increasing diameter, the band gaps
decrease to the bulk GW value of 1.08 eV. The self-energy
correction, which increases monotonically with decreasing
diameter, exhibits a rather strong size dependence. In the
past, this important variation has been neglected by postulat-
ing a size independent constant correction that is usually
obtained from the bulk.20 This approximation will inevitably
introduce significant errors in the calculated optical gaps.

Bruno et al.36 recently reported the calculated GW band
gaps for a few small Si nanowires. The results are system-
atically smaller than those presented in this paper by 0.5 eV
or more. The origin of this discrepancy is not clear since
different computational codes were used. We note that, as
demonstrated by Rozzi et al.,37 if the Coulomb interaction is
not fully truncated in a supercell setting, one may obtain a
gap for a nanowire that is too small compared with the con-
verged value.

The reason for the size dependence of GW corrections can
be understood as follows. Within the GW approximation, the
self-energy 	 is determined as 	= iGW, with G being the
single-particle Green’s function and W the screened Cou-
lomb interaction calculated using the dielectric screening
matrix 
 within the random-phase approximation. The real
part of 	 splits into two contributions: Re	=	SEX+	COH,
where the screened exchange �SEX� part arises from the

poles in the Green’s function and the Coulomb-hole �COH�
part from the poles in the screened interaction. Detailed
analyses show that the screened exchange term dominates
the self-energy corrections, indicating that the origin of the
size dependency for the GW corrections mainly comes from
the highly confined wave function.

In addition to the size dependence, both the LDA and GW
energy band gaps exhibit strong orientation dependence. For
the same diameter, the �100� wire has the largest Eg, while
�110� wire the lowest. Both LDA and GW results show that
the �111� wire has the band gap close to the �100� wire. The
�111� and �100� curves are nearly overlapped.

In contrast, the GW corrections are not sensitive to the
growth orientation. This important feature can be clearly
seen from Fig. 5, where the �100� and �111� curves are al-
most overlapped in both LDA and GW contexts. For differ-
ent growth orientations, the GW corrections are very close
for a given size, as shown in Table II. The reason for this
similarity is from the highly confined electronic wave func-
tions. The confinement enhances the screened exchange term
and dominates the GW correction values. As a result, the
correction of quasiparticle band gap is not sensitive to the
direction but to the size of wire.

The energy levels of valence-band �VB� maximum and
conduction-band �CB� minimum at � are expressed relative
to the vacuum level �. The vacuum level � is determined
from the average local potential in the vacuum region where
it approaches a constant in the supercell. Figure 6 shows the
change of CB and VB edges with respect to the wire diam-
eter. As the diameter decreases, the valence-band edge moves
down, while the conduction-band minimum moves up. Con-
sequently, the wire band gap is enlarged for the thinner nano-
wires. However, the band edge variations are somewhat dif-
ferent for different growth orientations. With decreasing
diameter, both the conduction and valence-band edges of the
�100� and �111� wires show clear modifications, indicating
that the band edges are sensitive to size. In contrast, in the
�110� wires the valence-band edges are almost flat, while the
conduction-band edges increase more significantly with de-
creasing diameter. The bulk limit for the valence-band edge
can be estimated by the average work function35 and is indi-
cated by the solid line in Fig. 6.

TABLE II. GW corrections �in eV� to the LDA band gaps for the
�100�, �110�, and �111� nanowires.

d
�nm� Eg

LDA Eg
GW GW corrections

�100� 0.91 2.86 5.28 2.42

1.05 2.61 4.72 2.11

1.29 2.21 4.07 1.86

�110� 1.08 1.45 3.40 1.95

1.74 0.97 2.33 1.36

�111� 1.16 2.12 4.17 2.05

TABLE III. Obtained fitting parameters in Eq. �2� for the energy
gap as a function of diameter.

Parameter

�100� �110� �111�

LDAa GWb LDA GW LDA GWc

C 2.4 4.0 1.0 2.6 2.0 3.8

� 1.7 1.4 1.8 1.4 1.7 1.4

aExcluding the first two data points.
bExcluding the first data point.
cThe exponential fixed at the same value as the �100� wires.

FIG. 6. �Color online� Valence- and conduction-band edges �cal-
culated by LDA� versus diameter for SiNWs. The solid symbols
show the GW-corrected values. The bulk limit for the valence-band
edge estimated by the average work function is also shown by the
horizontal solid line.
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In Fig. 6, we also show the GW corrections to the VB and
CB edges. The corrections to the VB edges are in general
much smaller than those to the CB edges. For example, the
VB edges for �100� wires with d=0.91, 1.05, and 1.29 nm
decrease by 0.66, 0.72, and 0.29 eV, respectively, after in-
cluding the self-energy corrections, while the CB edges are
upshifted by 1.70, 1.34, and 1.57 eV, respectively.

B. Effective masses

The effective mass of the carriers in nanowires is one
of the important parameters controlling their transport
properties. For example, the electron thermal velocity is in-
versely proportional to the square root of the transport effec-
tive mass. It has been pointed out that the parabolic
effective-mass approximation in the I-V calculation for the
SNWT significantly overestimates SNWT threshold voltages
when the wire width is less than 3 nm.16 Due to the
two-dimensional quantum confinement, the bulk crystal sym-
metry is not preserved in Si nanowires, hence quantitative
results obtained from the parabolic effective-mass approxi-
mation are expected to contain errors when the nanowire
diameter is small. Thus, it is desirable to calculate the effec-
tive mass based on direct electronic band structure calcula-
tions for the wires.

The effective mass can be determined from the dispersion
relation at the band edge using m*=�2 / ��2E /�2kz�. In Fig. 7,
we show the results for both electrons and holes in the nano-
wires with different orientations. First, in the �110� wire, the
effective mass of the carriers varies very little, me�mh
�0.18m0. Our calculations show that the curvature of the
valence-band edge �hole effective mass� of the �110� wire is
insensitive to the wire width, and resembles the result from
the projected bulk band structure for this orientation. In con-
trast, both the effective masses of electrons and holes in the
�100� and �111� wires show noticeable size dependence, al-
though the change is not monotonically. More detailed analy-
sis shows that the effective masses for the �111� wires also

reflect the features in the projected bulk bands, and approach
to the right limits as the diameter increases. For the �100�
direction, the analysis of the effective mass based on the bulk
projected bands becomes much more complicated.

Our results show that the effective masses in the �100�
and �111� wires, except for the hole effective mass in the
�111� wires, are much larger than those of the �110� wires.
We also notice that me
mh in the �100� wires, while me
�mh in the �111� wires. Generally, the wires tend to exhibit
a larger transport effective mass in a smaller wire, where
stronger quantum confinement occurs. Vo et al.21 also stud-
ied the electron and hole masses for SiNWs in different
growth directions. Similar results are obtained compared
with our work: the effective masses for the �110� wires are
almost independent of the wire size, while the values de-
crease with increasing diameter along the �001� direction.

In addition, we note that for the �100� directions, the two
wires with diameters of d=0.91 nm and d=1.29 nm, respec-
tively, have quite different effective masses �shown by hex-
agonal symbols� compared with other �100� SiNWs, indicat-
ing that the effective masses are strongly dependent on the
cross-sectional shape.

The effective-mass values presented here are obtained
from LDA energy bands, and therefore the k-point depen-
dency of the GW corrections, if any, is expected to affect the
final results.

IV. CONCLUSIONS

In conclusion, we have studied from first principles the
electronic properties of SiNWs oriented in the �100�, �110�,
and �111� directions as a function of diameter. These proper-
ties are strongly influenced by quantum confinement, show-
ing size and orientation dependence. Direct fundamental

band gaps are found at �̄ for the �100�, �110�, and small �111�
wires, which increase subquadratically with the inverse of
diameter. It is also found that �100� and �111� wires have
overall a larger gap than �110� wires, as expected from the
effective-mass difference. The underestimation of band gaps
by LDA is rectified by the GW self-energy corrections,
which turns out to be surprisingly sensitive to the wire size.
We have also calculated the effective masses in these SiNWs
and identified in most cases the connection between the mag-
nitude of the effective mass in the SiNWs and the features in
the projected bulk bands along the specific direction.
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shape than other �100� wires.
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