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The zero temperature transport properties of two-dimensional lattice systems with static random magnetic
flux per plaquette and zero mean are investigated numerically. We study the localization properties and the
two-terminal conductance and its dependence on energy, sample size, and magnetic flux strength. The influence
of boundary conditions and of the oddness of the number of sites in the transverse direction are also studied.
For very long strips of finite width, we find a diverging localization length in the middle of the energy band at
E=0 and determine its critical exponent �=0.35±0.03. A previously proposed crossover from a power-law
dependence to a logarithmic energy dependence can be excluded from our data, at least for energies �E�
�10−10. For square systems, the sample averaged scale independent critical conductance �gc� turns out to be a
function of the amplitude of the flux fluctuations, whereas the variance of the respective conductance distri-
butions appears to be universal. We find a critical conductance �gc��1.49e2 /h for the strongest possible
disorder.
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I. INTRODUCTION

The transport properties of charged quantum particles in
two-dimensional systems with various types of disorder are
of considerable interest in a variety of experimental and the-
oretical situations. In particular, the presence of a static ran-
dom magnetic flux with zero mean has been of much con-
cern recently in connection with bond disordered Anderson
models with either real or complex hopping terms,1–10 with
the composite-fermion picture of the fractional quantum Hall
effect at half-filling,11,12 the critical behavior at the quantum
phase transition of spin-split Landau levels,13 and with the
gauge field theory of high-Tc superconductivity.14,15 In addi-
tion, far-reaching relations between the low energy chiral
limit of a quantum chromodynamic �QCD� partition function
and a large N limit of the random matrix theory16,17 as well
as between the electrical conductance in disordered media
and spontaneous chiral symmetry breaking in QCD have re-
cently become apparent.18,19

Concerning the random-flux model, there exists an exten-
sive list of valuable contributions to this intricate problem
�see, e.g., Ref. 20 and references therein�, but a definite pic-
ture started to emerge only recently, at least for quasi-one-
dimensional �Q1D� samples.20 Results for true two-
dimensional systems are scarce, and precise numerical
estimates are still missing. A consensus has been reached on
the notion that all electronic states are localized for such
systems, where, in addition to the random magnetic flux, also
random diagonal disorder is present.3,21,22 However, in the
absence of diagonal disorder, it has also been shown that
the random-flux model with Gaussian distributed and
�-correlated magnetic fields can be mapped onto a nonlinear
� model of unitary symmetry so that all electronic states
should be localized.23 The recognition of a special chiral
symmetry that can emerge in systems with an underlying
bipartite lattice, so that the eigenvalues appear in pairs ±�i,

24

has considerably augmented our view of the possible situa-
tions a random-flux model can assume.25–29

Our aim is to investigate a lattice model with static ran-
dom magnetic fluxes and to numerically calculate the two-
terminal conductance and the localization properties for en-
ergies close to the band center. We want to study the role of
the chiral symmetry and to clarify the possible dependence
on boundary conditions �BCs�. In addition, we address the
influence of an odd or even number of lattice sites. For Q1D
systems, we will check the assertion that the Lyapunov ex-
ponents do not come in pairs for samples with an even
width.5 We will also look for the crossover proposed for the
energy dependence of the localization length.30 Finally, we
will calculate the size dependence of the conductance of
square systems and show that at the band center the conduc-
tance converges to the critical value �gc��1.49e2 /h.

The paper is organized as follows. In Sec. III, we study
the spectrum of Lyapunov exponents �LEs� in the Q1D limit
and for square samples, and discuss how the physical sym-
metry of the system depends on the boundary conditions, the
parity of the width of the system, and energy of the electron.
In Sec. IV, we find that E=0 is a critical point: the smallest
LE does not depend on the width L of the lattice. For L odd
and Dirichlet BC, we also calculate the critical exponent for
the divergence of the localization length of the two-
dimensional system. We find a value �=0.35±0.03, which is
close to the critical exponent for the Anderson bond disor-
dered model4,6 and is also in agreement with the one ob-
tained with a different method for the random-flux model
which has been reported recently.5 For Q1D systems of finite
width L, the localization length diverges as �	L�ln��E�L1/���.
In Sec. V we present our data for the critical two-terminal
conductance. Although the scale independent mean value
�gc� depends on the strength of the magnetic field fluctua-
tions f , the variance of the corresponding distributions
pc�g , f� turns out to be universal. We also confirm the un-
usual length dependence of the mean conductance for sys-
tems with L odd and DBC.20 Concluding remarks are given
in Sec. VI.
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II. MODEL AND METHOD

The two-dimensional �2D� motion of noninteracting par-
ticles subject to a perpendicular random magnetic field is
described by a Hamiltonian

H = − �
m

�tx�cm+ax

† cm + cm−ax

† cm�

+ tz�ei
m,m+azcm+az

† cm + e−i
m,m−azcm−az

† cm�	 , �1�

with nearest neighbor hopping, defined on the sites m of a
2D square lattice, where the width L �x direction� and the
length Lz �z direction� of the sample are measured in units of
the lattice constant a. The value of the hopping term in the x
direction is tx=1 if not stated otherwise, and the energy is
given in units of tz=1. The operators cm

† and cm create or
annihilate a Fermi particle at site m, respectively. The com-
plex hopping terms are chosen such that the magnetic flux
�in units of the flux quantum h /e� through an individual
plaquette is given by the sum of the random Peierls phases
along the two bonds in the z direction, 2��m=
m,m+az
−
m+ax,m+az

. The random fluxes are distributed uniformly ac-
cording to −f /2�m f /2, where 0� f 1, with probabil-
ity density p��m�=1/ f so that its second moment is f2 /12,
and the average magnetic flux through the system is zero.
The randomness is maximal for f =1.

Without attached leads, the model �1� exhibits chiral uni-
tary symmetry for Dirichlet boundary conditions in both di-
rections. The chirality is destroyed when periodic boundary
conditions are imposed along any direction, provided the
number of sites in this direction is odd. Table I summarizes
the various situations. The chiral symmetry is always broken
by an additional on-site disorder.

In the following, we study numerically the quantum trans-
port of electrons with energy E through the 2D system de-
fined by the Hamiltonian �1�. For a given length of the sys-
tem Lz, we calculate the dimensionless two-terminal
conductance via the relation31

g = Tr
T†T� = �
i

N
1

cosh2�xi/2�
. �2�

In Eq. �2�, T is the transmission matrix and the xi param-
etrizes its eigenvalues. The electrons propagate in the z di-
rection, and N is the number of open channels. Dirichlet
�DBCs� or periodic �PBCs� boundary conditions are imposed
in the transversal direction. In the limit of Lz /L→�, the
parameters xi converge to the quantities zi�Lz /L�,32,33 where
zi is the ith LE which characterizes the exponential decrease
of the wave function of Q1D systems. Oseledec proved34 the
convergence for the eigenvalues of the transfer matrix, zi
=limLz/L→�zi�Lz /L�. For sufficiently large Lz /L, the zi�Lz /L�
are self-averaging quantities. The smallest positive LE z1 is
related to the localization length and represents the key pa-
rameter of finite-size scaling.35,36

Since the calculation of the transmission probability re-
quires two semi-infinite �ideal in our case� leads attached to
the left and to the right of the sample, the boundary condi-
tions in the propagation �z� direction are neither PBC nor
DBC. We expect, however, that the boundary conditions in
the transversal �x� direction affect the transport properties of
the system considerably.

Our data, both for the conductance and for the parameters
xi, support the conjecture that �i� the system possesses chiral
unitary symmetry only at the band center E=0 for DBC, and
for PBC with L even. The chirality of the E=0 state is con-
firmed by our data for the parameters xi. In particular, we
find that the probability p�x1� does not decrease to zero when
x1→0. We will discuss later that this behavior is typical for
the chiral symmetry class. �ii� There exists a critical point at
the band center for L odd and DBC. Since this critical point
is due to the chiral symmetry of the model, we expect the
criticality also for L even. This expectation is supported by
our numerical data for the smallest LE z1. For L odd and
PBC, the critical state at E=0 should disappear due to the
unitary symmetry.

III. LYAPUNOV EXPONENTS

Figure 1 shows the spectrum of Lyapunov exponents �zi�
for Q1D systems with Dirichlet and periodic BCs in the
transverse direction and with either odd �L=65� or even �L
=64� system width. For L even, the spectrum is degenerate at
the band center for both Dirichlet and periodic BCs:

�z2i−1� = �z2i� = c�i − 1/2	 �L even� . �3�

For L odd, we obtain at the band center that

�zi� = �c Int�i/2	 �L odd,DBC�
�c/2��i − 1/2	 �L odd,PBC� .

 �4�

From Fig. 1 and later from Fig. 8, we see that c�2.68. As is
shown in Fig. 1, the degeneracy is removed for nonzero en-
ergy. In the transfer matrix method, we calculate only posi-
tive Lyapunov exponents. Since the LE appear in pairs, we
also have doubly degenerate LE �−zi ,−zi� in the negative part
of the spectra.

TABLE I. The symmetries of the model Hamiltonian �1� depend
on the boundary conditions and on the oddness of the number of
sites. In the absence of leads, the possible symmetry classes are
unitary �U�, chiral unitary �CU�, and chiral unitary with an extra
eigenvalue that appears at E=0 �CU+ � �Refs. 20 and 27–29�.

L=odd L=even

DBCx PBCx DBCx PBCx

Lz=odd

DBCz CU+ U CU CU
PBCz U U U U

Lz=even

DBCz CU U CU CU
PBCz CU U CU CU
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While the form of the spectrum of LE for odd L and PBC
is typical for unitary symmetry,37 the degeneracy of the spec-
tra, observed in all three other cases, indicates chiral
symmetry.20,27,28

For DBC, the chirality is confirmed also by the analysis of
the distribution of parameters xi, calculated for finite length
Lz. Since we are able to calculate only the absolute value of
the LE, we cannot distinguish from the present data whether
the system possesses chiral unitary �CU� or unitary �U� sym-
metry. Fortunately, we can estimate the physical symmetry
from the analysis of the distribution of the parameter xi, cal-
culated for systems of finite length Lz.

As discussed in Refs. 20 and 28, for weak disorder, the
probability distribution p�
x�� is determined by the
Dorokhov-Mello-Pereyra-Kumar equation38,39

�
�p

�Lz
=

1

2N
�
j=1

N
�

�xj
�J

�

�xj
�J−1p�� . �5�

Here, � is the mean free path and J is the Jacobian

J = ��k�j�sinh�xj − xk��2 �CU�
�k�j�sinh2 xj − sinh2 xk�2�k�sin�2xj�� �U� .

 �6�

The main consequence of the absence of the repulsion term
sin�2xi� in the Jacobian �6� is that the spectrum of xi spans
over the entire real axis: the xi can be both positive and
negative when the system possesses chiral unitary symmetry.
In the ordinary unitary systems, all values of xi are positive,
being reflected from the origin by an additional term in the
Jacobian. Clearly, in the case of unitary symmetry, p�x1�
→0 when x1→0, but p�x1=0� is nonzero in the case of
chiral symmetry. Since we are not able to calculate the sign
of the parameters xi for a given sample, we plot in Fig. 2 the
distribution of the absolute value �x1�. Dirichlet BCs are im-
posed in the transversal direction. For E=0, the distribution
does not depend on the system size. If x1 possesses both

positive and negative values, the distribution p�x1� is Gauss-
ian with a mean value �x1�=0. This agrees with our data for
the Q1D systems, where we find z1=0. Therefore, we con-
clude that the system possesses chiral symmetry.

However, the form of the distribution p�x1� changes quali-
tatively when the energy differs from zero. As is shown in
Fig. 2, already for E=10−4 the distribution p��x1�� decreases
to zero when �x1�→0. This confirms that the Jacobian given
by Eq. �6� contains also the repulsion term 	sin�2x�. Conse-
quently, the system changes the symmetry from chiral uni-
tary to unitary and all parameters xi become positive. As
shown in Fig. 2, the distribution p�x1� converges to the
Wigner surmise W1 when either E or L increases. Also, the
distribution of differences x2−x1 converges to the Wigner
surmise W2. This behavior of p�x1� and p�x2−x1� is typical
for the unitary universality class.37

In the case of L odd and PBC in the transverse direction,
the symmetry changes to unitary and the critical point at E
=0 disappears. The transfer matrix algorithm does not enable
us to calculate the parameters xi for E=0 and PBC due to the
kz=0 eigenmode of the transfer matrix in unperturbed leads.
This mode disappears either when E�0 or when an aniso-
tropy in the hopping terms is applied. Using a small aniso-
tropy in the x direction, tx=0.99, we confirmed that the sta-
tistics of p�x1� and p�x2−x1� follow the Wigner surmises also
at the band center. Figure 3 shows the respective distribu-
tions p�x1� to be W1 and p�x2−x1� to be W2. This is in con-
trast to the situation with DBC, where the distribution
changes qualitatively on approaching E=0.

In the case of L even, the analysis is more difficult since
we expect the mean values of the first two parameters x1 and
x2 to have the same absolute value but with an opposite sign.
So, we cannot distinguish between �x1� and �x2� in our analy-
sis of a given sample. To overcome this problem, we calcu-
late for Nstat realizations the common probability distribution,

�

�

�

�

�
�
�

��

��

��

��
��
��
��
��

�

�
�
�

�
�

�

��
��

��
����

��
����

����
��

�
�

�
��

�
��

��
�

�
�

�
��

�
��

�
�
�
�

��

��

��

��

��
��
��

0

2

4

6

8
L=65 L=64

10
-8

10
-6

10
-4

10
-2

10
0

0

2

4

6

8

��
�

��
�

��

��
�

��
�

��
�

��
��
��

����
��

��
����
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

10
-8

10
-6

10
-4

10
-2

10
0

Energy

|z
i
|

D
ir

ic
hl

et
B

C
Pe

ri
od

ic
B

C
FIG. 1. The energy dependence of the spectrum of Lyapunov

exponents �zi� of the transfer matrix. Dirichlet and periodic BCs are
imposed in the transversal direction, and f =1. Left: L=65, right:
L=64. Dashed lines indicate the values of the Lyapunov exponents
for E=0. Note that z1=0 for L odd and Dirichlet BC.
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FIG. 2. The probability distribution p��x1�� for E=0 and L=33,
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2 s exp− �
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129. Also shown is the distribution p�x2−x1� for E=10−3 and L
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�2 s2 exp− 4
�s2 for unitary ensemble.
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p̃12�x� =
1

Nstat
�

j

Nstat

��x − �x1�� + ��x − �x2�� , �7�

of the parameters �x1� and �x2� for a square system L�L with
L=66 and DBC in the transversal direction �Fig. 4�. We see
that the probability p̃12�x� �shown by the shaded area� is
nonzero when x→0. We expect, therefore, that the distribu-
tion

p12�x� =
1

Nstat
�

j

Nstat

��x − x1� + ��x − x2� �8�

is of the form

p12�x� =
1

�2��
�e−�x − �x1��2/2� + e−�x + �x1��2/2�	 . �9�

This expectation is confirmed also by Fig. 5, which shows
how the probability distribution changes when the system
length increases.

For square systems, we obtain the distribution shown in
Fig. 4, which, in the limit of Lz /L→�, transforms into two
Gaussian peaks. For longer systems, p�x1 ,x2� develops into
two isolated Gaussian peaks centered around the mean val-
ues, �x1�=−�x2�. In analogy to the odd L case, a nonzero
energy breaks the chiral symmetry also in the even L situa-
tion. A similar statistic was observed also for PBC with small
anisotropy �not shown�, which confirms the existence of the
chiral symmetry also for L even and PBC.

We conclude that the random-flux model with Dirichlet
BCs possesses at the band center E=0 a chiral unitary sym-
metry. The spectrum of the Lyapunov exponents is given by
the relations

zi = c�− 1�i+1 Int��i + 1�/2	 �L even� �10�

and

zi = c�− 1�i Int�i/2	 �L odd,DBC� , �11�

in agreement with previous theoretical considerations.20

IV. CRITICAL REGIME AND EXPONENT

Since z1�0 for E=0, L odd, and DBC in the transversal
direction, the system is in the critical regime with a diverging
correlation length

� 	 �E�−� �2D� . �12�

To estimate the critical exponent �, we calculate z1 as a func-
tion of energy E and of the system width L. We expect, in
agreement with the single parameter scaling,36,40 that z1 is a
function of the ratio L /��E� only. As is shown in Fig. 6, all
numerical data can be fitted by the universal function
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z1�E,L� =
a1

�ln�a2�E�L1/���
, �13�

with three fitting parameters a1, a2, and �. From the scaling
analysis, we observed that

� = 0.35 ± 0.03. �14�

More detailed information of the analysis is presented in
Table II. To estimate the accuracy of our result, we repeated
the scaling analysis with reduced input data sets. A similar

value of the critical exponent was obtained also for systems
with weaker magnetic flux disorder f =0.5 �see Fig. 7�. Due
to the smaller values of z1, we have to simulate much longer
Q1D systems in order to get data with reasonable accuracy.

Although the calculated values of � for f =0.5 differ
slightly from those obtained for f =1.0, we do not interpret
this difference as a nonuniversality of the critical exponent.6

Rather we assume that this difference is due to the limited
accuracy of our numerical data and/or fitting procedure. In-
deed, as shown in Table II, the estimated value of the critical
exponent depends on the choice of the input ensemble de-
fined by z1 max and Lmin, and decreases slightly when larger
values of z1 are excluded.

We did not find any crossover from a power-law depen-
dence to a more complicated E dependence of the localiza-
tion length for two dimensions as proposed in Ref. 30 and
discussed in Refs. 6 and 9. Our numerical data cannot be
fitted to the one parameter scaling function z1�E ,L�
=z1�L /�� with a localization length �	exp �ln�E0 /E�.30

Since we analyze a very narrow energy interval around the
band center �as small as �E��10−10�, we do not expect that
the crossover from the observed power-law dependence to
the proposed logarithmic energy dependence of the localiza-
tion length exists in our situation.

Since z1 determines the localization length of the Q1D
system, �=2/z1, we see from Eq. �13� that the localization
length diverges as

�L�E� 	 L�ln�a2�E�L1/��� �Q1D�, E → 0, �15�

for a given system width L. A logarithmic divergence is typi-
cal for Anderson bond disordered models.41,42

While the existence of the critical state at E=0 for L even
is commonly accepted,3 we do not expect the same for L odd
and PBC, since the system possesses unitary symmetry in
this case. To describe the property of the E=0 state, we plot
in Fig. 8 the L dependence of the smallest LE z1 for L even
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TABLE II. Numerical estimate of the critical exponent � for two
different strengths of the random-flux amplitudes, f =1.0 and f
=0.5. Only data for L�Lmin and with z1�z1 max are considered in
the scaling analysis. Fmin is obtained from the minimum of the
fitting function; Ndata is the number of data. The accuracy of the
critical exponent in each fitting procedure is of the order of 10−3.

Lmin z1 max � Fmin/Ndata

f =1.0

33 0.62 0.342 20/69

33 0.52 0.336 10/58

65 0.62 0.348 13/55

65 0.52 0.342 7/49

91 0.62 0.368 7/39

91 0.52 0.355 4/35

91 0.45 0.341 3/30

91 0.40 0.329 2/25

f =0.5

33 0.15 0.359 4/36

33 0.20 0.384 11/42

33 0.25 0.372 26/45
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�both Dirichlet and periodic BCs� and L odd �PBC�. In all
three situations, we do not observe any L dependence of the
smallest LE z1. We believe that this indicates that the local-
ization lengths considerably exceed the available system
sizes so that no final conclusions can be reached.

The scaling analysis is very difficult in the case of L even.
As is shown in Fig. 9, the L dependence of z1 is highly
nontrivial for nonzero energies, in accordance with Ref. 5.
The scaling seems to work only in the limit of L→�. We
disagree on the observation5 that the LEs at E=0 do not
come in degenerate pairs. In contrast, we find the difference
between the two LEs to be smaller than the accuracy of our
calculations.

The criticality of the E=0 state for the Dirichlet BCs will
be supported also by the size dependence of the mean con-
ductance, discussed in the next section.

V. CONDUCTANCE

Figure 10 shows the size dependence of the sample aver-
aged critical conductance �gc� for square systems L�L �L

odd� and three values of the randomness strength f . The en-
ergy is E=0, and Dirichlet BCs are considered. Our data
confirm that �g� converges to an L independent critical value
�gc�, which, however, does depend on the strength of the
randomness f . For the largest possible disorder f =1, we ob-
tain �gc�=1.49, a value larger than the 2D symplectic case.43

Figure 11 shows the f dependence of the mean conductance
for squares of size 257�257. It also shows that the variance
var g= �g2�− �g�2 is universal and independent of f . We find a
value var g�0.187, which is in agreement with those ob-
tained earlier by Ohtsuki et al.44 and Furusaki.3 We observe,
however, an increase of var g for very small f , which can be
explained by finite-size effects due to a large mean free path.
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We also plot in Fig. 10 the size dependence of the mean
conductance for squares with even L. Within the obtained
accuracy, �gc� does neither depend on the parity of L nor on
the boundary conditions, in agreement with Ref. 3. Contrary
to the band center, the conductance decreases always with
increasing system size whenever the energy lies outside the
band center.

We also analyzed the length dependence of the mean con-
ductance �g� and of the mean of the logarithm of the con-
ductance �ln g� for systems with hard wall transversal bound-
ary conditions and E=0. Since �x1��0 in this case, we
expect that the system possesses an infinite localization
length also in the Q1D limit.20 Therefore, the mean conduc-
tance �g� should not decrease exponentially when the system
length increases.

Our results shown in Fig. 12 confirm the relations pre-
dicted theoretically20

�g� = L�/Lz �16�

and

�g� = �2L�/�Lz �17�

in the limit of �g��1 and �g��1, respectively.

VI. SUMMARY

We investigated two-dimensional electron systems with
static random magnetic flux and showed numerically that the
transport properties depend on the parity of the system’s
width L and on the transverse boundary conditions. For Di-
richlet boundary conditions, we confirmed by the analysis of
the statistical properties of the quantities x, which param-
etrize the eigenvalues of the transmission matrix, that the
system possesses chiral unitary symmetry at the band center.
The chirality exists in the case of Dirichlet boundary condi-
tions for both L odd and even, and for periodic BC for L
even only. However, the chirality is always broken when the
energy of the electron is nonzero.

In the case of chiral unitary symmetry, the 2D system with
random magnetic flux possesses a critical point at the band
center. We found that the localization length diverges 	�E�−�

when E→0, and calculated the critical exponent ��0.35 for
L odd and Dirichlet BCs. Our data do not confirm the exis-
tence of the crossover from the power-law dependence to the
logarithmic energy dependence of � predicted by Ref. 30.

We also calculated the critical conductance of 2D sys-
tems. At the band center, the mean conductance �g� con-
verges to a size-independent critical value for both L odd and
L even. Although the critical conductance does depend on
the strength of the randomness, the fluctuations of the con-
ductance appear to be universal. For nonzero energy, the
mean conductance decreases with the system size, indicating
a localized regime. Finally, for the Q1D systems with odd
system width and Dirichlet BCs, we confirmed the nontrivial
length dependence of the mean conductance, proposed theo-
retically in Ref. 20.
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