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We present a theoretical approach to treating the coherent dynamics of optically generated charge carriers in
semiconductors using an excitonic basis. In contrast to the semiconductor Bloch equations, our approach treats
intraband correlations without factorization. It also includes phase space filling effects that have generally been
omitted in previous excitonic treatments of coherent dynamics. We show that, in the coherent limit, where the
intraband dephasing time and population decay time are both equal to half of the interband dephasing time, our
excitonic approach agrees with the semiconductor Bloch equations to at least third order in the optical field, but
that it differs significantly in more general situations. Our excitonic equations are shown to be particularly
applicable in systems, such as biased semiconductor superlattices, where bound excitons dominate the optical
response and where intraband correlations play a central role. Using a simple model of a nanoring, we show
how the spectral shifts in the interband response can be explained in terms of phase-space-filling-induced
excitonic population dynamics.
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I. INTRODUCTION

The ultrafast spectroscopy of semiconductor nanostruc-
tures provides great insight into the underlying physical dy-
namical processes in these systems. Radiation emitted by the
photoexcited charge carriers in nonequilibrium states dis-
closes fundamental information about single-particle dynam-
ics as well as many-body correlations. Many different ex-
perimental techniques have been developed to investigate
different aspects of these dynamical processes in
semiconductors.1,2 Time-resolved photoluminescence and
pump-probe spectroscopy are often used to study carrier re-
laxation processes, while four-wave-mixing spectroscopy
can provide direct information on the dynamics and decay of
the interband polarization. Degenerate four-wave-mixing
�DFWM� techniques and terahertz emission spectroscopy
have also been used to probe intraband processes in asym-
metric structures such as coupled double quantum wells2 and
biased semiconductor superlattices �BSSLs�.3,4 In all of these
systems, many-body effects can influence carrier dynamics
profoundly at moderate to high carrier densities. Such effects
include biexcitons,5,6 screening,1 excitation-induced
dephasing,7 self-induced intraband fields,8 and phase space
filling �PSF�.9 Thus, in the theoretical treatment of these sys-
tems, it is important that the theoretical formalism employed
is able to capture the key many-body effects particular to the
system being investigated while remaining computationally
tractable.

Many theoretical approaches have been developed and re-
fined for the treatment of ultrafast phenomena in semicon-
ductors. Nonequilibrium Green’s function and density matrix
techniques are amongst the most commonly used methods.1

The well-known semiconductor Bloch equations �SBEs� are
based on the second approach,10 as are the dynamics con-
trolled truncation �DCT� equations.11

The density matrix approach yields an infinite hierarchy
of operator equations, which is the quantum counterpart of
the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in

classical gas dynamics.1 The expectation value of the opera-
tors can be used to calculate various physical quantities, such
as charge-carrier �electron, hole� distributions, current den-
sity, or electronic polarizations. To obtain a group of closed
equations, some approximations are required. One approach
is to truncate the equations to a certain order in the optical
field.11,12 This has the advantage that the results are exact to
a specified order in the optical field. However, at high laser
intensities, such a perturbative approach can break
down.8,13–15 An alternative approach is to factorize the ex-
pectation value of several operators into a product of expec-
tation values with fewer operators.10 The factorization ap-
proach is called a correlation expansion; it effectively
neglects correlation functions involving more than a given
number of particles. Depending on the number of operators
retained in the remaining correlation functions, the resulting
equations can be used to describe various dynamical pro-
cesses in semiconductors, such as single-particle dynamics,
carrier-phonon interactions, dynamic screening, and carrier-
carrier interactions.1,12

One of the most successful approaches to treating ultrafast
phenomena are the SBEs. They are well accepted and have
been successfully used to treat a large number of coherent
effects in semiconductors including the dynamic Stark effect
and Rabi oscillations, and to model various pump-probe and
four-wave-mixing experiments.2,10 They have the advantage
that they are nonperturbative in the optical field and are rela-
tively simple and computationally efficient. However, they
have two drawbacks that make them inappropriate for use in
certain systems. First, they omit higher-order correlations be-
yond the random phase approximation �RPA� or Hartree-
Fock approximation. Second, because they effectively factor-
ize an intraband correlation function into the product of two
interband correlation functions �see Sec. III B�, they incor-
rectly treat intraband correlations16 except in the so-called
coherent limit16 where Tdecay=Tintra=Tinter /2, i.e., when the
population decay time and the intraband dephasing time are
both equal to half of the interband dephasing time. Thus, in
general they are inappropriate for use in systems where in-
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traband correlations are important. Both of these difficulties
with the SBEs can be addressed by employing either a
higher-order cluster expansion approach or a higher-order
DCT approach. However, such approaches are computation-
ally very taxing and are generally prohibitive for use in com-
plicated systems such as BSSLs. The aim of this paper is to
introduce a formalism to treat ultrafast dynamics in semicon-
ductor systems in which excitonic effects and intraband dy-
namics play a dominant role but correlations beyond the RPA
are not essential.

One class of systems in which excitons dominate the re-
sponse and in which intraband coherences play a central role
are asymmetric or biased coupled quantum wells and super-
lattices. Consider, for example, a BSSL. If an undoped BSSL
is excited by a short optical pulse with a central energy that
is below the energy of 1s excitons in the n=0 excitonic
Wannier-Stark-Ladder �WSL� level, a large intraband re-
sponse that is dominated by the dynamics of 1s excitons is
generated.15 The coherent excitonic wave packets that are
created oscillate in space at the Bloch-oscillation frequency.
These oscillations result from intraband coherences between
different excitonic WSL levels. The resulting self-induced
intraband electric fields can give rise to such effects as the
transformation of Bloch oscillations into plasma oscillations8

and oscillations in spectral peak positions in DFWM
experiments.4,13 We have shown that at moderate densities,
the optical and terahertz response in BSSLs is well described
using an excitonic formalism with exciton-exciton interac-
tions included in a mean-field approximation via the intra-
band polarization.8 Although successful, these excitonic
treatments did not include PSF or exchange. Before discuss-
ing the PSF problem, we first examine the potential advan-
tages of excitonic approaches to carrier dynamics.

In comparison to approaches that employ an electron-hole
basis, approaches that use an excitonic basis have several
advantages. First, since excitonic states are the lowest-energy
excited states, they often dominate the optical response. Us-
ing an excitonic basis thus allows us to relate absorption or
photoluminescence spectra directly to exciton dynamics.
Second, an excitonic basis naturally includes the important
intraexcitonic electron-hole correlations; since excitons are
neutral particles, the remaining exciton-exciton correlations
are generally weak in the low to moderate exciton density
regime and can often be treated approximately in a mean-
field way. Third, because dephasing effects are often in-
cluded approximately or phenomenologically, the separation
of dephasing times from population decay times is more ac-
curate if the populations considered are excitons �the two-
particle eigenstates of the system� than if they are electrons
and holes.8,13–15 Finally, perhaps the most important advan-
tage of using an excitonic basis is that the intraband correla-
tion functions can be retained in an unfactorized form with-
out requiring the use of a prohibitive number of dynamical
equations. The resulting increase in computational efficiency
makes it possible to model complicated systems, such as
BSSLs, that exhibit strong effects from intraband correla-
tions.

Previously, most excitonic approaches to treating ultrafast
dynamics in complicated systems have neglected the PSF
effects associated with the nonbosonic nature of excitons.

Composed of an electron-hole pair, a bound exciton can be
treated effectively as a boson at low carrier densities. How-
ever, as the density increases, the composite nature of exci-
tons becomes increasingly important, leading to the so-called
PSF that arises from the Fermi statistics of electrons and
holes. In a free electron-hole basis, this effect can be in-
cluded naturally through the Fermi statistics. Using an exci-
tonic basis, there is no obvious simple way to treat PSF
effects or to know at what precise density PSF will become
important. Various methods, such as bosonization17 and com-
mutation techniques,18,19 have been proposed to treat this
problem, but there is still considerable controversy in the
field20–22 and there is no clear consensus as to the best way to
address this problem.

In this paper, we develop a set of excitonic equations
�EXEs� to model the nonlinear response of semiconductor
systems to ultrashort optical pulses. These equations treat
intraband polarization without factorization and include PSF
and exchange effects. These EXEs offer an approach to the
ultrafast response of bulk and nanostructured semiconductors
that exploits the simplicity of an excitonic basis, without
having to discard the important effects of phase space filling.
To demonstrate the properties and advantages of our ap-
proach, we apply our formalism to a simple model of a nano-
ring, and compare the interband polarization calculated using
our EXEs to those obtained using the SBEs. We demonstrate
that our approach agrees with the SBEs in the coherent limit
to at least third order in the optical field, but that it can yield
significantly different results for general interband dephas-
ing, intraband dephasing, and population decay times. These
results confirm the validity of our approach and point to their
importance in treating systems with strong intraband corre-
lations.

This paper is organized as follows. In Sec. II, the Usui
transformation is applied to obtain the commutation relations
for the quasiboson pair space creation and annihilation op-
erators that are used to derive quasiboson dynamic equations.
In Sec. III we discuss the factorization employed to obtain a
closed set of quasiboson dynamic equations and derive both
the SBEs and the EXEs from these equations. In Sec. IV, we
apply both the SBEs and EXEs to a model system to dem-
onstrate the differences between the two approaches and we
discuss their suitability for modeling different systems. Fi-
nally, in Sec. V, we present our conclusions.

II. QUASIBOSON DYNAMIC EQUATIONS

In this section, we derive the Hamiltonian as well as the
dynamic equations for electron-hole pairs in the quasiboson
�qboson� pair space. These equations are used in the next
section to derive both the SBEs and our EXEs.

A. Usui transformation and the quasiboson commutation
relations

In this section, we use the Usui transformation to trans-
form from a basis of electrons and holes into a qboson pair
basis. This transformation yields the commutation relations
and the Hamiltonian in the qboson pair space.
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The Usui transformation23 connects the free electron and
hole fermion space to the qboson pair space with the opera-
tor

U = PF exp� �
ke,kh

B̃ke,kh

† �kh
�ke�PB, �1�

where PF and PB are projection operators onto the fermion
space and qboson pair space vacuums, �0�F and �0�B, respec-

tively; B̃ke,kh

† is the creation operator for an electron-hole pair
in qboson pair space, while �ke

and �kh
are electron and hole

annihilation operators in fermion space. Here ke and kh are
the momenta of the electron and hole, respectively. The Usui
transformation is not unitary in that it maps a state with
many electrons and holes into a superposition state of all
possible electron-hole pairings. An ordering operator O is
needed to obtain a one-to-one correspondence between the
fermion states and a certain subspace of the pair space. A
fermion operator AF can thus be transformed to a pair-space
operator AB using

AB = OUAFU†O†. �2�

The operator O is a projection operator satisfying O2=O,
giving U†OU=1, such that OU is unitary.

For the situations with which we are concerned, excitons
have very small center-of-mass �c.m.� momenta, as they are
created by photons. Since we are considering ultrafast pro-
cesses, if we neglect any scattering that creates excitons with
large c.m. momentum, we can take the total momentum of
every exciton to be zero. For this reason, in the following the
c.m. momenta are implicitly taken to be zero and are not
explicitly indicated in the subscripts of the exciton creation
or annihilation operators. Thus, our ordering operator O pairs
electrons and holes such that kh=−ke and we simplify our

notation for the qboson pair operator to Bk
†� B̃k,−k

† . Using the
Usui transformation, this operator is given by

Bk
† = OU��k

†�−k
† �U†O†. �3�

The commutator of Bk and Bk�
† , which will be needed later in

deriving dynamic equations for Bk
†, is given by

	Bk,Bk�
† 
 = OU	�k�k,�k�

† �k�
† 
U†O†

= �k,k�OU�1 − �k
†�k − �−k

† �−k�U†O†. �4�

In the above equation, �k
†�k ��−k

† �−k� is the electron �hole�
number operator for the electron �hole� state with momentum
k. To obtain a closed relation, the expressions for �k

†�k and
�−k

† �−k in pair space are needed. Using the Usui transforma-
tion, it can be shown that

Bk
†Bk = OU��k

†�k�U†O† = OU��−k
† �−k�U†O†, �5�

which has the clear physical meaning that the number of
electrons or holes equals the number of qboson electron-hole
pairs in a photoexcited undoped semiconductor system. We
note that Eq. �5� is only valid for electron-hole pairs with
zero c.m. momentum. Thus, we obtain from Eqs. �4� and �5�
the commutation relation,

	Bk,Bk�
† 
 = �k,k��1 − 2Bk

†Bk� . �6�

It is also easily shown that

	Bk
†,Bk�

† 
 = 0. �7�

In addition to the above commutation relations, a further
condition is required to prohibit the creation of two pairs in
the same state. This condition can be derived in the fermion
space, and is

Bk
†Bk

† = 0. �8�

Because it is deceptively simple and natural, the above rela-
tion is easily overlooked. However, as shown in later sec-
tions, energy and total exciton number in the system will not
be conserved after the laser pulse has passed unless this re-
lation is properly treated in obtaining the dynamic equations
for excitons.

The consistency of the three relations of Eqs. �6�–�8� can
be checked by comparing the matrix elements of the pair
number operator Bk

†Bk between states Bk1

† Bk2

†
¯BkN

† �0� with N
electron-hole pairs �where N is an arbitrary positive integer�
obtained in the two different spaces. We have calculated this
in the qboson pair space using Bk

†Bk and the commutation
relations of Eqs. �6� and �7� and in the fermion space for the
states �k1

† �k1

† �k2

† �k2

†
¯�kN

† �kN

† �0� using the commutation rela-
tions for fermions. We find that these two methods indeed
give identical results.

The consistency of the commutation relations can be fur-
ther confirmed by calculating the commutator of Bp

† and
Bk

†Bk,

	Bp
†,Bk

†Bk
 = − Bk
†�p,k�1 − Bk

†Bk� = − �p,kBk
†, �9�

which agrees with the result obtained in an electron-hole
basis,

	�p
†�−p

† ,�k
†�k
 = − �p,k�k

†�−k
† . �10�

B. Hamiltonian and dynamic equations in quasiboson pair
space

Using the Usui transformation, we can transform the
widely used Hamiltonian HF for a photoexcited semiconduc-
tor system in fermion space10,24 to obtain the Hamiltonian H
in the qboson pair space,24

H = HX + HC + HI. �11�

In Eq. �11�,

HX = �
k

Ek
0Bk

†Bk − �
k1,k2

Vk1−k2
Bk2

† Bk1
�12�

is the Hamiltonian for noninteracting qboson pairs,

HC = − �
k1,k2

Vk1−k2
Bk1

† Bk2

† Bk2
Bk1

�13�

describes the exchange interaction and
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HI = − �
k

E�t� · �McvBk
† + Mcv

* Bk� �14�

describes the interaction of qboson pairs with the laser elec-
tric field, E�t�. In Eq. �12�, Ek

0�Eg+�k
e +�−k

h , where Eg is the
energy gap between the valence and the conduction band and
�k

e ��−k
h � is the energy of a noninteracting electron �hole� with

momentum k �−k�. In Eq. �13�, Vk is the Coulomb interac-
tion between electrons and holes. In Eq. �14�, Mcv= �c�er�v�
is the interband dipole matrix element between conduction
and valence band states at k=0.

We use the Heisenberg equation of motion, the qboson
Hamiltonian of Eq. �11�, and the commutation relations of
Eqs. �6� and �7� to obtain the first dynamic equation

i�
d

dt
Bp

† = − �
k

	�Eg + V0 + �p
e + �−p

h ��k,p − Vp−k
Bk
†

+ 2�
k

Vp−kBp
†Bk

†Bk − 2�
k

Vp−kBk
†Bp

†Bp + E�t� · Mcv

− 2E�t� · McvBp
†Bp. �15�

In this expression the first term is from the energy of a single
electron-hole pair and the two terms in the second line de-
scribe exchange and PSF effects, respectively. The two terms
in the last line describe the interaction of the laser field with
the system; the first term is related to the linear absorption,
while the second term is a PSF term that is responsible for
spectral hole burning.

The second dynamic equation is given by

i�
d

dt
�Bp

†Bq� = − �
k

	�Eg + V0 + �p
e + �−p

h ��k,p − Vp−k
Bk
†Bq

+ �
k

	�Eg + V0 + �q
e + �−q

h ��k,q − Vq−k
Bp
†Bk

+ 2�
k

Vp−kBp
†Bk

†BkBq − 2�
k

Vq−kBp
†Bk

†BkBq

− 2�
k

Vp−kBk
†Bp

†BpBq + 2�
k

Vq−kBp
†Bq

†BqBk

+ E�t� · McvBq − E�t� · Mcv
* Bp

†

− 2E�t� · McvBp
†BpBq + 2E�t� · Mcv

* Bp
†Bq

†Bq.

�16�

On the right side of Eq. �16�, the terms in the third and the
fourth lines are due to the exchange interaction and PSF
effects, respectively; the terms in the fifth line are related to
linear absorption, while terms in the last line are the hole-
burning terms.

We emphasize that the supplementary condition of Eq. �8�
is essential for correct interpretation and application of the
above two equations.

III. OBTAINING A GROUP OF CLOSED EQUATIONS

The dynamic equations for the statistical averages of the
qboson operators can be obtained by taking the expectation

value of operators on both sides of Eqs. �15� and �16�, so as
to produce the correlation functions �Bp

†� and �Bp
†Bq� needed

to calculate the interband and intraband polarizations and
exciton population distribution of the system. Factorization
of higher-order density matrices is then needed to obtain a
closed set of dynamic equations. We factorize density matri-
ces of three or four operators into matrices with one or two
operators. This factorization is explained in Sec. III A and it
provides us with the pair-space qboson dynamic equations
that are shown in Eqs. �20� and �21�. However, there is a key
difficulty in applying these two equations directly to investi-
gate ultrafast dynamics in semiconductors numerically: the
large number of equations makes it computationally intrac-
table for complicated systems such as BSSLs. In Secs. III B
and III C, we present two different approaches to address this
difficulty. The first approach employs an additional factoriza-
tion that transforms these equations into the standard SBEs.10

The second approach employs a true excitonic basis and thus
enables us to reduce the basis size. This second approach is
the key result of this paper; it is not only numerically trac-
table but also allows us to retain interband correlations that
can be important in many systems.

A. Factorization of the qboson dynamic equations

Taking the expectation values of Eqs. �15� and �16� yields
an infinite hierarchy of operator equations. It is well known
that there are different ways to form a closed set of dynamic
equations from the infinite hierarchy, e.g., perturbation in the
optical field, dynamics controlled truncation, cluster expan-
sion, etc. Much work has been done on cluster expansions
that makes it possible to treat many-body interactions in
semiconductors systematically using an electron-hole
basis.1,25–27 However, a cluster expansion is not employed in
this work for two reasons. First, excitons are composite par-
ticles and there is no established method to expand higher-
order exciton correlation functions �although some authors
have proposed a possible solution recently18,28�. Second, the
dynamic equations with all the terms from the cluster expan-
sion are prohibitively difficult to use in numerical simula-
tions of complicated semiconductor systems such as BSSLs.
Similarly, employing a higher-order DCT approach also gen-
erally leads to a large number of equations that are difficult
to employ in complicated systems. Thus, to provide a trac-
table set of equations, in factorizing Eqs. �15� and �16� we
employ precisely the RPA that is used to derive the SBEs.
For example, we perform the following factorization:

�Bp
†Bk

†Bk� = �Bp
†��Bk

†Bk��1 − �p,k� , �17�

which uses the RPA to split the three-operator term into
products of density and interband polarization.10 In the fer-
mionic basis, the above factorization amounts to

�Bp
†Bk

†Bk� = ��p
†�−p

† �k
†�k� � ��k

†�k���p
†�−p

† � . �18�
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This approach effectively groups together creation and anni-
hilation operators with the same momentum whenever pos-
sible. For terms with four operators, the same RPA approach
yields

�Bp
†Bk

†BkBq� � �Bk
†Bk��Bp

†Bq��1 − �p,k��1 − �k,q� . �19�

The extra factors involving Kronecker delta functions in Eqs.
�17� and �19� are included to ensure the condition of Eq. �8�
is still satisfied after the factorization is applied.

The resulting dynamic equations are given by

i�
d

dt
�Bp

†� = − �
k

	�Eg + V0 + �p
e + �−p

h ��k,p − Vp−k
�Bk
†�

+ 2�
k

Vp−k�Bp
†��Bk

†Bk� − 2�
k

Vp−k�Bk
†��Bp

†Bp�

+ E�t� · Mcv − 2E�t� · Mcv�Bp
†Bp�

+ 
i�
�

�t
�Bp

†�

scattering

�20�

and

i�
d

dt
�Bp

†Bq� = �
k

Vp−k�Bk
†Bq� − �

k
Vq−k�Bp

†Bk� + 2�
k

�Bk
†Bk��Vp−k�Bp

†Bq� − Vq−k�Bp
†Bq���1 − �p,k��1 − �k,q�

− 2�
k

Vp−k�Bp
†Bp��Bk

†Bq��1 − �p,k��1 − �p,q� + 2�
k

Vq−k�Bq
†Bq��Bp

†Bk��1 − �p,q��1 − �k,q� + E�t� · Mcv�Bq�

− E*�t� · Mcv
* �Bp

†� − 2E�t� · Mcv�Bp
†Bp��Bq��1 − �p,q� + 2E*�t� · Mcv

* �Bp
†��Bq

†Bq��1 − �p,q� + 
i�
�

�t
�Bp

†Bq�

scattering

.

�21�

In the above two equations, scattering induced dephasing
and decay is included formally using the terms
�i� �

�t �Bp
†��scattering and �i� �

�t �Bp
†Bq��scattering. The exact causes of

dephasing and decay are system dependent and can be domi-
nated by carrier-phonon or carrier-carrier interactions de-
pending on carrier density of the system. Such scattering
could be described on various levels of sophistication. In this
work, for simplicity, we will employ phenomenological time
constants as this simplifies the discussion and the calcula-
tions and allows us to focus on the key issue of developing
an excitonic alternative to the SBEs that includes PSF and
exchange effects.

Equations �20� and �21� could be used directly to investi-
gate carrier dynamics. These equations are like those ob-
tained in the DCT approach11,16 �but include higher-order
terms that deal with PSF that were omitted in the particular
version of DCT presented in Ref. 16�. However, assuming a
basis of m k-states is required, there are m�m+1� of the
general qboson equations 	we actually only need m�m
+3� /2 equations since other equations can be found using
complex conjugation
. In contrast, the SBEs consist of only
2m equations �or 3m if electron and hole populations are
treated separately�. Thus a calculation employing our qboson
equations generally becomes prohibitive due to the fact that
even for a one-dimensional �1D� system, hundreds of
k-states are generally required. Thus, we need to further sim-
plify Eqs. �20� and �21� or transform them to a different
basis. Our two approaches to transforming these equations
are presented in Secs. III B and III C.

Before closing this section, we note that there are other
possible ways to factorize the qboson dynamic equations. In
particular, if biexcitonic effects are of interest, we could de-

rive equations for �Bp
†Bq

†� and perform factorizations to retain
terms related to biexcitons.29,30 However, in this work our
aim is to treat systems where intraband polarization plays a
dominant role. Thus, we have chosen to obtain a group of
equations that agree identically with SBEs in the coherent
limit but that include important intraband correlations when
we move out of the coherent limit.

B. Semiconductor Bloch equations

By making further approximations to Eqs. �20� and �21�,
we can reduce the number of equations and obtain a group of
dynamic equations, which turns out to be just the SBEs. To
accomplish this, we first note that Eq. �20� for �Bp

†� only
depends on �Bk

†� and �Bk
†Bk�. From Eq. �21�, the equation

�Bp
†Bp� is

i�
d

dt
�Bp

†Bp� = �
k

Vp−k��Bk
†Bp� − �Bp

†Bk�� + E�t� · Mcv�Bp�

− E*�t� · Mcv
* �Bp

†� + 
i�
�

�t
�Bp

†Bp�

scattering

.

�22�

We note that Eq. �22� is much simpler than Eq. �21� because
many terms disappear for p=q either due to direct cancella-
tion or due to � functions. The problem now is that this
equation contains intraband correlation functions �Bp

†Bk�,
where p�k, and we have no dynamic equation for these. To
make these equations closed, we choose the factorization
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�Bp
†Bq� � �Bp

†��Bq� .

This factorization amounts to approximating intraband corre-
lation functions by the product of two interband correlation
functions and is precisely the factorization used in deriving
the SBEs, where ��p

†�−k
† �−q�q����p

†�−k
† ���−q�q�.10 After this

factorization, the two dynamic equations we obtain are Eq.
�20� and

i�
d

dt
�Bp

†Bp� = �
k

Vp−k��Bk
†��Bp� − �Bp

†��Bk�� + E�t� · Mcv�Bp�

− E�t� · Mcv
* �Bp

†� + 
i�
�

�t
�Bp

†Bp�

scattering

. �23�

Now to compare these equations directly with the SBEs, we
make the following two standard definitions:10

Pp
* � �Bp

†� , �24�

ne,p = nh,p � �Bp
†Bp� . �25�

Using Eqs. �3� and �5�, we see Pp
*= ��p

†�−p
† � is the interband

density matrix; ne,p= ��p
†�p� and nh,p= ��p

†�p� are the electron
and hole occupation number for state p. Using these defini-
tions, we obtain from Eq. �20�

i�
d

dt
Pp

* = − �Eg + �p
e + �−p

h �Pp
* + �

k�p
Vp−kPk

* + �
k�p

Vp−kPp
*�ne,k

+ nh,k� − �ne,p + nh,p��
k�p

Vp−kPk
* + E�t� · Mcv

− E�t� · Mcv�ne,p + nh,p� + 
i�
�

�t
�Bp

†�

scattering

. �26�

Taking the complex conjugate and using the standard defini-
tions

�ee,p � �p
e + Eg − �

k�p
Vp−kne,k, �27�

�eh,p � �p
h − �

k�p
Vp−knh,k, �28�

�R,p �
1

��Mcv
* · E�t� + �

k�p
Vp−kPk� , �29�

where �ee,p ��eh,p� is the renormalized single electron �hole�
energy and �R,p is the generalized Rabi frequency, we obtain

d

dt
Pp = − i�ee,p + eh,p�Pp − i�ne,p + nh,p − 1��R,p −

Pp

Tinter
SBE ,

�30�

where we have introduced the time constant Tinter
SBE to phenom-

enologically describe the interband decoherence due to vari-
ous scattering processes. Equation �30� is the first of the
standard SBE equations.

Now we turn to the second dynamic equation, Eq. �23�.
Using the above definitions, this equation becomes

i�
d

dt
ne,p = �

k
Vp−kPk

*Pp − �
k

Vq−kPp
*Pk + E�t� · McvPp

− E�t� · Mcv
* Pp

* + 
i�
�

�t
�ne,p�


scattering
, �31�

which can be further simplified to

d

dt
ne,p = − 2I��R,pPp

*� −
ne,p

Tdecay
SBE , �32�

where Tdecay
SBE is carrier decay time. An identical equation can

be obtained for the hole populations, nh,p. Equation �32� is
the second of the standard SBE equations. Since the popula-
tion scattering is being treated phenomenologically here, it
would also be possible to assign different population decay
constants to the electrons and holes �as is commonly done
with the SBEs�. In a system where there are many free car-
riers �as opposed to bound excitons�, this freedom to assign
different decay times may be important. In this work, for
simplicity, we shall set these times equal. This is a good
approximation when bound excitons are dominant; we dis-
cuss this further in Sec. IV D.

We close this section by noting that, in the SBE formal-
ism, the interband polarization is given by

Pinter�t� = Mcv�
k

��k
†�−k

† � + c.c. = Mcv�
k

Pk
* + c.c. �33�

There is no direct expression for the intraband polarization in
the SBE formalism; however, the current density can be cal-
culated from the carrier distributions using31

j�t� =
2e

�
�

k
	nh,k�t��k�k

h − ne,k�t��k�k
e
 . �34�

C. Excitonic dynamic equations

The second approach to rendering Eqs. �20� and �21�
more tractable is to transform them to a true excitonic basis.
With such a transformation, we only need a basis of M true
exciton states, where M may be much smaller than the num-
ber of k states, m, needed in the electron-hole basis ap-
proach. This reduction in the number of states required is a
result of the fact that the excitonic states are the true two-
particle states and thus are closer to eigenstates of an excited
semiconductor at low to moderate densities. With a reduced
number of equations in the true excitonic basis, it is no
longer necessary to factorize �Bp

†Bq� into the product of two
interband terms, �Bp

†� and �Bq
†�, in the calculation as was

required in deriving the SBEs. This allows computational
efficiency along with the key ability to retain intraband cor-
relations. The equations derived in this section are the central
result of this work.

In this approach, we use a basis of true excitonic states.
These states have envelope functions, �	�r�, which are the
eigenstates of the exciton envelope-function Hamiltonian,
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Hex =
p2

2m
+ V�r� , �35�

such that

Hex�	�r� = E	�	�r� . �36�

Here, m�me
*mh

* / �me
*+mh

*� is the reduced mass, where me
*

and mh
* are the effective electron and hole masses, respec-

tively, r=re−rh is the electron-hole relative coordinate, p is
the momentum conjugate to r, V�r� is the electron-hole in-
teraction potential, and 	 is the quantum number of the ex-
citon with energy E	. We have not explicitly included any
external potential, such as would arise from band disconti-
nuities in nanostructures, but this can be included in our
formalism.

The true exciton creation operator B	
† is connected to qbo-

son pair creation operators Bk
† through the canonical transfor-

mations,

B	
† = �

k
c	

k Bk
†, �37�

Bk
† = �

	

c	
k*Bu

†. �38�

Here, c	
k is the coefficient of the exciton envelope function in

the free electron-hole basis, i.e.,

�	�r� = �
k

c	
k fk�r� , �39�

where fk�r�= �r �k�= 1
�V

eik·r is the free electron-hole envelope
function.

We use the canonical transformation of Eq. �38� to derive
the exciton dynamic equations from the qboson dynamic
equations 	Eqs. �20� and �21�
. We note that these two equa-
tions have been constructed so as to include the condition of
Eq. �8� that prevents two qbosons from being in the same k
state. Using Eqs. �37� and �38�, Eq. �20� becomes

i�
d

dt
�B	

† � + E	�B	
† � = − i�

�B	
† �

Tinter
EXE

+ 2 �
	1,	2,	3

R	1,	2,	3

	 �B	1

† ��B	2

† B	3
�

+ E�t� · Mcv
* �C	

− 2 �
	1,	2

C	,	1,	2
�B	1

† B	2
�� , �40�

where

R	1,	2,	3

	 = R1	1,	2,	3

	 − R2	1,	2,	3

	 , �41�

R1	1,	2,	3

	 = �
k,p

Vp−kc	
p c	1

p*c	2

k*c	3

k , �42�

R2	1,	2,	3

	 = �
k,p

Vp−kc	
p c	2

p*c	1

k*c	3

p , �43�

C	 = �
p

c	
p = �	�0� , �44�

C	,	1,	2
= �

p
c	

p c	1

p*c	2

p , �45�

and Tinter
EXE is the phenomenological interband dephasing time

constant.
The second dynamic equation �21� after transformation

becomes

i�
d

dt
�B	

† B
� + �E	 − E
��B	
† B
�

= − i��B	
† B
�� 1

Tintra
EXE + �	,
� 1

Tdecay
EXE −

1

Tintra
EXE��

+ 2 �
	1,	2,	3,	4

Z	1,	2,	3,	4

	,
 �B	1

† B	4
��B	2

† B	3
�

+ 	E�t� · Mcv
* C	�B
� − E*�t� · McvC


*�B	
† �


− 2 �
	1,	2,	3

	E�t� · Mcv
* U	1,	2,	3

	,
 �B	1

† B	2
��B	3

�

− E�t� · McvU	3,	2,	1


,	* �B	1

† ��B	2

† B	3
�
 , �46�

where

Z	1,	2,	3,	4

	,
 = S	1,	2,	3,	4

	,
 − T	1,	2,	3,	4

	,
 , �47�

S	1,	2,	3,	4

	,
 = �
k,p,q

�Vp−k − Vq−k��1 − �p,k�

��1 − �k,q�c	
p c


q*c	1

p*c	2

k*c	3

k c	4

q , �48�

T	1,	2,	3,	4

	,
 = �
k,p,q

�c	
p c


q*Vk−p − c	
k c


p*Vq−p��1 − �p,k�

��1 − �p,q�c	1

k*c	2

p*c	3

p c	4

q , �49�

U	1,	2,	3

	,
 = �
p,q

c	
p c


q*c	1

p*c	2

p c	3

q �1 − �p,q� . �50�

In Eq. �46�, the dephasing of intraband correlation functions
��B	

† B
� where 	�
� is included phenomenologically via
the intraband dephasing time constant Tintra

EXE, while decay of
the exciton populations ��B	

† B	�� is accounted for via the
decay time constant, Tdecay

EXE .
We note that in the EXEs, although we cannot introduce

different decay times for electron and hole populations as
one could with the SBEs, we can specify the interband
dephasing, intraband dephasing, and population decay time
constants independently. For systems where intraband dy-
namics are important and bound excitons dominate, this flex-
ibility is more important than having different decay times
for electrons and holes.16

The EXEs satisfy a number of important properties. In
particular, as is shown in Sec. IV C and Appendix A, once
the optical pulse is gone, the total carrier number and total
energy are both conserved when the dephasing and decay
time constants are set to infinity. This is a property that is not
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obeyed in general by approaches that are perturbative in the
optical field.

In our derivation of the EXEs, we have chosen to trans-
form the pair-space dynamic equations. Another possible ap-
proach would be to transform the pair-space Hamiltonian of
Eq. �11� into an excitonic basis, and then use the Heisenberg
equations of motion to derive the EXEs. However, it can be
easily shown that such an approach leads to incorrect dy-
namic equations unless great care is taken to also apply Eq.
�8�. The problem is that the dynamic equations for B	

† and
B	

† B

† that are derived directly from this exciton Hamiltonian

also contain terms with products such as B	1

† B	2

† and B	1
B	2

;
unless extreme care is taken, portions of these terms will
contain products Bk

†Bk
† or BkBk �from the expansions of

B	1

† B	2

† � that have coefficients that are nonzero. Unless one
uses Eq. �8� to explicitly remove the nonphysical terms, the
resulting equations are incorrect. In practice, it is much sim-
pler to derive the equations of motion in the qboson pair
space first and then transform the equations to the exciton
basis while enforcing the condition Bk

†Bk
†=0. This is the ap-

proach we have used in this section. We note that this result
implies that it is not possible to derive an exciton Hamil-
tonian from which the equations of motion can be deter-
mined using only the commutation relations. This is consis-
tent with the findings of Combsecot and Betbeder-Matibet.20

We close this section by noting that, in the excitonic basis,
the interband polarization is given by

Pinter�t� = �
k

Mcv�Bk
†� + c.c. = �

	

M	�B	
† � + c.c., �51�

where M	=Mcv�	�r=0�Ld/2 is the exciton interband dipole
matrix element; d and L are the dimension and length of the
system. In the excitonic basis, the intraband polarization is
given by15

Pintra�t� =
1

V
�
	,


G	,
�B	
† B
� ,

where G	,
 is the intraband dipole matrix elements between
two excitonic states ��	� and ��
� that is given by

G	
 = ��	�− e�re − rh���
� .

The current density is given simply by the time derivative of
Pintra�t�.

IV. RESULTS AND DISCUSSION

In this section, we present the results of simulations ob-
tained using our EXEs and compare them to results using the
SBEs. We present the interband polarization spectra obtained
using both the EXEs and the SBEs. We show that the two
approaches yield almost identical results when we are in the
coherent limit but differ significantly when we move to more
general dephasing situations. We then present the temporal
evolution of exciton population, and show how the blueshift
in interband polarization spectra can be understood as arising
from the PSF-induced exciton population redistribution. Fi-
nally, we discuss the differences between the EXEs and the

SBEs and the conditions under which our EXEs are expected
to have significant advantages.

A. Model system

Our model system is a 1D quantum wire of length L with
periodic boundary condition. We treat the electron-hole in-
teraction as a contact potential

V�r� = − A��r� , �52�

where A�0. This simplified interaction has been used by
previous authors to model the interband optical spectra of
nanoring magnetoexcitons32 and investigate intraband
dynamics.16 With this potential, there is a single bound exci-
tonic state and a quasicontinuum of unbound excitonic states.
We choose this system because it is a simple system in which
both the EXEs and SBEs can be implemented. Although,
unlike in a BSSL, there is no macroscopic intraband polar-
ization and thus intraband effects are relatively modest in
this system, we find that the effects are large enough to
clearly see the differences between the two approaches.

In all that follows, we take the unit of length to be rB
=2�2 /mA, which is the Bohr radius of our bound 1D exciton,
where m is the mass of an electron or hole �taken to be the
same in our model for simplicity�. The energy unit is the
binding energy of the bound exciton, which is Eb
=mA2 /4�2=A /2rB. The time unit is 
0�� /Eb=4�3 /mA2.

We choose our parameters so as to approximately model a
GaAs nanoring excited via an ultrashort laser pulse. We take
the length of the model system to be L=50rB so that the
system can hold several excitons before PSF effects become
significant. The binding energy of a bound exciton in such a
system is on the order of 10 meV. Since a typical energy gap
between the valence and conduction band is on the order of
1 eV, we set Eg=100Eb in our model system. These condi-
tions yield Eb=10 meV, rB�1.34 nm, and 
0�65.91 fs.

The laser pulse electric field is given by

E�t� = E0e−i�ct−t2/
p
2

+ c.c., �53�

which is a transform-limited Gaussian pulse centered at fre-
quency �c. Thus, the pulse intensity is

S�t� = I exp�− 2t2/
p
2�

and the spectral power density is

S̄��� = �I
p
2 exp	− �� − �c�2
p

2/2
 ,

where I is the peak intensity. The central frequency of the
pulse is set to be resonant with the �	=0� ground excitonic
state, i.e., ��c=E0=Eg−Eb. In addition, the spectra width of
the pulse is narrow enough such that at low intensities, the
vast majority of the excitons are excited directly into the
ground state with very few unbound excitons created. This
requirement is satisfied by choosing the temporal width of
the laser pulse to be 
p=1.875
0, which corresponds to ap-
proximately 120 fs. Figure 1 shows the spectral density of
the laser pulse that is used in all the simulations, along with
the calculated discrete excitonic energy levels for the first 28
excitonic states. In all calculations we employ the usual ro-
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tating wave approximation for the optical field.10

In our model system, there is only one bound excitonic
state �	=0� and it is well separated in energy from the other
states. The unbound quasicontinuum excitonic states gener-
ally come in pairs of symmetric and antisymmetric states
�see Fig. 1�. The symmetric states �	=1,3 ,5 , . . . � are opti-
cally active, while the antisymmetric ones �	=2,4 ,6 , . . . �
are optically forbidden. However, it is necessary to include
the antisymmetric states, because as we shall see, when PSF
effects are included, they can become populated and thereby
affect the dynamics of the optically active states.

B. Interband polarization simulations

Ultrafast carrier dynamics in semiconductors is an intrin-
sic many-body problem. As carrier density increases, many-
body interactions become increasingly more important. To
emphasize the PSF and exchange effects, we use a relatively
high pulse intensity that creates high carrier densities in the
system. At such densities, there are other higher-order many-
body effects that may be important that are omitted in both
the EXEs and the SBEs. However, we operate at these den-
sities because our goal is to clearly demonstrate the near
equivalence of the two approaches in the coherent limit and
to examine the effects of the different treatments of intraband
coherences. Our results make it evident that the treatment of
intraband polarization dephasing should be treated with care
as it can have a strong influence on the interband spectra.

In Fig. 2, we present the interband polarization spectral
density at a relatively high laser intensity that gives rise to a
relatively high exciton �carrier� density. Once the pulse has
passed, the ratio of the density radius, rs=L /N, to the exciton
Bohr radius, rB, is rs /rB�3.5, where N is the total number of
excitons �bound and unbound�. To compare the two ap-
proaches, we show the EXE result along with two different
SBE results. Because the interband dephasing time describes
the same process in the SBEs as in the EXEs, we set the SBE
interband polarization dephasing time, Tinter

EXE, to be equal to
the EXE interband dephasing time, Tinter

EXE, and denote both
simply by Tinter from here on.

In the EXE calculation, we have three time constants:
Tinter, Tintra

EXE, and the excitonic population decay time, Tdecay
EXE .

For both the EXE and SBE calculations, the interband
dephasing time constant is taken to be Tinter=3.75
0, which
corresponds to 247 fs. The precise choice of this time con-
stant does not qualitatively change our results; it has been
chosen to be in the range of those seen in semiconductor
nanostructures at low temperature.8 The EXE intraband
dephasing time, Tintra

EXE, is chosen to follow the relation Tintra
EXE

=1.5Tinter that has been shown to be approximately valid
experimentally33 and theoretically34 in BSSLs. Finally, be-
cause, in experiments, the exciton population decay time is
generally much longer than either dephasing time, we set
Tdecay

EXE =� in our calculation. At low intensities, the interband
spectrum is simply a Lorentzian line centered about ��
=E0. Thus, we see that for this system, PSF and exchange
result in a significant blueshift in the spectrum. As we dis-
cuss in Sec. IV C, this blueshift can be understood as arising
from a driving of excitons to higher-energy states.

In the SBE calculation, the intraband and interband
dephasing times cannot be specified separately and there are
only two time constants: the interband dephasing time, Tinter,
and the carrier decay time, Tdecay

SBE . There is no clear choice for
Tdecay

SBE as it effectively describes population decay as well as
part of the intraband dephasing. In fact, as has been shown
by Axt et al.,16 the intraband dephasing in the SBEs is deter-
mined both by Tdecay

SBE and Tinter /2 and so cannot be fully
controlled independently of Tinter. To facilitate comparison of
the SBE and EXE results, we present the SBE results both
with Tdecay

SBE =Tdecay
EXE =� and Tdecay

SBE =Tintra
EXE=1.5Tinter. As can be

clearly seen, neither of the SBE results agrees at all well with
the EXE results.

We note that in our numerical simulations both for the
SBEs and the EXEs, we have increased the basis size until
convergence has been reached to better than 4%. For the
SBEs, this meant using a basis of 500 states. For the EXEs,
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FIG. 1. �Color online� The spectral density of the laser pulse
�red dotted line� is shown along with the discrete exciton energy
levels from 	=0 �the bound exciton level� up to 	=26.
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FIG. 2. �Color online� The spectral density of the interband
polarization calculated using the SBEs and EXEs. In the EXE result
�red solid line�, Tdecay
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�blue dashed line� Tdecay

SBE =Tdecay
EXE =�.
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this required a basis of 100 states at this intensity. The details
of the convergence properties of the EXEs for this system are
discussed in Appendix B.

The main differences between the SBE and EXE results
arise from the inability of the SBEs to treat intraband
dephasing correctly. From our EXE results, we find that both
the intraband correlation functions and carrier populations
can strongly affect the evolution of the carrier distributions
amongst energy states, which in turn affects the interband
spectrum. Thus, the way in which intraband dephasing is
treated can have a very significant effect on the interband
spectra.

The effects of intraband and decay time constants can be
better understood via an inspection of the second dynamic
equation in both formalisms, Eqs. �32� and �46�. In the SBEs,
there are three terms that can change carrier distribution,

dne,p

dt
= −

2

�
I	Mcv

* · E�t�Pp
*
 −

ne,p

Tdecay
SBE −

2

�
I���

k�p
Vk−pPk�Pp

*� ,

�54�

where the product PkPp
* is obtained by factorizing an intra-

band correlation term. In the true exciton space, as can be
seen from Eq. �46�, there are many terms that can potentially
change the carrier distribution. Things become clearer if we
transform Eq. �46� from the true exciton basis back to the
qboson pair-space basis. Doing this, we obtain

d

dt
�Bp

†Bp� = −
2

�
I�Mcv

* · E�t��Bp
†�� −

�Bp
†Bp�

Tintra
EXE

−
2

�
I��

k�p
Vk−p�Bp

†Bk��
+ � 1

Tdecay
EXE −

1

Tintra
EXE��

k,q
Fp,k,q�Bk

†Bq� , �55�

where Fp,k,q��	c	
p*c	

p c	
k c	

q*. Comparing Eq. �55� to Eq. �54�,
we see that the first two terms are identical in the two equa-
tions. The third terms are the same apart from the factoriza-
tion �which we will return to shortly�. However, the fourth
term in Eq. �55� is not found in Eq. �54� and is nonzero
unless we set Tdecay

EXE =Tintra
EXE. This additional term is deter-

mined by the difference between intraband dephasing and
population decay time constants. Thus, if Tdecay

EXE =�, while
Tintra

EXE=1.5Tinter, this extra term is a major cause of the differ-
ences between the EXE and the SBE results. To show the
effect of this term, in Fig. 3�a� we plot the results for the
EXE and SBE with Tintra

EXE=Tdecay
EXE =Tdecay

SBE =1.5Tinter. This re-
moves the difference caused by the fourth term in Eq. �55�
and thereby makes the SBE and EXE results much closer;
however, they are still significantly different.

A second important difference between Eqs. �54� and �55�
lies in the third term in each equation. We have shown that it
is necessary to factorize �Bp

†Bk� to obtain SBEs from equa-
tions derived in the EXE. This factorization has a potential
problem in that �Bp

†Bk� is not necessarily equal to �Bp
†��Bk�,

especially when intraband polarization dominates the optical

response of the system or is, in fact, driven by an external
terahertz field.14,16 In any system �such as the one considered
here�, these two types of terms will strongly differ at later
times unless the time constants are in the coherent limit con-
dition: Tintra

EXE=0.5Tinter. This is because �Bp
†��Bk�= PkPp

* has a
decoherence time constant of 0.5Tinter while �Bp

†Bk� has a
decoherence time constant of Tintra

EXE. To show the effect of
being in the coherent limit, in Fig. 3�b� we present the results
of the SBE and EXE calculations when we force the coher-
ent limit by setting Tdecay

EXE =Tintra
EXE=Tdecay

SBE =0.5Tinter. In this spe-
cial case the two results are almost indistinguishable, indi-
cating that in the coherent limit our EXEs produce results
that are almost identical to the SBEs for this system. We note
that because the carrier decay time used in Fig. 3�b� is much
shorter than that used in Fig. 3�a� or Fig. 2 the blueshift is
much smaller. This is because those terms related to intra-
band correlation functions in Eq. �40� have less of an effect
due to their faster decay or dephasing.

Even though the EXE and SBE results plotted in Fig. 3�b�
appear to be almost identical, there are, in principle, small
differences between the two results. This is because, even in
the coherent limit, the two equations are still not identical
due to the factorization of intraband correlation functions
used to derive the SBEs. To demonstrate this, we define the
difference correlation function given by the difference be-
tween the factorized and unfactorized intraband correlation
functions: Ap,q��Bp

†Bq�− �Bp
†��Bq�. If we replace the products

Pk
*Pp in Eq. �31� by Pp

*Pq+Ap,q we recover the unfactorized
Eq. �22�. Using Eqs. �20� and �21�, we find that the equation
of motion for Ap,q �p�q� is
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i�
d

dt
Ap,q = �

k
Vp−kAk,q − �

k
Vq−kAp,k − 2�

k
Vp−kAk,q�Bp

†Bp�

+ 2�
k

Vq−k�Bq
†Bq�Ap,k + 2�

k
Vp−k�Bk

†Bk�Ap,q

− 2�
k

�Bk
†Bk�Ap,qVq−k

− 2��Bq
†Bq� − �Bp

†Bp���Bp
†Bq�Vp−q.

The last term in this equation, which is fourth order in the
optical field, is the only source term for Ap,q. Thus, in the
coherent limit, the difference between the population distri-
butions for the SBEs and the EXEs is at least fourth order in
the optical field and so the difference between the interband
polarization is at least fifth order in the optical field. For the
system and intensities considered here, this difference ap-
pears to be negligible, as shown in Fig. 3�b�. However, there
is no guarantee that this will be the case for all systems.

To summarize the results of this section, we have shown
that if we operate in the coherent limit, our EXEs are iden-
tical to the SBEs to at least third order in the optical field.
However, if the dephasing times do not obey the coherent
limit condition that Tdecay

EXE =Tintra
EXE=Tdecay

SBE =0.5Tinter, then we
obtain significantly different results using our EXEs. Further-
more, if the exciton population decay time differs signifi-
cantly from the exciton intraband dephasing time �as is gen-
erally expected�, then the differences are even larger.

C. Exciton population dynamics

Having compared the results of the EXEs to the SBEs in
the previous section, in this section we examine how the
observed spectral blueshift and other aspects of the optical
response can be largely understood by examining the exciton
population dynamics. In Figs. 4 and 5 we present the total
number of excitons and the exciton population distribution,

respectively, as a function of time for the same laser intensity
used to produce Figs. 2 and 3. To simplify discussion, in
these calculations we have not included dephasing or popu-
lation decay, i.e., we set Tinter=Tintra

EXE=Tdecay
EXE =�.

The total exciton population is given by N��N̂�, where

N̂ � OU��
k

�k
†�k�U†O† = �

k
Bk

†Bk = �
	

B	
† B	 �56�

is the total exciton number operator. In addition, the number
of excitons in the 	th excitonic state is given simply by
N	��B	

† B	�. From Fig. 4 we see that, as expected, the total
exciton population is constant once the optical pulse has
passed. This is one of the key features of our excitonic equa-
tions �see Appendix A�. From Fig. 4, we can also see that the
EXEs conserve energy too, as one would hope 	note that we
have subtracted the quantity N�t�Eg in the energy plot in Fig.
4 from the total energy
. This result can also be proven ana-
lytically �see Appendix A�. However, from both Figs. 4 and 5
we see that although the total exciton population is constant
after the pulse has passed, the populations N	 of individual
excitonic states are oscillating strongly in time. These popu-
lation oscillations are due entirely to PSF effects, which
introduce coupling between the excitonic states. These oscil-
lations are essentially beating effects that arise because, due
to many-body interactions, the excitonic state, �	, is not an
eigenstate of the system except when N=1. Thus, the number
of excitons in a given eigenstate is not a good quantum num-
ber �whereas the total number of excitons is, once the pulse
has passed�. For ground state excitons, the period of the
oscillation is approximately determined by the energy differ-
ence, Eb, between exciton ground state and lowest continuum
state, as expected. From Figs. 4 and 5 it is also clear why the
interband polarization is blueshifted: due to PSF �particularly
the hole-burning terms�, a large fraction of the excitons
in the system are effectively created in excited states and not
the ground state. As a result, the interband polarization is
blueshifted towards the energies of those excited states.
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Another interesting feature exhibited in Fig. 5 is that the
antisymmetric exciton states �	=2,4 ,6 , . . . �, which are op-
tically forbidden in the linear regime, are strongly populated
at these high intensities. This effect can be understood by
analyzing the nonlinear terms in Eq. �46� that are caused by
PSF. After including these nonlinear terms, it turns out that
the effective oscillator strengths of the antisymmetric states
are no longer zero.

D. Comparison of excitonic equation and semiconductor Bloch
equation approaches

In the previous section �Sec. IV B�, we simulated the in-
terband response of a nanoring. This system was chosen not
because it is the most suitable one for displaying the advan-
tages of an excitonic approach, but rather because it can be
simulated relatively easily using either the SBE or the EXE
approach, thereby allowing a direct comparison of the two
approaches. The question that we address in this section is
the following: Which systems would be better treated using
the EXEs than the SBEs and vice versa?

The SBEs and the EXEs have a number of characteristics
in common. They both allow the treatment of PSF and ex-
change in the RPA in a manner that is nonperturbative in the
optical field. Both of the approaches are computationally ef-
ficient, which allows for the treatment of complicated sys-
tems. They both allow for the inclusion of dephasing and
decay effects phenomenologically and both systems of equa-
tions can be extended to include other effects such as dy-
namic screening �see, e.g., Ref. 8 for EXEs� and carrier-
phonon scattering �see, e.g., Ref. 34 for EXEs�.

Although both approaches have much in common, as we
saw in the previous section, the results obtained using the
two approaches can differ significantly under certain circum-
stances. The key difference between the two approaches lies
in their treatment of dephasing, decoherence, and decay ef-
fects. Because the basis used in the two approaches is differ-
ent, the meaning of a population and an intraband coherence
is different in the two bases. If the SBE and EXE interband
dephasing times are taken to be independent of k and 	,
respectively, then the interband dephasing is equivalent in
the two systems. However, the population decay time in the
SBEs refers to electron and hole populations, whereas in the
EXEs it refers to exciton populations. A consequence of this,
for example, is that what is seen as a pure electron-hole
population in the SBE basis is found to include intraband
correlations between different excitonic states in the EXE
approach. In addition, using the EXEs it is possible to
specify separately an intraband dephasing time and a popu-
lation decay time and thus separate two rather different ef-
fects. As is discussed in the previous section, these key dif-
ferences between the two approaches give rise to different
results for the interband polarization spectra.

When bound excitons dominate the response, then it is
preferable to employ an excitonic basis and our EXEs will
generally be more accurate than the SBEs. This is because
excitons are closer to being the eigenstates of the semicon-
ductor system than the uncorrelated electron and hole states.
This difference will be important even if one moves beyond

a phenomenological treatment of scattering. For example, in
the usual treatment of carrier-phonon scattering, one usually
has to make the Markov approximation, and it has been
shown by Hader et al.35 that the closer the scattering states
are to the eigenstates of the system, the more accurate the
results are.

When free �unbound� carriers dominate the response, then
an electron-hole basis is likely preferable. In this case, the
SBEs are expected to be more accurate than the EXEs as
long as the system is in the coherent limit. Thus the SBEs
may perform very well for excitation in bulk or quantum
wells at energies considerably above the bound exciton en-
ergy. The SBEs have the advantage that they allow the elec-
tron and hole scattering to be treated separately, which is
important if there are large numbers of free carriers and the
electron and hole scattering times are very different. A sec-
ond advantage of the SBEs is that they can be more easily
generalized than the EXEs to allow for more general treat-
ments of carrier-carrier scattering beyond phenomenological
dephasing and decay. In fact, they can be thought of as the
first order results in a more general cluster expansion ap-
proach. If the system is sufficiently simple, then such higher-
order approaches �as well as DCT� can be applied. However,
in complicated systems such as a BSSL, computational com-
plexity generally limits one to employ either the SBEs or
EXEs.

From the above discussion, we see that the EXE approach
will generally perform better than the SBEs when either of
the following two conditions are met: �1� the response is
dominated by bound excitons and/or �2� there is a sizable
macroscopic intraband polarization in the system. As an ex-
ample, one important system that meets both these criteria is
a BSSL excited by a short optical pulse centered spectrally
below the n=0 1s exciton WSL level �see Introduction�. The
pulse excites primarily 1s-like excitons and induces intra-
band correlations between these excitonic states that result in
terahertz emission at the Bloch-oscillation frequency. Be-
cause the EXEs include intraband excitonic correlations
naturally, they do very well in treating this system.14,15 In
contrast, the terahertz emission calculated using the SBEs is
incorrect unless the system is in the coherent limit. Because
the intraband polarization in a BSSL can also affect the in-
terband response,13 the SBEs will also fail to treat the inter-
band polarization correctly beyond first order in the optical
field.

In the previous section, we presented results at high pulse
intensities to emphasize the PSF effects and to aid in com-
parison of the SBEs with the EXEs. As we saw, the SBEs
had clear deficiencies when we were not in the coherent
limit. On the other hand, at these intensities, a large fraction
of the carriers generated were unbound excitons �see Fig. 5�;
thus the EXE approach may also encounter difficulties if the
electron and hole scattering times are very different. Thus,
for this system, the preferred approach will depend on the
nature of the actual dephasing in the system and the pulse
intensity used. This is the general situation: whether the
EXEs are preferable to the SBEs will depend on the details
of the various scattering times and processes, the pulse in-
tensity and frequency, and the particular system being ex-
cited. However, because the EXE approach allows us to cal-
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culate the excitonic population distributions, it enables us to
clearly evaluate the relative contributions of bound and un-
bound excitons and thereby determine whether the EXE
approach is the preferred choice.

V. CONCLUSION

In this work, we have presented an excitonic formalism
for treating the ultrafast nonlinear response of semiconduc-
tors. Our approach goes beyond most existing excitonic
models by including PSF and exchange and thereby provides
an alternative to the SBEs. Using a simple model system, we
have demonstrated that our excitonic model is identical to
the SBEs to third order in the optical field if the dephasing is
such that one is working in the coherent limit. We showed,
however, that if one moves away from the coherent limit
then there are significant differences between results ob-
tained with this excitonic approach and the SBEs. These dif-
ferences are mainly caused by differences in the treatment of
intraband coherences in the system. Because of its ability to
treat intraband polarization without factorization, our exci-
tonic approach has potential advantages in systems where the
intraband response is important �for determining either tera-
hertz or optical emission�. In addition, because our excitonic
approach treats intraexcitonic coherences exactly, it also has
advantages over the SBEs in treating systems where bound
excitons dominate the optical or terahertz response.

In addition to enabling the calculation of the interband or
intraband response of a system, this excitonic formalism also
provides details of the population dynamics of bound and
unbound excitonic states, thereby providing different insight
into the nonlinear optical response of a given semiconductor
system.

Although we have largely compared our excitonic ap-
proach to the SBEs, there are of course other more sophisti-
cated, higher-order approaches to treating ultrafast dynamics,
such as cluster expansions and DCT. These approaches will
generally provide more accurate modeling of the response
than either the SBEs or EXEs. In particular, DCT is able to
include intraband correlations in a similar manner to our
EXEs. However, because they rely on the use of a large
free-carrier basis, in contrast to our EXEs, they may not be
practical in complicated systems, such as BSSLs.

In this paper, we have applied our EXEs to treat a simple
model of a nanoring. However, these equations should be
suitable for the investigation of exciton dynamics in a wide
range of systems, such as quantum wells and BSSLs. In such
systems they could be used to calculate the intraband polar-
ization �and emitted terahertz radiation� and to investigate
transitions between different exciton states that are induced
by an external terahertz pulse. The main difficulty with our
excitonic approach is that as the carrier density is increased,
so will the number of excitonic states required to treat PSF.
The task in treating more complex systems is thus to deter-
mine which and how many states must be included for an
accurate treatment of these effects. This is the subject of
future work.
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APPENDIX A: CONSERVATION OF TOTAL EXCITON
POPULATION AND ENERGY

In this appendix we prove that both the total exciton
population and total energy are conserved by the EXEs once
the optical pulse has passed.

Using Eqs. �47�–�49�, it is easy to prove the following
sum rule for Z	1,	2,	3,	4

	,	 :

�
	

Z	1,	2,	3,	4

	,	 = 0. �A1�

From this sum rule and the dynamic equation �46�, we can
easily show that once the optical pulse has passed 	i.e.,
E�t�=0
, then

d

dt
N̂ = 0, �A2�

where N̂ is the total exciton number operator defined in Eq.
�56�. Thus, Eq. �A2� shows that our dynamic equations con-
serve total exciton number after the laser pulse has passed.
We note that the factors �1−�p,q� and �1−�p,k� in Eqs.
�48�–�50� are essential in deriving the sum rule and hence in
ensuring conservation of particle number.

We can also show that the dynamic equations �40� and
�46� also conserve the energy of the system once the laser
pulse has passed. The proof of energy conservation is rather
complicated in the general case �but can be done�, and so we
do not include it here. Instead, for demonstration purposes,
we present the proof for the special case of the contact po-
tential that we employ in Sec. IV A.

As we have explained in Sec. III C, an excitonic Hamil-
tonian cannot be used on its own to derive the EXEs. How-
ever, it does represent the energy of a system, which is ob-
viously an important quantity. For our contact potential
model, the Hamiltonian is given by

H = �
	

E	B	
† B	 −

A

L
N̂�N̂ − 1� − �

	

E�t� · Pinter. �A3�

For such a contact-potential interaction, there is another sum
rule that must be obeyed:

�
	

E	Z	1,	2,	3,	4

	,	 = −
A

L
�

k,p,q
�Hp,q

ex − Hk,p
ex ��1 − �p,k�

��1 − �p,q�c	1

k*c	2

p*c	3

p c	4

q

= 0, �A4�

where Hk,p
ex ��k1�Hex�k2� and we have used the fact that

Hp,q
ex =Hk,p

ex for a contact potential. In the derivation, we have
also used the general relation �	E	c	

p c	
q*=Hp,q

ex , which is a
direct result of the single-exciton eigenvalue equation,
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�
k2

Hk1,k2

ex c	
k2 = E	c	

k1. �A5�

After the optical pulse has passed, using the sum rule of Eq.
�A4�, we find

i�
d

dt
H = i�

d

dt�	 �E	B	
† B	� −

A

L
i�

d

dt
	N̂�N̂ − 1�


= 2 �
	1,	2,	3,	4

�
	

E	Z	1,	2,	3,	4

	,	 B	1

† B	2

† B	3
B	4

= 0, �A6�

as expected. Thus, in the absence of dephasing and decay,
both the total particle number and total energy are conserved
by our EXEs.

We note that the sum rules of Eqs. �A1� and �A4� are only
exact for an infinite exciton basis. Therefore, in numerical
calculations, we need to ensure that the excitonic basis used
is large enough such that energy and particle number are
conserved �see the discussion in Appendix B�.

APPENDIX B: THE CONVERGENCE BEHAVIOR OF
EXCITON BASIS CALCULATIONS

One advantage of using a true excitonic basis is that the
number of excitonic basis states required for a dynamical
calculation may be very small. For example, for the system
we simulated, where the pulse is resonant only with the
bound excitonic state, only one excitonic state is required in
the numerical calculation if we are using a very low-intensity
laser pulse. It is important to know the convergence behavior
of our results at high exciton densities where various corre-
lation functions are potentially large. One criterion is to
check if the two sum rules of Eqs. �A1� and �A4� are well
satisfied for a given basis size and pulse intensity.

Since we have to use a finite number of exciton states in

numerical calculation, the two sum rules of Eqs. �A1� and
�A4� are not perfectly satisfied and this may affect our re-
sults. However, as we have shown in Sec. IV C, the conser-
vation of total exciton number and total energy are well sat-
isfied after the optical pulse has passed with 100 exciton
states. These results indicate that the sum rules of Eqs. �A1�
and �A4� are satisfied in numerical calculation with the basis
size of 100 that we used.

There is, however, a third sum rule that is more difficult to
satisfy with a finite basis:

�
	

C	R	1,	2,	3

	 = 0. �B1�

It can be shown that a violation of this sum rule will influ-
ence total exciton number through its influence on the inter-
band polarization. To check the convergence behavior, we
plot in Fig. 6�a� the total exciton population N versus the
number of exciton states used, M, when there is no decay or
dephasing. We find that the total population can be fitted with
a linear relation N=44.38/M0.9+16.39 	see Fig. 6�b�
. From
Fig. 6, we see that the total population difference between
the result using M =100 and M =� is less than 4%. The small
change in density is the main effect of a finite basis. For
example, we find �not shown� that apart from the small scal-
ing arising from the density differences, the calculated inter-
band polarization is essentially unchanged when we move
from 100 states to 140 states.

The 1/M0.9 dependence of the convergence for our model
can be shown to be directly related to the convergence prop-
erties of the sum rule of Eq. �B1�. This is a rather slow
convergence. However, we have verified numerically that the
convergence is strongly dependent on the system and inter-
action used. We have found, for example, if we use a more
realistic model for the quasi-1D Coulomb interaction, it leads
to an error in the sum rule of Eq. �B1� that decays exponen-
tially with M. The main source of this improvement appears
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FIG. 6. �a� The total exciton population �bound and unbound� as
a function of the number of exciton states, M, used in the calcula-
tion. �b� The same as �a� but plotted versus 1/M0.9. The equation of
the linear fit line in �b� is given by N=44.38/M0.9+16.39. The pulse
intensity is the same as was used in all calculations presented in
Sec. IV and all time constants were set to infinity.
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to be that, in contrast to the contact potential, this potential
results in several bound states. Thus, modeling the system
with this potential would require a much smaller basis. We
leave further discussion of this to future work.

The convergence behavior is strongly dependent on the
excitation intensity, with convergence being achieved for
much smaller M at lower intensities. In previous sections, we
have used a high laser intensity to demonstrate clearly prop-
erties of our equations and how changes in the optical spec-
tra can be understood in terms of excitonic population distri-
butions. However, our excitonic approach is more efficient at
low to moderate exciton densities, where the vast majority of
excitons ��85% � are still bound and PSF and exchange in-
teractions are just starting to become important. At extremely
low laser intensity, the excitonic approach only needs the
bound exciton state for our model system. In contrast, the

SBEs may still need as many states as is used with high laser
intensity.

In Fig. 7, we plot the dependence of the total exciton
population of the model system as a function of laser inten-
sity. To simplify our description, we use I0 to denote the laser
pulse intensity used in Sec. IV. Starting from low intensities,
we see that when we reach an intensity of about I=0.1I0, the
density is such that there is a significant overlap between the
excitons �see scale on the right of plot�. Thus, at this density,
we expect that PSF effects will start to become significant.
We present the total number of excitons found from calcula-
tions using a basis of 100 excitonic states �solid line� and 30
excitonic states �dashed line�. As can be seen from the inset,
a basis of 30 states is sufficient up to an intensity I=0.25I0,
where the difference between the two results is less than 2%
but PSF effects are very significant �rB /rs�0.22�.
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