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The deformation potentials of cubic semiconductors are reexamined from the point of view of the extended-
basis sp3d5s* tight-binding model. Previous parametrizations had failed to account properly for trigonal defor-
mations, even leading to incorrect sign of the acoustic component of the shear deformation potential d. The
strain-induced shifts and splittings of the on-site energies of the p and d orbitals are shown to play a prominent
role in obtaining satisfactory values of deformation potentials both at the zone center and zone extrema. The
present approach results in excellent agreement with available experimental data and recent ab initio
calculations.
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The effect of uniaxial stress on the band structure of semi-
conductors has been a major theoretical and experimental
topic for many years. With the development of strained-layer
epitaxy, it has also become an important issue in modern
material science and device physics. In their seminal ap-
proach, nearly half a century ago, Bir and Pikus established
the strain Hamiltonian using the theory of invariants.1 It de-
pends on a number of deformation potentials describing the
shifts and splittings of the various band extrema. For in-
stance, for a given band near the Brillouin zone center, it
reads as

H�
i = − ai��xx + �yy + �zz� − 3bi��Lz

2 −
1

3
L2��zz + cp�

−
6
�3

di��LxLy	�xy + cp� , �1�

where �ij are the components of the strain tensor �, L is the
angular momentum operator, �LxLy	= 1

2 �LyLx+LxLy�, and cp
refers to circular permutations with respect to the axes x, y,
and z. The coefficient ai is the hydrostatic deformation po-
tential for the ith band, while bi and di are, respectively, the
tetragonal and rhombohedral �or trigonal� deformation po-
tentials. We now explicit Eq. �1� for the �6 and �8 states of
zinc-blende crystals: the �6 conduction-band energy only de-
pends on the hydrostatic term owing to the L=0 matrix rep-
resentation of the momentum operator. For the �8 valence-
band edge, the heavy- and light-hole degeneracy is lifted �as
L=1� and the splitting depends on the strain orientation. Un-
der 
001� unixial stress or for lattice mismatched epilayers
grown along the 
001� direction, strain components can be
written as �xx=�yy ��zz and �xy =�yz=�zx=0. Thus, the heavy-
and light-hole bands split by an amount proportional to b.
Under 
111� stress or for mismatched epilayers grown along
the 
111� direction, we have �xx=�yy =�zz�0 and �xy =�yz
=�zx�0, giving a valence-band splitting proportional to d.
The two situations also differ by the presence or not of a
static displacement of the anion and cation sublattices: in the
former case, all the atomic bonds in the strained crystal re-
tain the same length and same angle with respect to the strain
symmetry axis, giving no short range contribution to the

strain Hamiltonian. Conversely, for trigonal distortions, the
equilibrium positions of atoms are no longer fully deter-
mined by stress invariants and a relative displacement of the
sublattices is allowed. The resulting internal strain is repre-
sented by the Kleinmann parameter �, which ranges between
0 and 1.2 The value �=1 corresponds to a deformation with
the same symmetry as the 
111� strain but maintaining equal
bond lengths of a0

�3/4, whereas �=0 is related to the mac-
roscopic strain that does not account for sublattice displace-
ment. This gives simultaneously a long range or acoustic �d��
and a short range or optical �d0� contribution to the rhombo-
hedral deformation potential d,3

d = d� −
�

4
d0. �2�

The strain Hamiltonian has been extensively used in con-
nection with the k ·p theory to interpret experimental data
and measure parameters. On a more fundamental side, sev-
eral ab initio calculations of the deformation potentials have
been reported. More recently, atomistic approaches using
empirical parameters have become a strong challenge to the
k ·p theory for a precise modeling of semiconductor nano-
structures, where compositions and deformations can vary
rapidly at the bond-length scale. A remarkable feature of ato-
mistic theories �as opposed to the fundamentally perturbative
character of the k ·p theory� is their natural ability to treat the
whole Brillouin zone. It follows that a “good” atomistic
model must give a proper account of general distortions not
only in the vicinity of the fundamental gap but also at the
edges of the Brillouin zone: the effects of strain actually are
a very stringent test of atomistic models. Here, we examine
the effects of tetragonal and trigonal deformations from the
point of view of the empirical tight-binding �TB� theory.

Within the tight-binding formalism, strain effects are
mainly determined by scaling the Slater-Koster two-center
integrals4 �or transfer integrals� with respect to bond-length
alterations, while bond-angle distortions are automatically
incorporated via the phase factors in the Slater-Koster matrix
elements. This leaves a more than sufficient number of
strain-dependent parameters to fit the deformation potentials
at the Brillouin zone center. However, when trying to fit
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simultaneously the splitting of zone-edge conduction valleys,
one encounters a difficulty. For the case of 
001� uniaxial
strain, it was shown in Ref. 7 that adding a term correspond-
ing to a strain-induced splitting of the d orbital on-site ener-
gies �one-center integrals� leads to a much better overall fit
of the deformation potentials at � and X. Indeed, since the
Wannier functions of tight-binding models are Slater-type
orbitals,5 the one-center integrals are expected to be sensitive
to the environment of neighboring atoms. In principle, one
should also introduce a 
001� shear parameter of the on-site p
energies, and this can be generalized to all diagonal matrix
elements in proportion to hydrostatic and uniaxial
distortions.6 However, in the atomic limit, the on-site prop-
erties should depend neither on strain nor on chemical envi-
ronment. This is nearly the case for the s and p valence states
that display an excellent degree of transferability. Con-
versely, it is clear that the excited s* and d-like orbitals have
a strong free-electron character and corresponding energies
must depend on strain-induced effects. Finally, one should
remember that the “rule of the game” of atomistic models is
to limit the number of empirical parameters to the minimum
required to account for symmetries and reproduce experi-
mental �or ab initio� band parameters within a given accu-
racy. For instance, the hydrostatic shifts of on-site energies
appeared to be useless parameters at the present level of
model sophistication, as they are for a large part renormal-
ized in the variation of transfer integrals with bond-length
changes.

To the best of our knowledge, the case of trigonal defor-
mations has never been discussed in the framework of an
advanced tight-binding model. The first difficulty is the
choice of a value for the internal-strain parameter �: contrar-
ily to ab initio calculations, the atomic positions are an input
of the tight-binding model, not a result of the calculation. �
can be obtained theoretically either in ab initio calculations
or from the fit of phonon dispersions, as first demonstrated
by Nielsen and Martin.8 � was precisely measured by x-ray
diffraction for Si and Ge. The common value �=0.54 �Ref. 9�
is in agreement with first-principles calculations.8 However,
for GaAs, the most-cited experimental result �=0.76 �Ref.
13� is still controversial8,10,14,15 and differs significantly from
the theoretical value �=0.48 obtained by Nielsen and
Martin.8 Note that the latter value gives an excellent repre-
sentation of elastic constants and phonon frenquencies of
GaAs and is corroborated by recent x-ray measurements,
which give �=0.55.10 The second difficulty is methodologi-
cal since a fit of d comes out of a calculation, while there are
two quantities to determine, d� and d0. Here, d� is obtained
by running the code using the fit parameters and setting �
=0, whereas a relative displacement of the anion and cation
sublattices in the absence of macroscopic strain is used to
calculate d0.

The need for introducing a new shear parameter is evi-
denced by the failure of simpler tight-binding models: in the
minimal sp3 basis, the TB Hamiltonian cannot describe both
b and d satisfactorily, as seen for the diamond structure
where b, d�, and d0 are linked by the analytical relations3

d0 = 16d� = −
16
�3

b . �3�

For Ge, fitting b=−1.88 eV±0.12 �Ref. 11� and considering
�=0.54, one obtains d= –1.26 eV, in poor agreement with
the experimental result, d=−5.0±0.5 eV.12 The failure is
mainly caused by an erroneous positive deformation poten-
tial d� 
see Eq. �3�� in sharp contrast with the sign calculated
by the self-consistent linear muffin-tin orbital �LMTO� and
ab initio pseudopotential approaches,14,15 which show a
strong redistribution of the valence-electron density induced
by the acoustic deformation. Similar discrepancies are ob-
tained numerically for the zinc-blende semiconductors and
no significant changes appear within the sp3s*d5 approach,
until a splitting of on-site energies is introduced. The corre-
sponding Hamiltonian obviously depends on the strain direc-
tion. For a uniaxial stress along 
001�, the perturbation has
the �12 symmetry, and the crystal field splits the fivefold
degenerate d orbitals into two doublets and a singlet as

Edxz
= Edyz

= Ed
1 − �001��zz − �xx�� ,

Edx2−y2 = Ed3z2−r2 = Ed,

Edxy
= Ed
1 + 2�001��zz − �xx�� . �4�

For a uniaxial strain along 
111�, the perturbation has the
�15 symmetry and also splits the five equivalent d bands into
two doublets and a singlet state. To handle this case, it is
more convenient to rotate the coordinate system and choose
the quantization axis z̄ along the 
111� direction. To avoid
confusions, we name “�111� basis” the new �x̄ , ȳ , z̄� basis.

The on-site d energies now corresponds to the represen-
tations A1 with Ed3z̄2−r2, E1 with Edx̄z̄

and Edȳz̄
, and E2 with

Edx̄2−ȳ2 and Edx̄ȳ
,

Ed3z̄2−r2 = Ed
1 − 2�111��z̄ − �x̄�� ,

Edx̄z̄
= Edȳz̄

= Ed
1 + �111��z̄ − �x̄�� ,

Edx̄2−ȳ2 = Edx̄ȳ
= Ed,

�z̄ − �x̄ =
8

3
�1 − ���xy . �5�

Negative �xy corresponds to conventional compressive
stress. �001 and �111 are shear parameters fitted to reproduce
the tetragonal and the trigonal deformation of the valence-
band edge, respectively. Note that, since perturbations result
from different modifications of the nearest neighbor posi-
tions, there is no reason for an exact geometrical relation
linking �001 �Ref. 16� and �111. The scheme of level splittings
for uniaxial compressions along 
001� and 
111� is shown in
Fig. 1. Following this procedure, we demonstrate excellent
agreement with experiment for b and d. In addition, the fig-
ures coming out for the acoustic deformation potential d� are
consistent with self-consistent LMTO results.14 For instance,
for Ge, using the parametrization of Ref. 7, with �001=0.54
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and �111= +1.5, we get b=−1.9 eV, d=−4.6 eV, and d�
=−1.37 eV, in agreement with experiment, b=−1.88±0.12
eV11 and d=−5.0 eV±0.5,12 and the LMTO calculation, d�
=−1.3 eV.14 Noteworthily, the fit values of �001 and �111 are
comparable to their purely geometrical counterpart in the
free-electron case, 0.75 and 2, respectively. These results in-
dicate that this simple approach is sufficient to properly ac-
count for general 
klm� strains in semiconductor nanostruc-
tures at the � point.

As discussed in Ref. 7, introduction of �001 allows to ob-
tain simultaneously a fit of b and of the conduction-band
splitting of X valleys under 
001� stress. However, for 
111�
stress, when examining the shear deformation potential of
the L1 conduction extrema, using our fit value of �111, we
find a large and disappointing discrepancy: we obtain D1

5c

=7.5 eV, to be compared with the experimental value of
16.6±0.4 eV measured from optical absorption near the di-
rect and indirect gaps by Balsvlev.17 Note that the large ex-
perimental value was obtained by several independent
measurements.17 However, this value is in contradiction with
recent density-functional results in the local-density
approximation18 converging toward D1

5c=11.3 eV. In the ab-
sence of recent experimental data, it is difficult to resolve
this contradiction. In the following, we examine the param-
etrization flexibility of the spds TB model in the calculation
of shear deformation potential at L. From a quantum chem-
istry point of view, the discrepancy for D1

5c could be under-
stood from the fact that the L conduction band minimum is
dominated by s and p states, in contrast with wave functions
at X that have a strong d character.7 Therefore, the inclusion

of splitting of on-site p energies might be necessary for a
reliable description of strain field anisotropies at the L point.
This is also compatible with a free-electron description of
TB parameters,7 where splittings of degenerate p and d or-
bitals occur for the empty crystal under uniaxial stress. At
this point, the internal logic of the model implies that if the
strain-induced splittings of the one-center integrals play such
an important role, their shift under hydrostatic strain should
also be taken explicitly into account instead of being renor-
malized in a strain dependency of two-center integrals. Using
again the �111� basis, the corresponding contributions to
�111�-strain Hamiltonian are written as

Epx̄
= Epȳ

= Ep
1 + �111��z̄ − �x̄�� ,

Epz̄
= Ep
1 − 2�111��z̄ − �x̄�� . �6�

To achieve a complete description of strain effects in the
spds* model, on-site Hamiltonian matrix elements Ei were
also scaled with respect to bond-length changes,

Ei�l� = Ei�l0�� l0

l
�ni

, �7�

where l �l0� is the strained �unstrained� interatomic distance
and ni are the orbital-dependent exponents. The TB param-
eters and scaling constants for Ge are listed in Table I. They
were derived from the original sp3s*d5 parameter system7

and optimized to fulfill the requirement of very good agree-
ment with recent ab initio calculations and experimental
band parameters. The target values are the critical-point en-
ergies of valence and conduction bands, spin-orbit splitting,
the measured electron and hole effective masses, pressure
coefficients of band gaps, and LDA-corrected deformation
potentials of valence and conduction states. We found that
the dependence of energy bands on strain effects is correctly
reproduced using the most plausible value D1

5c=11.3 eV. Al-
though the number of tight-binding parameters is increased
with respect to Ref. 7, their numerical determination through
a multiparameter fitting procedure still converges very well
and resulting values gain a more intuitive view of chemical
dependencies. In particular, for the high-lying states d and s*,
the corresponding exponents, ns*, nd, ns*s*�, ns*d�, ndd�, ndd�,
and ndd�, are of the order of 2, which guarantee that the
high-energy parts of the band structure scale as the free-
electron l−2 distance law. Conversely, the interactions within
the subset �s , p	 are expected to reflect the localization of the

d3z
2
-r

2

Ed
Ed

[111] strain [001] strain

dxy dx
2
-y

2

dyzdxz
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2

FIG. 1. Schematic plot of energy-level splitting of d states in-
duced by a uniaxial strain along the 
111� �left panel� and 
001�
directions �right panel�. For 
111� strain, the quantization axis z̄ is
chosen along the 
111� direction.

TABLE I. Tight-binding parameters �in eV� and dimensionless scaling constants for Ge. The energy zero
is taken at the valence-band maximum.

Es −3.4407 ss� −1.5319 sp� 2.7737 ns 0.2983 nss� 3.7821 nsp� 0.7086

Ep 4.1342 s*s*� −3.5836 s*p� 2.0249 np 0.8687 ns*s*� 2.000 ns*p� 1.8932

Ed 13.2395 s*s� −1.9099 sd� −3.1063 nd 1.9321 ns*s� 0.0 nsd� 1.2

Es
* 19.1761 pp� 4.0981 s*d� −0.8989 ns* 2.00 npp� 2.2079 ns*d� 2.0

� /3 0.1275 pp� −1.5223 dd� −2.1389 npp� 0.8741 ndd� 2.4515 �111 0.1938

pd� −1.8229 dd� −1.2172 npd� 1.2817 ndd� 2.5458 �001 0.6502

pd� 1.9001 dd� 2.5054 npd� 1.5435 ndd� 2.3556 �111 0.7897
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atomic wave functions s and p near the nuclei and the scaling
constants ns, np, nss�, nsp�, npp�, and npp� should differ from
the free-electron value. This is observed in our results that
also give the correct trends for the valence bands, npp�

	npp�, not reproduced in the previous parametrization.7 The
data presented in Table II demonstrate that our results are in
good agreement with experimental and theoretical values for
d and D1

5c. The magnitude and sign of d� and d0 are well
reproduced compared to the LMTO calculations. The present
value for d0 differs from the experimental results whose val-
ues are actually controversial, a discrepancy observed
already earlier �compare Table I�. We note finally that our
results also agree with recent ab initio calculations19 for
the hydrostatic deformation potentials of the �8v

+ valence-
band maximum �av� and �7c

− conduction-band minimum �ac�.

In conclusion, we have demonstrated that the sp3d5s*

model requires diagonal matrix element shifts to correctly
reproduce uniaxial 
klm� strain for cubic semiconductors. In
order to test our model, we have calculated the acoustic and
optical contributions to the trigonal deformation potentials
and found good agreement with experiment and LMTO re-
sults. A major improvement compared to smaller TB models
was the correct sign and magnitude of the acoustic deforma-
tion potential d� directly related to the shear parameter of
d states. This TB model provides a valid framework for
the calculation of strain effects in self-assembled quantum
dots.
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