Electric field gradients in the rare earth–aluminium compounds RAl_2 and RAl_3 studied by ^{111}Cd perturbed angular correlations

M. Forker* and P. de la Presa[†]

Helmholtz Institut für Strahlen und Kernphysik der Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany (Received 8 March 2007; revised manuscript received 12 June 2007; published 12 September 2007)

Perturbed angular correlation (PAC) spectroscopy has been used to investigate the electric field gradient (EFG) at the probe nucleus ¹¹¹In/¹¹¹Cd in the paramagnetic phase of the rare earth (R)-aluminium compounds RAl₂ for all R elements and Y and in RAl₃ for R=Gd, Tm, Yb, Lu. The nuclear electric quadrupole interaction (QI) between the EFG and the 111Cd quadrupole moment was measured as a function of temperature in the range $T_C < T \le 1200$ K. In the second half of the RAl₂ series and in the RAl₃ compounds, except for YbAl₃, the quadrupole frequency ν_q shows the monotonous decrease with increasing temperature normally observed with closed-shell probe nuclei in metallic systems. In the early members of the RAl₂ series, however, $\nu_a(T)$ passes through a maximum at $T \sim 300$ K. It is proposed that this unusual behavior reflects a contribution of the 4f shell of the R constituents to the EFG at the Al site which is quenched at higher temperatures by thermal averaging of the 4f quadrupole moment. In the intermediate-valence compound YbAl₃ the temperature dependence of the QI exhibits a shallow maximum which can be related to the temperature variation of the 4f hole occupation. Furthermore the PAC spectra provide information on the site preference of the 111 In solutes in RAl_2 for different R constituents and temperatures. In two-phase samples containing RAl_2 and RAl_3 with AuCu₃ structure, at T < 900 K the solutes show a very pronounced preference for the Al site of RAl₃, but at higher temperatures they migrate to the Al site of RAl₂. Jumps of the ¹¹¹In/¹¹¹Cd probes on the Al sublattice of RAI₃ compounds with AuCu₃ structure (R=Tm,Yb,Lu) lead to nuclear spin relaxation of ¹¹¹Cd. The temperature dependence of the relaxation rates shows an Arrhenius behavior with jump activation enthalpies E_A =1.6(1) eV for R=Tm, Lu and E_A =1.2(1) eV for R=Yb.

DOI: 10.1103/PhysRevB.76.115111 PACS number(s): 71.20.Eh, 76.80.+y, 76.60.Es, 66.30.-h

I. INTRODUCTION

Measurements of magnetic and electric hyperfine interactions (HFIs) of suitable probe nuclei may provide valuable information on the properties of intermetallic compounds. 1,2 Magnetic hyperfine interactions reflect the spin polarization, electric quadrupole interactions (QIs) the charge distribution surrounding the probe nucleus. We are presently engaged in a comprehensive perturbed angular correlation (PAC) study of magnetic and electric HFIs of non-rare-earth solutes in intermetallic compounds of the rare earths La to Lu. Recently, we have investigated 3,4 indirect exchange, anisotropic spin polarization, and crystal field parameters in magnetically ordered rare earth (*R*) dialuminides *R*Al₂ by measurement of the magnetic hyperfine field at the nuclear probe 111 Cd.

In the present paper, we report an extension of this project to the electric quadrupole interaction between the 111 Cd quadrupole moment and the electric field gradient (EFG) in the paramagnetic phase of the C15 Laves phases RAl_2 . Mishra $et\ al.^5$ have reported the values of the room temperature EFG at 111 Cd on the axial Al site of various rare earth dialuminides RAl_2 . We have extended the measurements of Mishra $et\ al.^5$ to the entire RAl_2 series and determined the temperature dependence of the QI of 111 Cd in RAl_2 for all trivalent $R=La\cdots Lu$ and Y. (Note: For a recent overview of the binary rare earth Laves phases see Ref. 6).

One of the questions addressed by these measurements concerns the influence of the 4f electrons on the EFG at nuclei on near-neighbor sites in metallic systems. Although the 4f electrons are well shielded by the outer 5d and 6s

electrons, there are indications⁷ that their nonspherical charge distribution affects the EFG at near-neighbor positions and it has been pointed out by Rasera *et al.*⁸ that such an influence might show up in the temperature dependence of the EFG.

The measurements also provide some information on the valence of the *R* constituents and evidence for temperature-induced changes of the site occupation of the ¹¹¹In/¹¹¹Cd solutes from the noncubic Al site to the cubic *R* site of the C15 lattice of *R*Al₂. Temperature and composition driven changes of the site occupation of ¹¹¹In in *R*-Al and Ni-Al phases and two-phase mixtures of Pd-Ga and Fe-Al intermetallic compounds have recently been reported by Collins and co-workers. ⁹⁻¹¹ Similar studies for ¹¹¹In and ¹⁸¹Ta in Hf and Zr dialuminides are due to Wodniecki *et al.* ¹²

In samples of $TmAl_2$ and $YbAl_2$ containing minute amounts of the corresponding RAl_3 compound we found an extreme preference of the 111 In solutes for the Al site of RAl_3 over that of RAl_2 . This observation motivated an extension of the measurements to the QI of 111 Cd in the trialuminides RAl_3 , R=Tm, Yb, and Lu which crystallize in the cubic $AuCu_3$ structure. In this part of the study we compare the temperature variation of the EFG in YbAl $_3$ to that in its neighbors $TmAl_3$ and $LuAl_3$. YbAl $_3$ exhibits intermediate-valence behavior 13,14 with a temperature variation of the 4f hole occupation number resulting from the near degeneracy of the trivalent $4f^{13}$ and the divalent $4f^{14}$ configuration, whereas in $TmAl_3$ and $LuAl_3$ the R constituents are trivalent.

Time-dependent QIs caused by diffusion jumps of the 111 Cd probes on the Al sublattice were observed in RAl_3 ; R = Tm, Yb, Lu at T > 800 K. The activation enthalpies of the

diffusion jumps were derived from the temperature dependence of the resulting nuclear spin relaxation.

II. EXPERIMENTAL DETAILS

A. Sample preparation and equipment

The compounds were prepared by arc melting of the metallic components in an argon atmosphere. Samples of RAl_2 with the stoichiometry ratio 1:2 were produced for the rare earth constituents R=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Only samples for which the weight loss by melting was less than 1% were studied. The samples were characterized by x-ray diffraction. In all cases, the x-ray pattern confirmed the C15 structure with lattice parameter in agreement with the values reported in the literature. It is important to stress that contributions of other phases of the R-Al system, especially of RAl_3 , were at the limit of detection ($\leq 5\%$). In the case of EuAl $_2$, a small contribution of EuAl $_4$ was present. 15,16

For the identification of surprisingly high frequencies observed in RAl_2 at the end of the R series (R=Tm and Yb) the investigation of the R series (R=Tm and Yb) the investigation of the R compounds. Within this series the structure varies with the R constituent: For R=Tm, Yb, and Lu, RAl_3 compounds crystallize in the AuCu₃ structure. The SnNi₃ structure is found for R=Ce, Pr, Gd and the BaPb₃ structure for R=Tb, Y. (Note: Recently, Tsvyashchenko *et al.* R have shown that different structures may result when the compounds are synthesized under high pressure). X-ray diffraction measurements established that the R and R compounds of main interest in the context of our study (R=Tm, Yb, and Lu) were almost single phase with contributions of R and exceeding 15%.

The 171–245 keV PAC cascade of ¹¹¹Cd is populated by the electron capture decay of the 2.8d isotope ¹¹¹In. The intermediate state of the cascade has a half-life of $T_{1/2}$ = 84 ns; its spin is I=5/2. The samples were doped with ¹¹¹Cd by diffusion in vacuum (800 °C, 12 h) of carrier-free radioactive ¹¹¹In into the host lattice.

The PAC measurements were carried out with a standard four-detector BaF_2 setup in the temperature range $10 \text{ K} \leq T \leq 1273 \text{ K}$. Temperatures T < 290 K were obtained with a closed-cycle He refrigerator, whereas temperatures T > 290 K were produced with an especially designed PAC furnace. For the high temperature measurements, the samples were encapsulated under vacuum into small quartz tubes.

B. Data analysis

The modulation in time of a γ - γ angular correlation by a static electric quadrupole interaction between the electric quadrupole moment Q of the intermediate state and an electric field gradient acting at the nuclear site can be described by the perturbation factor¹⁹

$$G_{kk}(t; \nu_q, \eta, \delta) = s_{k0} + \sum_n s_{kn} \cos(\omega_n t) \exp(-1/2 \delta \omega_n t). \quad (1)$$

The hyperfine frequencies ω_n are related to the energy differences of the hyperfine levels into which the nuclear state is split by the QI. These frequencies depend on the

quadrupole frequency $v_q = eQV_{zz}/h$ and the asymmetry parameter $\eta = (V_{xx} - V_{yy})/V_{zz}$ where $V_{ii} = \delta^2 V/\delta i^2$ (i = x, y, z) are the principal-axis components of the EFG tensor with $|V_{xx}| \leq |V_{yy}| \leq |V_{zz}|$. In polycrystalline samples the amplitudes s_{kn} are functions of η only. The number n of terms in Eq. (1) depends on the spin of the nuclear state under consideration. For I = 5/2 one has n = 3. The exponential factor accounts for possible distributions of the static QI caused by structural or chemical defects, which lead to an attenuation of the oscillatory PAC pattern. The parameter δ is the relative width of a Lorentzian distribution.

When several fractions of nuclei subject to different hyperfine interactions are found in the same sample, the effective perturbation factor is given by

$$G_{kk}(t) = \sum_{i} f_i G_{kk}^i(t). \tag{2}$$

 f_i (with $\Sigma_i f_i = 1$) is the relative intensity of the *i*th fraction. For sites with vanishing QI the angular correlation is unperturbed and one has $G_{kk}(t) = 1$.

In the present investigation both static and time-dependent EFGs were observed. Time-dependent QIs in solids are in many cases the result of atomic motion. The effect of the nuclear spin relaxation caused by jumping atoms on the angular correlation is most appropriately described by Blume's stochastic theory. For the analysis of the dynamic perturbations observed in RAl_3 , we have used an approximation of the Blume theory with a single relaxation parameter λ_k as follows:

$$G_{kk}(t) = \Gamma_{kk}(t) \exp(-\lambda_k t). \tag{3}$$

The validity of this approximation, the form of the function $\Gamma_{kk}(t)$, and the relation between the relaxation parameter λ_K and the jump rate w are discussed in Refs. 22 and 23.

III. MEASUREMENTS AND RESULTS

A. Quadrupole interactions of ¹¹¹Cd in RAl₂

Figure 1 presents the room temperature (RT) PAC spectra of 111 Cd in RAl_2 for R=La, Sm, Eu, Gd, Tb, and in YAl $_2$. The spectra show the periodic modulation of the anisotropy with time characteristic for an axially symmetric QI. The quadrupole frequencies were extracted by fitting Eq. (1) to the measured spectra. In all cases the asymmetry parameter was $\eta \le 0.05$, the width of the Lorentzian frequency distribution $\delta \le 0.02$. The RT values of the quadrupole frequencies listed in Table I agree with those reported by Mishra *et al.* ⁵ Except for EuAl $_2$, up to R=Tb the measured spectra could be reproduced by a single fraction implying that all probe nuclei reside on the axial Al site.

In the case of EuAl₂ one observes a slowly decreasing anisotropy which shows that here the QI is much weaker than in the other RAl₂. By taking PAC spectra of ¹¹¹Cd in EuAl₄, the fast oscillation of small amplitude superimposed on the weak decay of EuAl₂ could be identified as an admixture of EuAl₄. The QI of ¹¹¹Cd in EuAl₄ is axially symmetric (ν_q =89.3 MHz, η =0 at 300 K), consistent with the body centered tetragonal BaAl₄ structure type. ^{15,16} Although there are two Al sites²⁴ in EuAl₄ we observed a single, well-

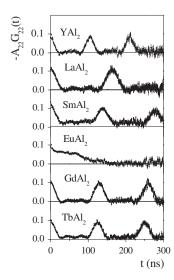


FIG. 1. Room temperature PAC spectra of ¹¹¹Cd in the Laves phases YAl₂ and RAl₂.

defined quadrupole frequency ($\delta \le 0.02$) which suggests a pronounced preference of the ¹¹¹In/¹¹¹Cd solutes for one of these sites.

The 111 Cd PAC spectra at the end of the RAl_2 series (see Fig. 2) differ from those in the earlier members in two aspects:

(i) There is a tendency toward occupation of the cubic R site which becomes manifest in a vertical shift and reduced amplitude of the periodic modulation (see the spectra of $R_{1.03}\mathrm{Al}_2$, $R=\mathrm{Dy}$, Er , Tm , Yb , Lu in Fig. 2). This tendency is most pronounced at the end of the R series: In *stoichiometric* LuAl_2 , the PAC spectrum at 300 K showed a slow decrease of the anisotropy with—if at all—only a very small periodic modulation indicating that practically all probe nuclei are subject to a frequency distribution centered close to frequency zero. This is clear evidence for the occupation of the cubic R site at which the QI is expected to vanish [perturbation factor $G_{kk}^R(t)=1$]. The observation of a weak rather than zero QI can be attributed to nearby point defects.

TABLE I. Quadrupole frequency ν_q of $^{111}{\rm Cd}$ in rare earth dialuminides $R{\rm Al}_2$; $R{\rm =Y-Tb}$ at 300 K. $-\frac{\delta \ln \nu_q(T)}{\delta T}|_{400~{\rm K}}$ is the coefficient of the linear temperature dependence at $T{\rm >\!400~K}$.

		$\delta \ln \nu_q(T)$
Rare earth R	$\nu_q~({ m MHz})$	$-\frac{\delta II V_q(Y)}{\delta T} _{400 \text{ K}} (10^{-4} \text{ K}^{-1})$
Y	62.81	2.41 ₅
La	40.51	2.34 ₅
Ce	43.1 ₁	2.37 ₅
Pr	43.51	2.44 ₅
Nd	43.5^{1}	1.94 ₅
Sm	45.61	2.45 ₅
Eu	9_{2}	
Gd	50.91	1.90 ₅
Tb	53.5 ₁	2.19 ₅

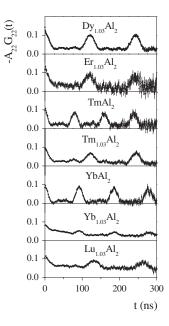


FIG. 2. Room temperature PAC spectra of 111 Cd in RAl_2 with heavy R constituents. For R=Tm and Yb, spectra of compounds with the exact stoichiometry and with a slight R excess, respectively, are shown.

The R site occupation could be reduced by allowing a slight R excess ($\leq 3\%$). At the end of the RAl₂ series, the temperature dependence of the QI of the Al site was therefore measured with samples of the composition $R_{1.03}$ Al₂. The spectra were analyzed by allowing up to three components with different QI parameters. The quadrupole frequencies and fractions derived from the room temperature spectra of $R_{1.03}$ Al₂, R=Dy,Ho,Er,Tm,Yb,Lu are listed in Table II.

(ii) For R=Tm and Yb, the QI of ¹¹¹Cd in stoichiometric RAl_2 was found to be substantially stronger than expected from the variation of the quadrupole frequency with the R constituent (see Table I): For R=Ho,Er one has ν_q =55.7(2) MHz and one would expect a similar value at least for TmAl₂. The first measurements for R=Tm and Yb, however, gave RT frequencies of ν_q ~83 MHz and ν_q ~71 MHz, respectively, an increase—relative to ErAl₂—of almost 50% clearly visible in Fig. 2. For R=Lu, this high frequency component was not observed. By measurements of the QI of ¹¹¹Cd in RAl_3 (see Sec. III C) the high frequencies found in RAl_2 , R=Tm and Yb could be identified as those of the respective RAl_3 compounds.

In the x-ray diffraction (XRD) pattern of stoichiometric RAl_2 , contributions of RAl_3 were barely detectable ($\leq 5\%$). The relative intensities of the RAl_3 frequencies in TmAl₂ and YbAl₂, however, exceed 70% (see Table II) from which one may infer that—given the opportunity in two-phase samples—¹¹¹In solutes strongly prefer RAl_3 compounds with AuCu₃ structure over the corresponding C15 RAl_2 Laves phases.

The TmAl₃ component in the TmAl₂ spectra could be strongly suppressed by a slight Tm excess (see Fig. 2). In Tm_{1.03}Al₂, only 16% of the probes experience the high TmAl₃ frequency, but \sim 60% are now subject to a frequency ν_q =54.8 MHz which fits well into the trend of the QI ob-

TABLE II. The quadrupole frequencies ν_q and fractions of different components found in the room temperature PAC spectra of ^{111}Cd in $R_{1+x}\text{Al}_2$ Laves phases with the heavy R constituents R=Dy-Lu and R excess in the range $-0.005 \leqslant x \leqslant 0.03$. The quantity $-\frac{\delta \ln \nu_q(T)}{\delta T}|_{400 \text{ K}}$ is the coefficient of the linear temperature dependence at $T \geqslant 400 \text{ K}$.

Rare earth R	R excess x	$ u_q $ (MHz)	$-\frac{\frac{\delta \ln \nu_q(T)}{\delta T}}{(10^{-4} \text{ K}^{-1})} _{400 \text{ K}}$	Fraction	Site
Dy	$-0.005 \le x \le 0.03$	54.91	2.35 ₅	≥0.8	Al of RAl ₂
		≤2		≤0.2	R of RAl_2
Но	$-0.005 \le x \le 0.03$	55.71	2.21 ₅	≥0.8	Al of RAl_2
		≤2		≤0.2	R of RAl_2
Er	$-0.005 \le x \le 0.03$	55.8	1.93 ₇	≥0.7	Al of RAl_2
		≤2		≤0.3	R of RAl_2
Tm	x = 0.00	83.71		0.71	Al of TmAl ₃
		54.6		0.06	Al of TmAl ₂
		≤2		0.23	R of TmAl ₂ /TmAl ₃
	x = 0.03	83.81		0.16	Al of TmAl ₃
		54.81	2.26 ₅	0.57	Al of TmAl ₂
		≤2		0.27	R of TmAl ₂ /TmAl ₃
Yb	x = 0.00	71.81		0.9	Al of YbAl ₃
		≤2		0.1	R of YbAl ₂ /YbAl ₃
	x = 0.03	71.2_{2}		0.28	Al of YbAl ₃
		112		0.34	Al of YbAl ₂
		≤2		0.38	R of YbAl ₂ /YbAl ₃
Lu	x = 0.03	50.2 ₃	2.30 ₅	0.35	Al of RAl ₂
		≤2		0.65	$R ext{ of } RAl_2$

served in trivalent RAl_2 up to R=Er. Furthermore, there is a fraction (27%) of probes in an almost cubic ($\nu_q \le 2$ MHz) environment.

In the case of YbAl₂, R excess did not produce the \sim 55 MHz component expected from the trend of the QI in RAl₂ with trivalent R constituents. The spectrum of Yb_{1.03}Al₂ (see Fig. 2) consists of three components: 28% of the probes show the 71 MHz precession of YbAl₃, \sim 38% with $\nu_q \leq$ 2 MHz account for the vertical offset, and a fraction of \sim 34% subject to \sim 11 MHz is required to describe the initial decrease of the anisotropy.

In Fig. 3 (bottom most section) we have collected the results of the analysis, attributing the 50-55 MHz components in the spectra of $Tm_{1.03}Al_2$ and $Lu_{1.03}Al_2$ to the RAl_2 Laves phases. The RAl_2 quadrupole frequencies are plotted versus the R atomic number.

The temperature dependence of the QI of 111 Cd in RAl_2 was measured in the range $T_C < T \le 1200$ K. The magnetic-order temperatures T_C of RAl_2 vary between 3.85 K for CeAl₂ and 168 K for GdAl₂. Figure 4 presents spectra of 111 Cd in PrAl₂ at different temperatures as a prominent example of the spectra of light RAl_2 : The spin precession period has a minimum at ~ 300 K, i.e., as one moves from 40 to 990 K, the quadrupole frequency passes through a maximum. This is quite unusual for a closed-shell probe atom in a metallic host. Usually one finds a monotonous

decrease of the QI with increasing temperature. The same behavior was observed in all RAl_2 with light R=La to Sm (Fig. 5). The difference $[\nu_q^{\max}-\nu_q(T_C)]/\nu_q^{\max}$, with ν_q^{\max} the frequency maximum, varies from 0.073 for Pr, Ce to 0.02 for La, Nd, and 0.013 for Sm. At $T\!\!>\!\!400$ K, $\nu_q(T)$ follows a linear relation with slopes $-d\ln\nu_q/dT|_{400}$ K listed in Table I. In heavy RAl_2 and in YAl2, the quadrupole frequency decreases monotonously with increasing temperature. The decrease is well described by straight lines with temperature coefficients given in Tables I and II.

B. Temperature-induced changes of the site occupied by 111 In/ 111 Cd in RAl_2 and RAl_3

The observation of a single, axially symmetric QI indicates that in the early members of the RAl_2 series the ¹¹¹In solutes exclusively occupy the Al site at all temperatures. At the end of the series, however, one finds evidence for temperature-induced solute migration between different sites: The RT spectrum of $Tm_{1.03}Al_2$ (see Fig. 2) contains the 54.8 MHz component of $TmAl_2$ and 83.8 MHz component of $TmAl_3$ with an intensity ratio of $\sim 3:1$. As temperature is increased, the PAC pattern changes reversibly (see Figs. 6 and 7): Up to $T \leq 900$ K, the intensity of the ~ 80 MHz component (precession period in Fig. 6: ~ 75 ns) grows at the expense of the ~ 50 MHz component, but at still higher tem-

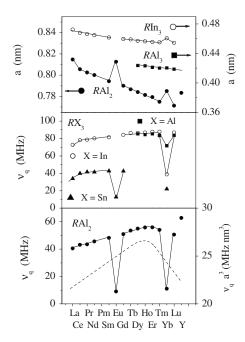


FIG. 3. The R dependence of the room temperature quadrupole frequency ν_q of ^{111}Cd in $R\text{Al}_2$ and in RX_3 compounds with AuCu_3 structure. The $R\text{Al}_3$ compounds (R=Tm,Yb,Lu) studied in the present work were synthesized at atmospheric pressure, and those investigated by Tsvyashchenko et al. (Ref. 17) (R=Dy,Ho,Er,Tm,Yb,Lu) at high pressures. The values for RX_3 ; X=In,Sn have been reported by Schwartz and Shirley (Ref. 29) The topmost section shows the lattice parameter a of $R\text{Al}_2$ (this work and Ref. 5), $R\text{Al}_3$ (this work and Ref. 17), and $R\text{In}_3$ (Ref. 29) at 300 K as a function of the R constituent. The dashed line in the bottom-most section corresponds to the quantity $\nu_q a^3$ (right-hand scale) of $R\text{Al}_2$ with trivalent R constituents.

peratures this component decreases continuously toward zero. In the quantitative least-squares fit analysis three sites were assumed: the Al site of TmAl₂ with $\nu_q\!\sim\!50$ MHz, the Al site of TmAl₃ with $\nu_q\!\sim\!80$ MHz, and a cubic site with $\nu_q\!\sim\!0$ MHz necessary to account for a slight vertical offset of the spectra. The temperature dependence of the relative

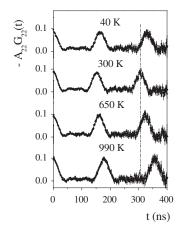


FIG. 4. PAC spectra of ¹¹¹Cd in PrAl₂ at different temperatures. The vertical line marks the time of two spin precessions at 300 K.

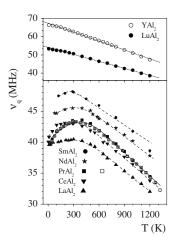


FIG. 5. Temperature dependence of the quadrupole frequency of 111 Cd in RAl_2 with light R constituents (lower section). The upper section presents the data of LuAl₂ as a typical example of $\nu_q(T)$ of heavy RAl_2 and of YAl₂. (Note the difference in scale when comparing the slopes of light and heavy R for T > 400 K.)

intensities of the \sim 50 MHz and the \sim 80 MHz components collected in Fig. 7 shows that at T<900 K some of the ¹¹¹In solutes migrate from the TmAl₂ to the TmAl₃ grains of the sample, but at T>900 K the solutes clearly prefer to reside on the Al site of TmAl₂.

While the PAC spectra of $Tm_{1.03}Al_2$ reflect solute migration between different phases present in the same sample, those of $Lu_{1.03}Al_2$ (Fig. 8) provide an example for solute transfer between different sites of the same phase: The room temperature spectrum of $Lu_{1.03}Al_2$ consists of the periodic modulation characteristic for probes on the axial Al site, superimposed on the slowly decaying anisotropy of probes on the cubic R site. Comparison of the 300 and 1100 K spectra in Fig. 8 shows that the relative occupation of the Al and R sites changes with temperature. The ratio f_{Lu}/f_{Al} (f_X = fraction of probes on site X), determined from spectra in the range $10K \le T \le 1200$ K, was constant up to $T \le 600$ K.

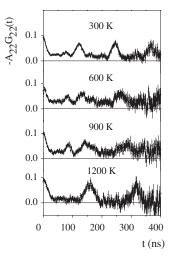


FIG. 6. PAC spectra of 111 Cd in $Tm_{1.03}Al_2$ at different temperatures.

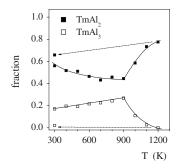


FIG. 7. The preference of the solute ¹¹¹In/¹¹¹Cd for the Al site in TmAl₂ (full squares) and TmAl₃ (open squares), respectively, as a function of temperature.

At higher temperatures, it follows the relation $f_{Lu}/f_{Al}(T)$ $\propto \exp(H/k_BT)$ with H=0.25(2) eV where H is the change in enthalpy⁹ due in the transfer of probes from the Lu to the Al site. At RT after 1200 K, all probes are found on the Lu site.

C. Static and dynamic quadrupole interactions of ¹¹¹Cd in RAl₃, R=Gd,Tm,Yb,Lu

To clarify the origin of the high quadrupole frequencies at the end of the RAl_2 series, the PAC measurements were extended to the RAl_3 compounds with AuCu₃ structure (R =Tm, Yb, and Lu). Spectra of 111 Cd in LuAl₃ and YbAl₃ are shown in Figs. 9 and 10, respectively. At T < 800 K, we observed the periodic nonattenuated modulation characteristic for an axially symmetric QI. Line broadening by inhomogeneities was less than 2%, and contributions by other phases, especially RAl_2 , were below the limit of PAC detection, although the XRD pattern of some RAl_3 contained RAl_2 reflections with an intensity of up to 15%.

We also studied $GdAl_3$, a RAl_3 compounds with $SnNi_3$ structure to see whether the dynamic interaction observed in RAl_3 , R=Tm, Yb, Lu (see below) occurs also in RAl_3 compounds with other structures. The spectra of $GdAl_3$ (not shown) present a single, slightly asymmetric static QI without indications of dynamic perturbations up to $T \le 1250$ K. The room temperature QI parameters derived by a fit of Eq. (1) to the experimental data are listed in Table III. The RT

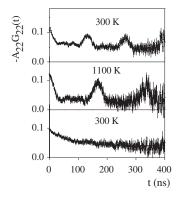


FIG. 8. PAC spectra of 111 Cd in $Lu_{1.03}Al_2$ at different temperatures.

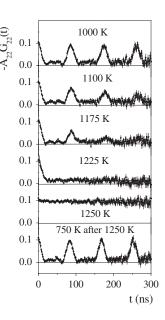


FIG. 9. PAC spectra of ¹¹¹Cd in LuAl₃ at high temperatures.

parameters of GdAl₃ are in agreement with the previous result of Zacate and Collins,⁹ the parameters of RAl₃, R = Tm, Yb, Lu agree within 2% with the values recently reported by Tsvyashchenko *et al.*¹⁷ for RAl₃ compounds synthesized under high pressure.

The temperature dependencies of the quadrupole frequencies of 111 Cd in RAl_3 , R=Gd, Tm, Yb, Lu are shown in Fig. 11. Except for YbAl $_3$ where $\nu_q(T)$ passes through a shallow maximum, one observes a monotonous decrease of ν_q with increasing temperature. For R=Gd, Tm, and Lu, $\nu_q(T)$ is a linear function in the range $10~\mathrm{K} \leq T \leq 1200~\mathrm{K}$. The temperature coefficients are listed in Table III. The GdAl $_3$ asymmetry parameter decreases from $\eta=0.20(1)$ at $10~\mathrm{K}$ to $\eta=0$ at $T \geq 1000~\mathrm{K}$.

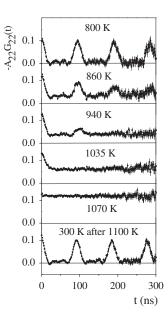


FIG. 10. PAC spectra of 111 Cd in YbAl $_3$ at high temperatures.

TABLE III. Quadrupole frequency ν_q , the asymmetry η , and fractions of ¹¹¹Cd in RAl_3 compounds at 300 K. The linear temperature dependence of ν_q at 10 K \leq $T \leq$ 1200 K is expressed by $-\frac{\delta \ln \nu_q(T)}{\delta T}|_{10~\rm K}$. In the case of YbAl $_3$ the temperature coefficient for T > 400 K is given.

Rare earth R	Structure type	$ u_q $ (MHz)	Asymmetry η	$-\frac{\frac{\delta \ln \nu_q(T)}{\delta T} _{10 \text{ K}}}{(10^{-4} \text{ K}^{-1})}$
Gd	SnNi ₃	64.01	0.121	2.53 ₅
Tm	AuCu ₃	83.51	≤0.05	0.814
Yb	AuCu ₃	71.61	≤0.05	$0.46_{12} (T > 400 \text{ K})$
Lu	$AuCu_3$	83.41	≤0.05	1.08 ₃

At temperatures T > 800 K, the spectra of RAl_3 , R=Tm, Yb, Lu undergo pronounced, fully reversible changes, as illustrated in Figs. 9 and 10 for the case of LuAl₃ and YbAl₃. As temperature is raised beyond 1000 K, the periodic spin precessions of the spectra of LuAl₃ and TmAl₃ suffer an exponential attenuation which increases with temperature up to the complete disappearance of the oscillations at T ~1225 K: These are features of a perturbation by timedependent interaction. 20,21 The high temperature (T > 1000 K) spectra of RAl₃, R=Tm,Lu were therefore analyzed using Eq. (3) with $\Gamma_{kk}(t)$ given by the perturbation factor for a static QI [Eq. (2)]. The resulting relaxation parameters λ_2 are collected in Fig. 12 in form of an Arrhenius plot $\lambda_2(T) = \lambda_2^0 \exp(-E_A/k_BT)$ from which one obtains an activation enthalpy of the fluctuations of E_A =1.6(1) eV with prefactor $\lambda_2^0 = (1_{-0.5}^{+1}) \ 10^{14} \ s^{-1}$ for R = Tm and Lu.

At temperatures T > 1225 K, one expects the spectrum to evolve from maximum relaxation toward the limit of fast motional narrowing which—in case the fluctuating interaction has zero time average—is the unperturbed angular correlation. Figure 9 shows that the unperturbed correlation in LuAl₃ is reached at T = 1250 K.

If the jump frequency w follows an exponential temperature dependence $w=w_0\exp(-E_A/k_BT)$ with attempt frequency w_0 , an Arrhenius plot of the relaxation parameter $\ln \lambda_2$ versus 1/T should show the same slope (but opposite sign) in the region of slow $[\lambda_k=\lambda_k^0\exp(-E_A/k_BT)]$ and fast fluctuations $[\lambda_k=\lambda_k^0\exp(E_A/k_BT)]$, respectively. It is therefore surprising to find that in the case of LuAl₃ and TmAl₃ it

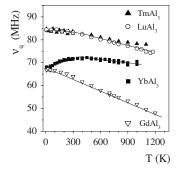


FIG. 11. Temperature dependence of the quadrupole frequency of 111 Cd in some RAl_3 compounds (R=Gd,Tm,Yb,Lu).

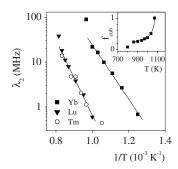


FIG. 12. Arrhenius plot of the relaxation parameter λ_2 of ¹¹¹Cd in RAl_3 compounds (R=Tm,Yb,Lu) with AuCu₃ crystal structure. The insert shows the temperature dependence of the cubic fraction in the PAC spectra of YbAl₃.

takes a temperature increase of about 200 K to completely attenuate the oscillations observed at $T \le 1000$ K, but only 25 K to go from total attenuation to unperturbed anisotropy.

In YbAl₃ (Fig. 10) the attenuation of the periodic oscillations sets in at a lower temperature ($T \ge 800 \text{ K}$) than in LuAl₃ and TmAl₃ and together with the attenuation there is a vertical shift of the spectra which was not observed in the other two RAl₃. The shift implies the presence of two fractions of probes at T > 800 K, one subject to the fluctuating QI, and the other unperturbed in a cubic environment. Correspondingly, the spectra of YbAl₃ were analyzed with a two-site model: $G_{22}(t) = (1 - f_{\text{cub}}) \Gamma_{22}(t) \exp(-\lambda_2 t) + f_{\text{cub}}$. The temperature dependence of the unperturbed fraction f_{cub} is shown in the insert of Fig. 12. For YbAl₃ the activation enthalpy is $E_A = 1.2(1) \text{ eV}$ and the prefactor $\lambda_2^0 = (2.7^{+1.7}_{-1.1}) \cdot 10^{13} \text{ s}^{-1}$.

IV. DISCUSSION

A. Site occupation, solute migration, and diffusion of ¹¹¹In/¹¹¹Cd in RAl₂ and RAl₃

The Al site of the RAl_2 Laves phases has axial (3m) symmetry with six nearest neighbor (NN) Al atoms at 0.283(Ce) - 0.274(Lu) nm, the R site has cubic symmetry (43m) with 12 NN Al atoms at 0.332(Ce) - 0.322(Lu) nm. The observation of a single component with an axially symmetric QI therefore implies that at the beginning of the R series all ^{111}Cd probes reside on the Al site. Toward the end of the series a cubic component appears in the PAC spectra, indicating the partial occupation of the R site.

The site chosen by an impurity atom in an intermetallic compound can be expected to depend on the differences in size and charge of the solute and the constituents of the intermetallic compound. The atomic radius of In (0.156 nm; empirical Slater value²⁵) is considerably larger than that of Al (0.125 nm), but smaller than the *R* radii [0.195(Ce) –0.175(Lu) nm]. The fact that in light RAl_2^{111} In solutes favor the Al site in spite of the larger space available at the *R* site indicates a predominance of the charge factor over the space factor which is consistent with the electronegativities of the elements involved (In: 1.78; Al: 1.61, R:1.1-1.25; Pauling units). The tendency toward partial occupation of the

R site at the end of the *R* series can be understood as a consequence of lanthanide contraction which—with increasing *R* atomic number—reduces the space available at the Al site and possibly also of the slight increase of the electronegativity from La to Lu. For a discussion of the temperature dependence of the Al-site occupation (Fig. 8) we refer to the work of Zacate and Collins.⁹

In RAl_3 with cubic $AuCu_3$ structure, the Al site has axial 4/mmm point symmetry with 12 Al nearest neighbors at 0.297 nm (for a=0.42 nm), and the R site has cubic point symmetry with 12 NN Al atoms at the same distance. From the observation of an axially symmetric QI of ^{111}Cd we may conclude that in RAl_3 , R=Tm, Yb, Lu the ^{111}In solutes prefer the Al over the R site which is not surprising, considering that both sites offer the same space.

Although the RAl_2 samples contained only minute quantities (<5%) of RAl_3 , the Al-site frequencies of RAl_3 , R =Tm, Yb were found to be predominant in the PAC spectra of the corresponding RAl_2 compounds. This strong preference of the Al site of RAl_3 over that of RAl_2 is probably related to its larger size. This interpretation, however, does not explain why the RAl_3 frequencies were only found in TmAl₂ and YbAl₂, but not in LuAl₂.

In TmAl₂ samples containing some TmAl₃ (\leq 5%) we observed temperature-induced migration of the ¹¹¹In solutes between the Al sites of TmAl₂ and TmAl₃ (see Fig. 7). The preference of the Al site of TmAl₃ at low and that of TmAl₂ at high temperatures is possibly due to differences in the lattice expansion of these compounds. To our knowledge, there are no experimental data on the variation of the *R*Al₃ lattice parameter at high temperatures. The difference in the temperature dependence of the ¹¹¹Cd quadrupole frequency in TmAl₂ and TmAl₃ (coefficients $-d \ln \nu_q/dT$ =2.26 and $0.81 \times 10^{-4} \text{ K}^{-1}$, respectively), however, suggests that in TmAl₂ the thermal lattice expansion might be stronger than in TmAl₃. It is therefore conceivable that at high temperatures the Al site of TmAl₂ offers the larger space for the solute atoms.

The fluctuating QI observed in RAl₃, R=Tm, Yb, Lu at T>800 K can be attributed to diffusion jumps of the ¹¹¹In probe atoms on the Al sublattice. Such jumps change the orientation, but not the magnitude of the EFG at the probe site. For details on the possible diffusion mechanisms we refer to the recent PAC study of ¹¹¹In jumps in RIn₃ (Refs. 26-28) which has the same AuCu₃ structure as RAl₃, R =Tm, Yb, Lu. The activation enthalpies E_A = 1.6(1) and 1.2(1) eV for R=Tm, Lu and R=Yb, respectively, are of the same order as in the heavy RIn_3 . Since in the slow fluctuation regime $\lambda_2 = w$, the temperature dependence of λ_2 in Fig. 12 corresponds to attempt frequencies $w_0 = (1^{+1}_{-0.5}) \times 10^{14} \text{ s}^{-1}$ for R = Tm, Lu and $w_0 = (2.7^{+1.7}_{-1.1}) \times 10^{13} \text{ s}^{-1}$ for R = Yb. The jump frequencies in RIn3 were found to depend sensitively on small deviations from the stoichiometric composition.^{26–28} Slight composition differences are possibly responsible for the difference of the jump frequencies in RAl_3 , R=Tm, Lu and R = Yb.

The abrupt transition from total attenuation to an unperturbed correlation within 25–35 K in the high temperature PAC spectra of *R*Al₃ (see Figs. 9 and 10) is most probably

not the result of a fast fluctuation process. Such an interpretation would require an unrealistically large activation enthalpy ($E_A \sim 30 \text{ eV}$) of the ^{111}Cd diffusion at temperatures T > 1000 K. More likely, the transition reflects a change in the site preference. The insert in Fig. 12 shows that at T > 1000 K the ^{111}In solutes tend to occupy the cubic R site with zero QI rather than the axial Al site which explains the observation of an unperturbed angular correlation at high temperatures.

B. Electric field gradients in RAl₂ and RAl₃

1. Room temperature trends

We have extended the R dependence of the QI of 111 Cd in RAl_2 beyond the previous measurements by Mishra $et\ al.^5$ to include to R=Tm, Yb, Lu, and Y and have determined the 111 Cd QI in RAl_3 , R=Gd, Tm, Yb, and Lu. The RT results are collected in Fig. 3. The bottom-most section shows the R dependence of the 111 Cd quadrupole frequency in RAl_2 , and the middle section the quadrupole frequencies of 111 Cd in RX_3 compounds with AuCu₃ structure. Presently, data are available for X=In, Sn (Ref. 29) and Al (this investigation and Ref. 17).

In EuAl₂ and YbAl₂, the room temperature QI of ¹¹¹Cd deviates strongly from the general trend in the RAl₂ series. The PAC spectrum of EuAl₂ shows unambiguously that the frequency is about a factor of 5 smaller than for the other R constituents. For YbAl₂ the identification of the quadrupole frequency of ¹¹¹Cd on the Al site is slightly more difficult because of the partial occupation of the R site ($\nu_q \le 2$ MHz; Table II) and the pronounced preference for the Al site of YbAl₃ (ν_q =71.2 MHz; Table II). If we rule out that in a two-phase YbAl₂/YbAl₃ sample the ¹¹¹In solutes completely avoid the Al site of YbAl₂, we may identify the 11 MHz component in the RT spectrum of YbAl₂ as the quadrupole frequency of ¹¹¹Cd on the Al site of this compound and conclude that the quadrupole frequencies of ¹¹¹Cd in EuAl₂ and YbAl₂ are of the same order (\sim 10 MHz).

The drastic decrease of $\nu_a(^{111}\text{Cd}:R\text{Al}_2)$ at R=Eu, Yb relative to the other RAl₂ can be attributed to the smaller valence of these R constituents which manifests itself also in an increase of the lattice constant a [compare $\nu_a(^{111}\text{Cd}:RAl_2)$ and $a(RAl_2)$ in Fig. 3]. The reduced QI of YbAl₂ is consistent with the results of previous investigations^{30–33} which indicate that the valence of Yb in YbAl₂ is in an intermediate state with a value varying from 2.15 at low temperatures to 2.5 at 750 K. A similar behavior is found in RIn₃ and RSn₃ (Ref. 25): Here the 111 Cd quadrupole frequency of R=Eu and Yb is a factor of 2-4 below the general trend in these $AuCu_3$ -type compounds. The relation between the R valence and the QI of nuclear probes in RX_3 , X=In, Sn has been discussed by Schwartz and Shirley²⁹ in terms of a point charge model and by Asadabadi et al.³⁴ on the basis of ab initio calculations.

In RAl_3 , however, there is practically no singularity of the lattice parameter at R=Yb (topmost section of Fig. 3; data from Ref. 17) and the 111 Cd quadrupole frequency in $YbAl_3$ is only about 15% smaller than in neighboring $TmAl_3$ and

LuAl₃. This observation is in fair agreement with a NMR measurement³⁵ of the quadrupole coupling constant of the probe ²⁷Al in TmAl₃ and YbAl₃. From the small difference of the QIs of the neighboring RAl₃ and the continuous decrease of the lattice parameter we may infer that the valence of R=Yb in RAl₃ is close to that of R=Tm,Lu, i.e., almost 3+, which agrees with conclusions based on transport, thermodynamic, and magnetic data^{30,31,36} that YbAl₃ may be considered an intermediate valence system with almost trivalent Yb ions.

In the trivalent RAl_2 , the RT quadrupole frequency of ^{111}Cd first increases with increasing R atomic number to reach a maximum at R=Ho, Er and then decreases by about 10% toward R=Lu (see Fig. 3). Wanting ab initio calculations of solute EFGs in RAl_2 , we compare this variation qualitatively to that of the EFG V_{zz}^{latt} produced by point charges on the lattice positions. In the point charge model (for a critical assessment see, e.g., Ref. 34) the quadrupole frequency is frequently written as: 37 $v_q \propto Q(1-k)(1-\gamma_\infty)V_{zz}^{latt}$, where $(1-\gamma_\infty)$ is the Sternheimer correction and (1-k) an enhancement factor which accounts for the valence electron EFG and other contributions. In the present case of a cubic host lattice, V_{zz}^{latt} is proportional 29 to the inverse volume a^{-3} of the unit cell and therefore: $v_q a^3 \propto Q(1-k)(1-\gamma_\infty)$.

The quantity $\nu_q a^3 \propto Q(1-k)(1-\gamma_\infty)$ varies—with a maximum at R=Ho—by about 25% across the series of trivalent $R\text{Al}_2$ (see dotted line in bottom section of Fig. 3). A similar trend has been observed in the hexagonal R metals: ⁶ Here too the enhancement factor (1-k) of the ¹¹¹Cd EFG increases in the first half and decreases in the second half of the R series.

Two mechanisms—one involving electron charge transfer from the solute atom to the R neighbors, 38 the other volume mismatch effects between impurity and host⁵—have been discussed with respect to the R dependence of the enhancement factor (1-k). However, neither of these models provides a consistent explanation for the variation of $\nu_q a^3$ across the RAl_2 series established in this study: While the volume mismatch of oversized ^{111}Cd on the Al site is expected to result in an increase of (1-k), the charge transfer model predicts a continuous decrease of the enhancement factor with increasing R atomic number. The interpretation of the R dependence of the room temperature EFG of ^{111}Cd in trivalent RAl_2 thus remains an open question.

C. Temperature dependence of the electric field gradient in RAl_2 and RAl_3

The temperature dependence of the EFG has been investigated for numerous probe nuclei in a large number of noncubic metals³⁹ and in many intermetallic compounds. For non-R probe nuclei, the EFG usually decreases continuously with increasing temperature, in many cases following a $T^{3/2}$ relation which has been attributed to the temperature-induced vibrations of the host atoms.⁴⁰ A recent review of the relevant literature on this subject has been given by Torumba et $al.^{41}$ in a paper reporting a first-principles calculation of the temperature dependence of the EFG in hcp Cd.

At R nuclei the dominant EFG contribution comes from the incomplete 4f shell. This contribution is proportional to

the thermal average of the 4*f* quadrupole moment over all crystal electric field (CEF) states and therefore strongly temperature dependent. As examples we cite the temperature variation of the QI of the Mössbauer (MS) isotope ¹⁶⁹Tm in TmCu₂ (Ref. 42) and in TmBa₂Cu₄O₈ (Ref. 43), of the MS nucleus ¹⁷⁴Yb in YbCu₂Si₂ (Ref. 44) and of the PAC probe ¹⁷²Yb in Yb₂Co₃Ga₉ (Ref. 45).

The EFG of ¹¹¹Cd in the heavy RAl_2 decreases monotonously as temperature is raised (see the data of LuAl₂ and YAl₂ in Fig. 5 as examples), but the trend of $\nu_q(T)$ is much closer to a linear function than a $T^{3/2}$ relation. Similar relations have been reported for non-R probes in the hexagonal rare earth metals: ⁷ Here, too, the QI is to a very good approximation a linear function over a wide temperature range. However, while in RAl_2 the temperature coefficient $-\frac{\delta \ln \nu_q(T)}{\delta T}|_{400 \text{ K}}$ is practically independent of the R constituent (see Tables I and II), the temperature dependence in the R metals shows a strong linear decrease with increasing R atomic number (Ref. 7) from $-\frac{\delta \ln \nu_q(T)}{\delta T}|_{300 \text{ K}} \sim 12 \times 10^{-4} \text{ K}^{-1}$ for Nd to $\sim 2 \times 10^{-4} \text{ K}^{-1}$ for Y.

In contrast to the heavy RAl_2 , the early members of the series (R=La-Sm) show a highly unusual temperature dependence of the QI for a closed shell probe nucleus: At T ≥400 K the EFG decreases with about the same slope as in the heavy RAl₂ (see Tables I and II), but at lower temperatures it passes through a maximum (Fig. 5). Apparently, the low temperature trend of the EFG at the Al site is affected by the properties of the 4f electrons. A mechanism which would account for this observation has been proposed by Rasera et al.: The mechanism involves the overlap of the probe valence electrons with the 5d and 6s electrons of the rare earths which are hybridized by the interaction with the 4f shell. As consequence of this interaction, the nonspherical 4f charge distribution may be felt at neighboring lattice sites. The resulting 4f contribution to the EFG at the Al site would be important for light R with the stronger 5d (6s)-4f interaction caused by the larger radial extension of the 4f wave function⁴⁶ and would decrease with increasing temperatures due to the thermal averaging of the 4f quadrupole moment, with the details of the temperature variation depending on the parameters of the crystal electric field interaction. An interpretation of the experimental $\nu_a(T)$ trends in Fig. 5 in terms of this mechanisms requires that the 4f and the lattice contributions to the EFG have opposite sign.

In the RAl_3 compounds with $AuCu_3$ structure, the temperature variation of the ^{111}Cd QI also varies with the R constituent (see Fig. 11): In YbAl $_3$ the quadrupole frequency passes through a shallow maximum while neighboring TmAl $_3$ and $LuAl_3$ show the same linear decrease with increasing temperature. The unusual temperature trend in YbAl $_3$ can be understood in terms of the noninteger Yb valence of this compound. The intermediate valence state is thought to result⁴⁷ from 4f charge fluctuations between two almost degenerate 4f configurations, trivalent Yb with 13 4f electrons, and divalent Yb with 14 4f electrons. Bauer et $al.^{14}$ have shown by Yb $L_{\rm III}$ x-ray absorption measurements that with increasing temperature the relative weight of Yb $^{3+}$ ($4f^{13}$) grows at the expense of Yb $^{2+}$ ($4f^{14}$). The PAC time window is much longer than the valence fluctuation time. In

contrast to x-ray absorption, where both configurations are seen, PAC experiments therefore sample the time average of the two configurations. The QI at non-R solutes in compounds with trivalent R constituents is larger than in the corresponding divalent compound (see Fig. 3). The time average of the 111 Cd QI therefore increases with increasing weight of Yb³⁺ which explains the initial increase of $v_q(^{111}$ Cd: YbAl₃) as temperature is raised from T=10 K. At T>400 K, the effects of lattice vibrations and lattice expansion overcome the growing weight of Yb³⁺ and the QI begins to decrease with increasing temperature.

V. SUMMARY

We have investigated static and fluctuating EFGs experienced by the nuclear probe ¹¹¹In/¹¹¹Cd on the Al site of the rare earth–aluminium compounds *R*Al₂ and *R*Al₃ as a function of temperature for different *R* constituents.

An anomalous temperature dependence of the EFG in the early RAl₂ members suggests a substantial influence of the

4f electrons on the EFG at the Al site. The temperature dependence in the intermediate valence compound YbAl₃ is consistent with an increase of the 4f hole occupation with temperature.

The measurements establish the site preference of 111 In/ 111 Cd solutes in two-phase samples containing RAl_2 and RAl_3 and provide evidence for temperature-induced solute migration between these phases. Information on diffusion jumps of the solutes on the Al sublattice could be extracted by analyzing the nuclear spin relaxation observed at high temperatures in RAl_3 , R=Tm, Yb, and Lu.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support by Deutscher Akademischer Austauschdienst (DAAD), Germany. The x-ray characterization of the *R*Al₃ compounds has been carried out by H. Euler at Mineralogisch-Petrologisches Institut, University of Bonn.

- *Author to whom correspondence should be addressed; forker@iskp.uni-bonn.de
- [†]Present address: Instituto de Magnetismo Applicado, P.O. Box 155, 28230 Las Rozas, Madrid, Spain.
- ¹R. G. Barnes, in *Handbook of Chemistry and Physics of RareE-arths*, edited by K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1979), Vol. 2, Chap. 18.
- ²K. H. J. Buschow, in *Ferromagnetic Materials*, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 1, Chap. 4.
- ³P. de la Presa, M. Forker, J. Th. Cavalcante, and A. P. Ayala, J. Magn. Magn. Mater. **306**, 292 (2006).
- ⁴M. Forker, P. de la Presa, M. Olzon-Dionysio, and S. Dionysio de Souza, J. Magn. Magn. Mater. **226-230**, 1156 (2001).
- ⁵S. N. Mishra, R. G. Pillay, K. Raghunathan, P. N. Tandon, S. H. Devare, and H. G. Devare, Phys. Lett. **91A**, 193 (1982).
- ⁶ K. A. Gschneidner and V. K. Pecharsky, Z. Kristallogr. 221, 375 (2006).
- ⁷ M. Forker, L. Freise, and D. Simon, J. Phys. F: Met. Phys. 18, 823 (1988).
- ⁸R. L. Rasera, B. D. Dunlap, and G. K. Shenoy, Phys. Rev. Lett. 41, 1188 (1978).
- ⁹M. O. Zacate and G. S. Collins, Phys. Rev. B **69**, 174202 (2004).
- ¹⁰M. O. Zacate and G. S. Collins, Phys. Rev. B **70**, 024202 (2004).
- ¹¹M. O. Zacate, B. C. Walsh, L. S.-J. Peng, and G. S. Collins, Hyperfine Interact. **136/137**, 653 (2001).
- ¹² P. Wodniecki, B. Wodniecka, A. Kulińska, M. Uhrmacher, and K. P. Lieb, Hyperfine Interact. **158**, 339 (2004).
- ¹³ K. H. J. Buschow, M. Campagna, and G. K. Wertheim, Solid State Commun. 24, 253 (1977).
- ¹⁴E. D. Bauer, C. H. Booth, J. M. Lawrence, M. F. Hundley, J. L. Sarrao, J. D. Thompson, P. S. Riseborough, and T. Ebihara, Phys. Rev. B 69, 125102 (2004).
- ¹⁵ J. H. N. van Vucht and K. H. J. Buschow, Philips Res. Rep. **19**, 319 (1964).
- ¹⁶ A. M. van Diepen, K. H. J. Buschow, and H. W. de Wijn, J.

- Chem. Phys. 51, 5259 (1969).
- ¹⁷ A. V. Tsvyashchenko, L. N. Fomicheva, V. B. Brudanin, O. I. Kochetov, A. V. Salamatin, A. Velichkov, M. Wiertel, M. Budzynski, A. A. Sorokin, G. K. Ryasny, and B. A. Komissarova, Solid State Commun. 142, 664 (2007).
- ¹⁸M. Forker, W. Herz, U. Hütten, M. Müller, R. Müßeler, J. Schmidberger, D. Simon, A. Weingarten, and S. C. Bedi, Nucl. Instrum. Methods Phys. Res. A 327, 456 (1993).
- ¹⁹H. Frauenfelder and R. M. Steffen, in *Perturbed Angular Correlations*, edited by K. Karlsson, E. Matthias, and K. Siegbahn (North-Holland, Amsterdam, 1963).
- ²⁰M. Blume, Phys. Rev. **174**, 351 (1968).
- ²¹ H. Winkler and E. Gerdau, Z. Phys. **262**, 363 (1973).
- ²² A. Baudry and P. Boyer, Hyperfine Interact. **25**, 803 (1987).
- ²³ M. Forker, W. Herz, and D. Simon, Nucl. Instrum. Methods Phys. Res. A **337**, 534 (1993).
- ²⁴U. Häussermann, S. Amerioun, L. Eriksson, C. S. Lee, and G. J. Miller, J. Am. Chem. Soc. **124**, 437 (2002).
- ²⁵ J. C. Slater, J. Chem. Phys. **41**, 3199 (1964).
- ²⁶M. O. Zacate, A. Favrot, and G. S. Collins, Phys. Rev. Lett. **92**, 225901(E) (2004).
- ²⁷G. S. Collins, A. Favrot, L. Kang, E. R. Niewenhuis, D. Solodovnikov, J. Wang, and M. O. Zacate, Hyperfine Interact. 159, 1 (2004).
- ²⁸G. S. Collins, A. Favrot, L. Kang, D. Solodovnikov, and M. O. Zacate, Defect Diffus. Forum 237-240, 195 (2005).
- ²⁹G. Schwartz and D. Shirley, Hyperfine Interact. **3**, 67 (1977).
- ³⁰ A. Iandelli and A. Palenzona, J. Less-Common Met. **29**, 239 (1972).
- ³¹E. E. Havinga, K. H. J. Buschow, and H. J. Van Daal, Solid State Commun. 13, 621 (1973).
- ³² A. Percheron-Guégan, J. C. Achard, O. Gorochev, F. Gontales-Jimenez, and P. Imbert, J. Less-Common Met. 37, 1 (1974).
- ³³S.-J. Oh, J. W. Q. Allen, M. S. Torikachvili, and M. B. Maple, J. Magn. Magn. Mater. **52**, 183 (1985).

- ³⁴S. J. Asadabadi, S. Cottenier, H. Akbarzadeh, R. Saki, and M. Rots, Phys. Rev. B 66, 195103 (2002).
- ³⁵H. W. de Wijn, A. M. Van Diepen, and K. H. J. Buschow, Phys. Rev. B 1, 4203 (1970).
- ³⁶ A. Hiess, J. X. Bouvherle, F. Givord, J. Schweizer, E. Lelièvre-Berna, F. Tasset, B. Gillon, and P. C. Canfield, J. Phys.: Condens. Matter 12, 829 (2000).
- ³⁷R. Raghavan, E. Kaufmann, and P. Raghavan, Phys. Rev. Lett. 34, 1280 (1975).
- ³⁸M. Forker and W. Steinborn, Phys. Rev. B **20**, 1 (1979).
- ³⁹R. Vianden, Hyperfine Interact. **35**, 1079 (1987).
- ⁴⁰ K. Nishiyama and D. Riegel, Hyperfine Interact. **4**, 490 (1978).
- ⁴¹ D. Torumba, K. Parlinski, M. Rots, and S. Cottenier, Phys. Rev. B 74, 144304 (2006).

- ⁴²P. C. M. Gubbens, K. H. J. Buschow, M. Divis, M. Heidelman, and M. Loewenhaupt, J. Magn. Magn. Mater. **104-107**, 1283 (1992).
- ⁴³G. A. Stewart, S. J. Harker, and D. M. Pooke, J. Phys.: Condens. Matter **10**, 8269 (1998).
- ⁴⁴V. Zevin, G. Zwicknagl, and P. Fulde, Phys. Rev. Lett. **60**, 2331 (1988).
- ⁴⁵S. K. Dhar, C. Mitra, P. Bonville, M. Rams, K. Królas, C. Godart, E. Alleno, N. Suzuki, K. Miyake, N. Watanabe, Y. Onuki, P. Manfrinetti, and A. Palenzona, Phys. Rev. B **64**, 094423 (2001).
- ⁴⁶ A. J. Freeman and J. P. Desclaux, J. Magn. Magn. Mater. **12**, 11 (1979).
- ⁴⁷J. M. Lawrence, P. S. Riseboroughs, and R. D. Parks, Rep. Prog. Phys. **44**, 1 (1981).