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We present a comparative full-potential study of generalized Kohn-Sham �gKS� schemes with explicit focus
on their suitability as starting point for the solution of the quasiparticle equation. We compare G0W0 quasi-
particle band structures calculated upon local-density approximation �LDA�, screened-exchange, HSE03,
PBE0, and Hartree-Fock functionals for exchange and correlation �XC� for Si, InN, and ZnO. Furthermore, the
HSE03 functional is studied and compared to the generalized gradient approximation �GGA� for 15 nonme-
tallic materials for its use as a starting point in the calculation of quasiparticle excitation energies. For this case,
the effects of self-consistency in the GW self-energy are also analyzed. It is shown that the use of a gKS
scheme as a starting point for a perturbative quasiparticle correction can improve upon the deficiencies found
for LDA or GGA starting points for compounds with shallow d bands. For these solids, the order of the valence
and conduction bands is often inverted using local or semilocal approximations for XC, which makes pertur-
bative G0W0 calculations unreliable. The use of a gKS starting point allows for the calculation of fairly
accurate band gaps even in these difficult cases, and generally single-shot G0W0 calculations following calcu-
lations using the HSE03 functional are very close to experiment.
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I. INTRODUCTION

Density functional theory �DFT� has become the most
successful method for condensed matter calculations. This
success is largely rooted in the simplicity of the exchange
and correlation �XC� energy in the local-density �LDA� or
generalized gradient �GGA� approximation. However, the
underlying Kohn-Sham �KS� formalism fails in the predic-
tion of electronic excitation energies of semiconductors and
insulators.1 A significant step forward to correct excitation
energies was achieved when the first ab initio calculations of
quasiparticle �QP� states were performed.2,3 Their description
is based on the quasiparticle equation with the XC self-
energy � for one excited electron or hole.1–4 In general, its
solution is based on Hedin’s GW approximation �GWA� for
the self-energy4 and a perturbative treatment of the differ-
ence to the XC potential used in the KS equation. The central
quantity is the dynamically screened Coulomb potential W,
which characterizes the reaction of the electronic system af-
ter excitation. For many nonmetals, such as the semiconduc-
tor silicon �Si�, the method works well with an accuracy of
0.1–0.3 eV for their QP gaps,1 if the Green’s function G is
described by one pole at the KS �i.e., G0�, or better, at the QP
�i.e., G� energy. However, for systems with a wrong ener-
getic ordering of the KS bands, first-order perturbation
theory is not applicable.5 Examples are semiconductors with
a negative fundamental gap in DFT-LDA or -GGA, e.g., InN
�Ref. 6 and references therein�, or with shallow d bands, e.g.,
ZnO.7

Besides the KS approach itself, the origin of the band gap
problem is related to the semilocal approximation �LDA
and/or GGA� for XC, which introduces an unphysical self-
interaction and lacks a derivative discontinuity.8,9 These de-
ficiencies can be partially overcome using self-interaction-
free exact exchange �EXX� potentials,10 which are special

realizations of an optimized effective potential �OEP�
method.7 A, by conception, different way to address the band
gap problem is the use of a generalized Kohn-Sham �gKS�
scheme, which means starting from a scheme with a spatially
nonlocal XC potential.11 In this framework, the screened-
exchange �sX� approximation uses a statically screened Cou-
lomb kernel instead of the bare kernel in the Hartree-Fock
�HF� exchange11 and, with it, resembles the screened-
exchange �SEX� contribution to the XC self-energy in the
GWA.3,4 Other hybrid functionals such as those following
the suggestions of Adamo and Barone �PBE0�12 or Heyd,
Scuseria, and Ernzerhof �HSE03�13 combine parts of bare or
screened exchange with an explicit density functional. The
gKS eigenvalues are usually in much better agreement with
the experiment than the LDA and/or GGA ones. Therefore,
the gKS solutions are supposed to be superior starting points
for a QP correction, since first-order perturbation theory
should be justified. Hence, the replacement of G by G0 cal-
culated from solutions of a gKS scheme may be interpreted
as a first step toward a self-consistent determination of the
self-energy operator.14,15

Here, we report a systematic study of QP energies calcu-
lated from GW corrections to the results of gKS schemes.
First, in Sec. III A, we evaluate the performance of G0W0

corrections to different gKS starting points for Si, InN, and
ZnO using the functionals sX, HSE03, PBE0, and HF. The
results are compared to those of the standard KS approach
based on an LDA functional. In Sec. III B, QP gaps are cal-
culated for a benchmark set of 15 nonmetals utilizing the
HSE03 starting point. The effects of self-consistency in G
and W are discussed in comparison to the results based on a
GGA starting point used in Ref. 16.
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II. METHOD

All calculations are performed at the experimental lattice
constants. We use the projector augmented-wave method as
implemented in the Vienna ab initio simulation package.17

For the details of the GW implementation, we refer to Refs.
16 and 18. The GW calculations are carried out using a total
number of 150 bands for all materials. For the Brillouin-zone
integrations, 8�8�8 k-point meshes including the � point
were used, except in the case of ZnO �LDA� and InN �sX,
HSE03� where the k-point convergence of W was found to
be critical for meshes containing �. In these cases, 8�8
�8 Monkhorst-Pack k-point grids avoiding � were used for
the evaluation of W.

One problem of the presence of shallow d levels is the
strong core-valence XC interaction.14,19 It can be estimated
within the LDA or HF approximation, where the latter is
expected to be more reliable since the GW self-energy ap-
proaches the bare Fock exchange operator in the short wave
length regime �i.e., at large electron binding energies�.
Therefore, we apply the HF approximation to the core-
valence XC self-energy for all GW calculations reported here
�see Ref. 16 for a validation of this approach�.

Here, we do not update the QP wave functions corre-
sponding to the neglect of nondiagonal matrix elements of
the self-energy represented in terms of the gKS wave func-
tions ��

gKS. The QP excitation energy ��
N+1 of a state � in the

�N+1�th iteration is related to the Nth iteration through the
linearized equation

��
N+1 = ��

N + Z�
N Re����

gKS�T + Vn−e + VH + ����
N����

gKS� − ��
N� ,

�1�

where T is the kinetic energy operator, Vn−e the nuclei poten-
tial, VH the Hartree potential, and Z�

N the renormalization
factor given by

Z�
N = �1 − Re���

gKS�	 �

��
����	

�
�
N
���

gKS�
−1

. �2�

The first iteration, usually denoted by G0W0,1,14 is based on
the gKS eigenvalues ��

0 =��
gKS as initial input to the GW cal-

culation. Within this approximation, the perturbation opera-
tor in Eq. �1� becomes ����

gKS�−VXC
gKS corresponding to the

difference between the GW self-energy and the nonlocal XC

potential used in the gKS equation, and the G0W0-QP shift
for a certain gKS state is given by

	�� = Z�
0 Re���

gKS�����
0 = ��

gKS� − VXC
gKS���

gKS� . �3�

In the actual implementation of the gKS schemes, we split
the gKS XC energy into the form

EXC
gKS = EXC

DFT + 
�EX
sr��� − EX

DFT,sr���� , �4�

i.e., a short-range nonlocal exchange term is added and
treated exactly resulting in a nonlocal �screened� exchange
potential. The superscript DFT indicates that the respective
quantity is evaluated in some �quasi�local approximation,
while EX

sr corresponds to one of the �screened� Coulomb ker-
nels given in Table I. The weight 
 of the short-range part
and the inverse screening length � are also listed in this
table. For simplicity, in the case of sX, the inverse screening
length � corresponding to the Thomas-Fermi wave vector
was chosen to be material independent, kTF=1.55 Å−1. Gra-
dient corrections were used for the HSE03 and PBE0 func-
tionals.

III. RESULTS

A. G0W0 quasiparticle band structure of Si, ZnO, and InN

1. Generalized Kohn-Sham bands

Results of the gKS calculations are summarized in Table
II together with experimental results. We notice an increase
of the computed gaps when going from the LDA to a truly
nonlocal XC functional. This can be attributed to the reduc-
tion of the spurious self-interaction found in LDA, the inclu-

TABLE I. Parameters of the gKS exchange functionals used.

Functional 
 sr Coulomb kernel
�

�Å−1�

LDA 0.00 1/ �x�
sX 1.00 exp�−��x�� / �x� 1.55

HSE03 0.25 erfc���x�� / �x� 0.3

PBE0 0.25 1/ �x�
HF 1.00 1/ �x�

TABLE II. Direct and indirect generalized KS band gaps Eg�d,i�
gKS and average d-band binding energies Ed

gKS

calculated for cubic Si, InN, and ZnO. Experimental values are from data collections in Refs. 6, 16, and
20–24. In the case of ZnO they refer to the wurtzite polytype. All values are given in eV.

Energy LDA sX HSE03 PBE0 HF Expt.

Si Eg,i
gKS 0.51 0.98 1.04 1.85 6.57 1.17

Eg,d
gKS 2.53 3.23 3.15 3.98 9.08 3.40

InN Eg
gKS −0.38 0.39 0.37 1.14 7.15 0.61

Ed
gKS 13.1 17.2 14.6 14.7 18.6 16.0–16.9

ZnO Eg
gKS 0.6 2.97 2.11 3.03 11.07 3.44

Ed
gKS 4.6 8.2 5.7 5.8 9.3 7.5–8.8
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sion of a potential discontinuity between filled and empty
states in the XC functional,8,9,11 and the—in comparison to
LDA—enhanced core-valence exchange. Furthermore, for
direct gaps we observe the tendency to increase from LDA
over HSE03, sX, and PBE0 to the HF values.

For ZnO and InN, the d-band binding energies increase
with respect to the LDA, approaching the experimental val-
ues. This is an important fact to note, since the difficulties of
the LDA+G0W0 approach for these compounds partly result
from too shallow d electrons in LDA, which is itself a result
of the spuriously contained self-interaction in local and
semilocal functionals. The too shallow d electrons hybridize
too strongly with the p bands at the valence-band maximum
�VBM�, pushing them upward, in turn decreasing the gap �pd
repulsion�6 beyond the common LDA gap underestimation
found, for example, in Si. Contrary to the LDA, the gKS
starting points yield stronger bound d electrons �see Table II�
with binding energies closer to the experimental values.
Hence, the gKS functionals can be expected to give a more
reasonable estimate for the influence of the pd repulsion on
the fundamental gap and to provide better starting wave
functions for the GW calculations. For instance, in ZnO the
Zn d character of the wave functions at the VBM is de-
creased from 0.3 for LDA to 0.25 for HSE03.

In comparison to experiment, the gKS functionals, with
exception of HF, generally perform better than standard
DFT-LDA for the gaps and d-electron binding energies. For
InN, there is another important fact to note. All gKS func-
tionals are found to yield the correct ordering of the �1c and
�15v states at the zone center, in contrast to LDA findings
which give a negative sp gap.6 This is essential for the QP

description, since a correct energetic ordering of the single-
particle states is an inevitable prerequisite for a perturbative
treatment of the GW corrections.1,15

2. Quasiparticle shifts

Figure 1 shows the calculated QP shifts �Eq. �3�� for InN
and ZnO plotted versus the gKS eigenvalues. In the extreme
limit of the HF starting point, the QP shifts are given by the
correlation self-energy �C scaled with the dynamical renor-
malization factor and consequently undergo the sign change
of �C at the Fermi level. For the LDA, the exact opposite
sign change is observed, i.e., valence bands acquire a nega-
tive shift and conduction bands are shifted upward. It is re-
markable that the two hybrid functionals HSE03 and PBE0,
which essentially mix 25% HF and 75% DFT exchange,
yield very small QP shifts. This highlights that the 1/4 recipe
is indeed a remarkable good and robust choice not only for
total energies but also for one-electron energies in semicon-
ductors.

The performance of GW upon sX is somewhat disappoint-
ing. The d-band positions were very well described using the
sX approach �see Table II�, but applying GW corrections, the
localized d states are shifted upward by 1.5–2 eV, signifi-
cantly deteriorating agreement with experiment. We will re-
turn to this issue in the next section and in Sec. IV. Since the
SEX term in the GW approximation is very similar to the sX
term in gKS schemes, the differences must be mainly related
to a different behavior of the Coulomb hole term in the GW
approximation and the local-density part of the sX func-
tional.
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FIG. 1. �Color online� First-order quasiparticle shifts 	�� versus gKS eigenvalues for �a� InN and �b� ZnO. The valence-band maximum
�VBM� and the conduction-band minimum �CBM� are taken as energy zeros for occupied and empty states, respectively. Results for five
different starting gKS band structures are shown.
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Turning now to a detailed discussion of the InN results
�Fig. 1�a��, we note that the QP shifts for the upper valence
bands and the conduction bands show a rather weak disper-
sion with the eigenstate for all gKS schemes. In this energy
range, they may be approximated by scissors operators for
occupied and empty states, whose absolute values depend on
the used gKS functional. Only for the lowest In 4d- and
N 2s-derived bands, at gKS energies below −10 eV, do no-
ticeable deviations occur in the form of a downward or an
upward shift for the LDA and sX starting points, respec-
tively. In the considered energy range, the QP shifts calcu-
lated for the HSE03 or PBE0 starting point are remarkably
small with respect to the dispersion and amplitude, and they
remain well below 1 eV. For ZnO �Fig. 1�b��, similar obser-
vations can be made; however, as discussed before, the
smaller binding energy of the Zn 3d states causes a stronger
hybridization of p and d states than in InN. This might ex-
plain the upward bending of the sX shifts close to the VBM
and the stronger bending of the LDA conduction-band shifts.

3. Non-self-consistent quasiparticle bands

Table III shows the results of the G0W0 calculations for
the fundamental gaps and d-electron binding energies. In
contrast to the LDA or gKS energies, these QP energies
should have a physical meaning as measurable quantities and
thus can be compared directly to the experimental gap val-
ues. However, it is necessary to note that the experimental
value for ZnO corresponds to the wurtzite instead of the
zincblende polytype used in the calculations. The zincblende
gap is expected to be about 0.2 eV smaller than the wurtzite
one.6,25 For silicon, the QP gaps calculated upon the LDA,
sX, or HSE03 starting point bracket the experimental values
closely, with a maximum deviation of 0.2 eV. The LDA
+G0W0 values slightly underestimate the gaps. In fact, this
corresponds to the general trend of gap underestimation in
the LDA+G0W0 and/or GGA+G0W0 approach using full-
potential methods recently established by different
groups.15,16 For the gKS starting points, the calculated gaps
are larger than the experimental ones. In more detail, starting
from sX or HSE03, we find virtually identical results very

close to the experiment, while the PBE0+G0W0 approach
overestimates the gaps significantly. For the HF starting
point, the largest deviations are found, which could be ex-
pected already from the large differences between the QP
eigenvalues ��

QP and the HF ones ��
HF and the consequent

breakdown of the perturbative G0W0 treatment in Eq. �1�.
For the PBE0 starting point, however, the deviations demand
for a more subtle interpretation. To understand this deviation,
the static random phase approximation �RPA� dielectric con-
stants calculated from the gKS eigenvalues and wave func-
tions are included in Table III. Indeed, a comparison with the
experimental values suggests significant underscreening for
the PBE0 starting point, which certainly contributes to the
overestimation of the gaps. The values calculated upon the
sX and HSE03 functional are in much better agreement with
the experiment, which is bracketed closely by them �sX/
HSE03� and the LDA value.

For InN and ZnO, the trends just discussed for Si still
hold, but the actual benefit of a gKS starting point becomes
more apparent. In contrast to the LDA, the gKS starting
points reproduce the correct ordering of gap states for InN
and yield more meaningful dielectric constants in the case of
HSE03 and, with some restrictions, in the case of sX. Taking
into account that different polytypes are compared, the
agreement between the experimental gap values and the sX
+G0W0 or HSE03+G0W0 results is fair.

Similar to the gaps, the QP d-band binding energies cal-
culated for InN and ZnO show a much weaker variation with
the starting XC functional than the original gKS one-electron
d-band energies. The agreement of the calculated energies
with experimental values �Table III� is good for InN. For
ZnO with more shallow d levels, the picture is less clear,
although here the comparison with experiment is also ham-
pered by the remarkable scatter in the measured values. In
general, we observe that the d states become more strongly
bound for the gKS+G0W0 approach than for LDA+G0W0,
therefore certainly moving in the right direction. Hence, the
better treatment of exchange and correlation in the gKS start-
ing functionals improves the prediction of the semicore d
bands, although a general tendency toward too shallow the-
oretical d states clearly remains. Note, in particular, that the

TABLE III. Direct �d� and indirect �i� G0W0 QP band gaps, average d-band binding energies, and static
electronic macroscopic dielectric constants �� calculated upon the respective gKS band structures for Si,
ZnO, and InN. All energy values are given in eV. Experimental results are given for comparison.

Energy LDA sX HSE03 PBE0 HF Expt.

Si Eg,i
QP 1.08 1.31 1.32 1.65 2.93 1.17

Eg,d
QP 3.18 3.49 3.48 3.72 5.21 3.40

�� 13.9 10.8 9.8 7.8 3.4 11.90

InN Eg
QP 0.00 0.55 0.47 0.78 2.56 0.61

Ed
QP 15.1 15.6 15.2 15.3 16.6 16.0–16.9

�� 12.2 6.6 6.8 4.9 2.4 7.96

ZnO Eg
QP 2.14 3.36 2.87 3.24 5.71 3.44

Ed
QP 5.6 6.2 6.1 6.2 7.0 7.5–8.8

�� 5.3 3.0 3.4 3.0 1.8 3.74
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d bands shift upward—away from the experimental values—
starting from the sX functional. Similar observations have
been made for an LDA+U starting point in Refs. 16 and 26.
This clearly points to a deficiency of the GW approximation.

B. Self-consistent quasiparticle calculations starting from the
HSE03 functional

One important question concerns the influence of self-
consistency and the resulting QP corrections in the case of a
gKS starting point, especially in comparison to local or
semilocal DFT. For that reason, we have calculated the QP
gaps for 15 materials, without and with partial �only in G� or
full �in both G and W� self-consistency with respect to the
eigenvalues, starting from the eigenvalues and wave func-
tions of the HSE03 functional. In Secs. III A 2 and III A 3,
this starting point was found to give the best results for the
fundamental gaps and the smallest quasiparticle shifts. The
materials addressed are nonmetals, spanning the range from
small-gap semiconductors to insulators. They are chosen as a
subset of those considered in Ref. 16. With the technical
details kept largely identical, except for the different starting
point, the data collected in Table IV allow for a direct and
unbiased comparison of the GGA�PBE� starting point16 and
the HSE03 starting point used in this work. The only impor-
tant difference from Ref. 16 is that we now restore the all-
electron charge density exactly on the plane wave grid for the
calculation of the correlation energy. This yields technically
more accurate d-band binding energies. Details of the ap-
plied procedure will be published elsewhere.27

Our results show that the HSE03 gaps, even though they
are generally closer to the experiment than the DFT-LDA
and/or DFT/GGA ones, still underestimate the experimental
gaps on average by 21%. This underestimation is cured and
turned into a slight overestimation of about 2.3% upon the
inclusion of G0W0 quasiparticle corrections. The mean abso-
lute relative error �MARE� is reduced to 6.8%, which is a
significant improvement compared to the 9.9% MARE ob-
tained for the GGA+G0W0 gaps.16 Basically, this improve-
ment results from the good performance of the HSE03 start-
ing point for materials that comprise d electrons such as
GaAs, CdS, GaN, ZnO, and ZnS, for which the HSE03
+G0W0 gap MARE is calculated to be 7.9%, while it is about
19.2% in the GGA+G0W0 approach. We attribute the better
agreement to the improved description of the pd repulsion on
the HSE03 level, which impacts the energy levels and wave
functions �see Sec. III A 1�. For the rest of the materials,
both approaches GGA and HSE03 perform on par with a
MARE of 4.8/ and 6.1%. While HSE03+G0W0 usually
slightly overestimates the band gaps, the band gaps for ZnO,
ZnS, LiF, Ar, and Ne remain underestimated compared to
experiment. This may be related to the large errors of the
HSE03 gap exceeding 30% for these materials. Thus, the
inaccuracy of perturbation theory prevails for these systems,
which share a relatively weakly screened exchange �static
dielectric constant smaller than 4�. Another interesting point
to note is the different performance of both approaches for
indirect semiconductors such as Si, SiC, AlP, C, and BN. For
them, the GGA+G0W0 approach performs unexpectedly
well, resulting in a MARE of only 2.6%, while the perfor-

TABLE IV. Results for the fundamental gaps of the HSE03 and quasiparticle �G0W0, GW0, and GW�
calculations and static electronic macroscopic dielectric constants as used in W0 �RPA�. The calculated values
for the spin-orbit �SO� coupling induced gap closing given in the last column have been included in the gaps.
Also reported is the mean absolute relative error �MARE� and the mean relative error �MRE� for the gaps.
Experimental data for the gaps and dielectric constants are given for comparison �for references, see Ref. 16�;
underlined values indicate zero temperature values.

HSE03 G0W0 GW0 GW Expt. � �expt SO

Ge 0.54 0.79 0.82 0.83 0.74 14.0 16.00 0.08

Si 1.04 1.32 1.35 1.37 1.17 9.8 11.90

GaAs 1.12 1.66 1.71 1.75 1.52 9.5 11.10 0.10

SiC 2.03 2.60 2.68 2.76 2.40 5.6 6.52

CdS 1.97 2.55 2.65 2.80 2.42 4.6 5.30 0.02

AlP 2.09 2.69 2.77 2.86 2.45 6.3 7.54

GaN 2.65 3.29 3.38 3.53 3.20 4.6 5.30 0.00

ZnO 2.11 2.86 3.02 3.33 3.44 3.4 3.74 0.01

ZnS 3.05 3.69 3.79 3.95 3.91 4.5 5.13 0.02

C 5.08 5.84 5.92 6.03 5.48 4.9 5.70

BN 5.54 6.54 6.66 6.85 6.1–6.4 3.9 4.50

MgO 6.22 7.94 8.20 8.66 7.83 2.6 3.00

LiF 11.2 14.1 14.5 15.2 14.20 1.8 1.90

Ar 10.1 13.7 14.1 14.7 14.20 1.6

Ne 14.1 20.2 20.7 21.4 21.70 1.2

MARE 21% 6.8% 8.0% 10.0%

MRE −21% 2.3% 5.3% 9.3%
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mance of the HSE03 starting point is a little worse on aver-
age with a MARE of 8.4%.

Partial self-consistency following the GW0 scheme is
found to increase the gaps further by about 0.1–0.2 eV �
0.4 eV for LiF, Ar, and Ne�. Since the HSE03+G0W0 gaps
already showed the tendency to overestimate the experimen-
tal values, the MARE increases to 8.0%. This is in contrast to
the findings for the GGA+GW0 approach, where an update
of the eigenvalues in G reduces the MARE to 5.7%.16 Fol-
lowing the arguments given in Ref. 16, this can be related to
the electronic macroscopic dielectric constants �� calculated
within RPA, which are indicative of the screening involved
in W0. Obviously, the �� calculated using the HSE03 func-
tional �see Table IV� are underestimated with respect to the
experiment and, furthermore, they are generally lower than
those calculated using the GGA XC functional, due to the
generally larger HSE03 gaps. Only inclusion of excitonic
effects, i.e., electron-hole binding, allows for the calculation
of accurate electronic dielectric constants for the HSE03
functional.28,29

Further self-consistent calculations, updating the eigen-
values in both G and W, according to the GW scheme, were
performed. Parallel to the findings for a GGA starting point,
the GW gaps are larger than the GW0 gaps, also for the
HSE03 starting point. Consequently, they overestimate the
experimental gaps with a MARE of 10%, which exceeds the
GGA+GW MARE of 6.1%. The continued gap increase is
found to be due to a further reduction of the screening upon
updating the eigenvalues in W. The difference between the
GGA+GW and HSE03+GW schemes �updating eigenvalues
in both G and W� can be related only to different starting
wave functions. Obviously, the wave functions influence the
resulting gap and increase it on average by 4%. This is a
fairly small change confirming the common conjecture that
wave functions have only a small effect on the band gaps.
Similar changes were observed in the self-consistent quasi-
particle GW �scQPGW� suggested by Shishkin and Kresse28

and Faleev and co-workers.30,31

Finally, we address the d-band binding energies calculated
upon the HSE03 and PBE starting point for different levels
of quasiparticle self-consistency, as shown in Table V. We

have to note that the present calculations do not include the s
and p orbitals with the same main quantum number as the
semicore d shell. However, since here the core-valence inter-
action is approximated by HF exchange rather than by LDA,
as inherent to conventional pseudopotential calculations, the
values given in Table V already provide a reasonable esti-
mate for the d-band binding energies �see Refs. 16 and 18�.
Updated values for the PBE case are also supplied; the
present values supersede those in Ref. 16 and are more ac-
curate, since the all-electron charge density is now accurately
restored on the plane wave grid.27 In general, the QP binding
energies increase over the HSE03 one-electron values due to
the quasiparticle corrections, which can be understood
mainly from the effects of the enhanced core-valence inter-
action in the GW calculations. It is only in the case of ZnS
where this trend does not hold for yet unknown reasons.
However, compared to the experimental values, all three
quasiparticle schemes studied here underestimate the d-band
binding energies. With increasing self-consistency along the
row �G0W0, GW0, and GW�, the d bands shift to larger bind-
ing energies. Thereby, for the Ga 3d levels, the calculated
values approach the experimental ones. In the case of the
Zn 3d levels, which are just below the p-like upper valence-
band complex, the situation is different with a more pro-
nounced underestimation of the binding energies. Analogue
observations have been made for a GGA starting point,16,26,32

which gives a smaller d-band binding energy than the HSE03
starting point for each level of self-consistency. We note that
Fleszar and Hanke observed that the inclusion of vertex cor-
rections in the self-energy shifts the d states to stronger bind-
ing energies,32 suggesting that the neglect of such corrections
is responsible for the erroneous behavior of the GW approxi-
mation for d states.

IV. SUMMARY AND CONCLUSIONS

We have presented G0W0 QP calculations starting from a
variety of XC functionals: LDA, sX, HSE03, PBE0, and HF
for Si, InN, and ZnO. We have shown that the gKS schemes,
which take into account a screened-exchange potential or
part of it �sX, HSE03�, give rise to eigenvalues close to the

TABLE V. Results for the d-band binding energies of GaAs, GaN, ZnO, and ZnS on different levels of
quasiparticle self-consistency compared to experimental values starting from HSE03 and PBE wave functions
and eigenvalues, respectively.

HSE03 G0W0 GW0 GW Expt.

GaAs 17.2 17.5 17.6 17.6 18.9

GaN 15.4 16.1 16.3 16.5 17.0

ZnO 5.7 6.1 6.3 6.4 7.5–8.8

ZnS 7.5 7.2 7.2 7.3 9.0

PBE G0W0 GW0 Expt.

GaAs 14.8 16.8 17.2 18.9

GaN 13.3 15.4 16.1 17.0

ZnO 5.2 6.1 6.4 7.5–8.8

ZnS 6.1 6.8 7.2 9.0
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QP excitation energies. The resulting G0W0 corrections were
found to yield QP energies in good agreement with the ex-
perimental data, and the QP shifts are less dispersive than
those calculated upon LDA. Overall, the HSE03 and PBE0
functionals gave one-electron energies very close to the suc-
cessive GW calculations, resulting in small QP gap correc-
tions across the considered energy range. For the HSE03
+G0W0 case, the final QP energies were in very good agree-
ment with experiment, whereas the PBE0 functional was
found to yield too large QP gaps. We traced this back to a
significant underestimation of the screening for the PBE0
functional, when the random phase approximation is used
�also applied to determine W�.

Furthermore, the QP gaps for 15 materials comprising
small and large gap systems were calculated in order to pro-
vide a benchmark of the HSE03 starting point against the
GGA one. It was shown that the HSE03+G0W0 approach
yields an almost halved overall error for the fundamental
gaps compared to the GGA starting point. The largest im-
provement over the LDA and/or GGA starting points was
found for materials with shallow d states such as ZnO, ZnS,
InN, GaAs, and GaN, where the LDA and/or GGA starting
point suffers from a significant underestimation of the
d-band binding energies and a consequently overestimated
repulsion between p- and d-like states. Since the d-band
binding energies calculated using one of the gKS schemes
�e.g., HSE03� are closer to the experiment, the influence of
the pd repulsion on the gap is described more accurately.

Furthermore, the effects of different degrees of self-
consistency were investigated. It was found that both self-
consistency in G �GW0� and self-consistency in G and W
�GW� impair the agreement with experimental data. For
GW0, this is in contrast to the findings for a GGA starting
point.16 This could be traced back to the poorer description
of the dielectric screening for the HSE03 starting point. Self-
consistency according to the GW scheme with an update of
eigenvalues in both G and W further diminishes the agree-
ment with measurements due to a further reduction of the
already underestimated screening. This is analogous to the
findings for GGA based GW calculations. In general, con-
cerning self-consistent QP schemes, the present work con-
firms the observation already made in previous work: To
obtain accurate QP gaps, it is essential to use an electronic
response function and a screened interaction W that agree
closely with experiment,16,28 and to combine this screened
interaction with an accurate Green’s function G. For the GW0
case based upon HSE03 wave functions, the overestimation
of the gaps clearly relates to an underestimation of the static
electronic screening employing HSE03 and the random
phase approximation. In this light, the success of the pertur-
bative single-shot HSE03+G0W0 approach is a little bit for-
tuitous, since the overestimation of the screening is partially

canceled by too small gap corrections obtained using the
single-shot perturbative G0W0 approach. Probably, the same
is true for some other single-shot approaches, such as
EXX-OEP+G0W0. Nevertheless, if computational efficiency
is an important issue—and it more often is than not—then
the HSE03+G0W0 approach is indeed an excellent balance
between accuracy and speed. The calculations are as efficient
as for the commonly used LDA+G0W0 method and, with
very few exceptions, the errors are smaller than 10%. If bet-
ter accuracy is required, it can be achieved but only by up-
dating the wave functions and including excitonic effects in
the calculation of the screening properties, i.e., vertex correc-
tions in W.28 For most matter, such calculations are currently
not feasible due to the large computational requirements.

A similar accuracy as for the HSE+G0W0 approach can
be achieved by starting from GGA wave functions and ei-
genvalues, and updating the eigenvalues in G until conver-
gence is reached �see Ref. 16�. This approach yields compa-
rable errors as HSE03+G0W0, but it is computationally more
demanding, since several iterations are required to converge
G. The latter method is also problematic for materials with
an inverted band order in LDA and/or GGA. Which approach
to choose �HSE03+G0W0 or GGA+GW0� is to some extent
a matter of taste, and the final results are usually very close
and often bracket the experiment. If efficiency and robust-
ness �band order� are issues, the HSE03+G0W0 approach
seems to be preferable, and it is certainly much more accu-
rate than the traditional LDA+G0W0 method.

Concerning the position of the d levels, the HSE03
+G0W0 method shows an underestimation of the d-band
binding energies by about 1 eV for almost all materials.
Similar observations were made for the LDA and/or GGA
case,16,26,32 LDA+U based GW calculations,16,26 and self-
consistent quasiparticle GW �scQPGW� calculations.28 The
underestimation of the d-band binding energy is thus univer-
sal to the GW approximation and not related to the starting
wave functions. The origin for this underestimation is yet
unknown, but it is most likely related to the fact that the GW
approximation is not entirely free of self-interaction errors,
and only inclusion of vertex corrections in the self-energy
might remedy this deficiency.32
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