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We study a lattice realization of a Luttinger liquid interacting with quantum spins in terms of an antiferro-
magnetic S=1/2 Heisenberg chain, where each spin is also coupled to a �=1/2 Kondo spin degree of freedom.
This model describes the low-energy spin dynamics in quasi-one-dimensional materials, where the electronic
spins of the magnetic ions interact with those of impurities, nuclei, and possibly other spin species present in
their environment. For large ferromagnetic and antiferromagnetic Kondo interaction J�, there are two phases
corresponding to an effective spin-1 Heisenberg chain and a dimerized spin-1 /2 ladder, respectively. For weak
Kondo interaction, we establish that the Kondo interaction drives the system to a strong coupling regime. This
suggests that J�=0 is the only critical point in the system.
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I. INTRODUCTION

Entanglement and cooperative spin behavior induced by
coupling two spin systems with different intrinsic dynamics
is a recurrent theme in condensed matter physics. In metals,
it emerges in the context of the coupling between the spins of
itinerant electrons and localized atomic and/or impurity
spins, known as Anderson impurity or Kondo problem.1 The
famous “central spin” problem of an electronic system inter-
acting with a bath of nuclear or impurity spins has recently
reemerged in the area of spin-polarized microelectronics and
the physics of quantum, spin-entangled electronic states.2

Perhaps the most interesting example of this kind is a
quantum-critical spin system, such as found in strongly cor-
related magnetic insulators, coupled to quantum or classical
spins.3–9 In practice, the interaction between electronic spins
in the system of interest and “external” spin variables arises
in a variety of different contexts and occurs on vastly differ-
ent energy scales. The first example is the exchange interac-
tion between valence electrons involved in cohesion or
chemical bonding and a localized d orbital, such as in the s-d
model of magnetic metals. If the d orbital is singly occupied
and the hybridization is weak, the dominant interaction is
Kondo exchange.1 Second is the coupling of electronic spins
to impurity spins present in real material. While its effects
scale with impurity concentration, in many cases and, in par-
ticular, at low temperatures it is the determining mechanism
for physical phenomena such as damping and quantum de-
coherence. The response of a spin system that is either at or
close to quantum criticality to impurity spins is particularly
singular. It exhibits fascinating impurity-driven physics,3,4

which has emerged in studies of lightly doped cuprates and
related two-dimensional Mott insulators. Another example
occurs in complex alloys, where in addition to magnetic 3d
ions there often exist magnetic rare-earth cations �R3+�,
which lead to a lattice of macroscopically many “impurity”
spins even for ideal stoichiometric materials.5,6 In the
Haldane �S=1� chain antiferromagnet R2BaNiO5, the coop-

erative coupling to paramagnetic rare-earth spins dramati-
cally modifies the spin dynamics of gapped Ni2+ chains and
induces magnetic order at a finite temperature.6 Finally, at
very low energies and/or temperatures, the hyperfine cou-
pling of electronic and nuclear spins becomes important.7–9

Indeed, many abundant isotopes of magnetic ions have non-
zero nuclear spin.10 Furthermore, their electronic spins can
also interact with nuclei of surrounding ligand ions.11

Although in many cases the coupling of the spin system to
external spin degrees of freedom can be neglected in the
same way as the coupling to a generic thermostat is swept
under the carpet in equilibrium statistical mechanics, it is of
the same fundamental importance. The existence of such a
coupling is required in order for the quantum �spin� system
to reach its equilibrium state, or the ground state at T=0.
Relaxation to equilibrium requires the change of both energy
and angular momentum, which are integrals of motion for an
isolated spin system. The simplest example is a Heisenberg
magnet �or paramagnet� in a magnetic field. Here, the Hamil-
tonian conserves the total spin component along the field
direction. It is only through �the implicit� coupling to some
external system of angular momenta, or spin bath, that the
magnet can adjust its total spin as the magnetic field changes
�e.g., in a quantum phase transition from a spin gap to a
magnetized phase�.

While the effect of external spin degrees of freedom on
the spin dynamics can often be averaged out, e.g., in the
framework of spin-boson or spin-bath models,12,13 there are
important cases where the coupled dynamics of the two sys-
tems is of paramount interest. One such case is known as
“pulling,” which refers to the hybrid dynamics in a system of
electronic spins coupled to a thermalized ensemble of
nuclear spins. Interest in this phenomenon was recently re-
newed by studies of field-induced quantum phase transitions
in quantum magnets, where it was discovered that pulling
prevents the expected full softening of the electronic spin
excitation spectrum.14 Instead, the latter acquires a gap,
which increases with decreasing temperature, while a soft-
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mode behavior is induced in the nuclear spins, which “take
over” the quantum criticality.7–9

Here, we focus on the opposite, much less studied and
understood limit of a quantum-critical spin system coupled
to quantum spins, whose dynamics is governed solely by
their Berry phases. We consider a Heisenberg S=1/2 chain
with antiferromagnetic exchange coupling J�0, where each
spin is coupled to an additional local Kondo spin �=1/2 by
an exchange J�,

H = J�
�ij�

N

S�i� · S�j� + J��
i=1

N

S�i� · ��i� . �1�

This model is sometimes referred to as incomplete ladder or
SU�2� Kondo necklace model �Fig. 1�. The model �1� is a
one-dimensional �1D� analog of the incomplete bilayer,
which recently received much attention in the context of the
two-dimensional �2D� cuprates.15 The fundamental differ-
ence between the 1D and 2D Kondo necklaces is that in D
=2 quantum criticality is achieved by tuning the coupling J�,
while in D=1 the S=1/2 chain is a critical Luttinger liquid
for J�=0. In what follows, we allow the Kondo coupling J�
in Eq. �1� to the local spins to be either ferromagnetic or
antiferromagnetic.

The model �1� is closely related to the Kondo necklace
model,

HKNM = J�
�ij�

N

Sx�i�Sx�j� + Sy�i�Sy�j� + J��
i=1

N

S�i� · ��i� ,

�2�

which was introduced in Ref. 16 as a simplified version of
the Kondo lattice model in the 1D case. The Kondo necklace
model �2� has been studied by a variety of methods such as
Monte Carlo simulations,17 real-space renormalization group
�RG� techniques,18 exact numerical diagonalization,19

density-matrix renormalization group �DMRG�
computations,20,21 bond operator mean field theory,22,23 and
bosonization.24,25 While all methods agree in the regime
�J���J, it is still controversial whether a small Kondo cou-
pling �J���J leads to the formation of a spin gap. While
real-space RG and exact diagonalization of small systems
suggest the existence of a critical value Jc� of the Kondo
coupling strength, below which the spin gap vanishes, Monte
Carlo and DMRG computations indicate that, in fact, Jc�=0.
The doped case has recently been investigated in Ref. 26. In

the two- and three-dimensional cases, it is well established
that there is a quantum phase transition between a Néel or-
dered ground state at small J��0 and a Kondo singlet phase
at J��Jc�.

22,23,27–29

In the present work, we study the model �1� using the flow
equation method. In order to “close” the system of flow
equations, we employ a decoupling scheme for spin operator
products, which is asymptotically valid in the limit J�→0,
and use essentially exact expressions for the two-spin corre-
lation function in the “master” spin-1 /2 chain, derived by
field theory methods.30,31 The flow equations obtained upon
decoupling are then solved numerically in the weak coupling
limit.

II. STRONG COUPLING LIMITS

In order to understand general properties and phase dia-
gram of the model, it is instructive to analyze the strong
coupling limits J�→ ±� first.

A. Ferromagnetic Kondo coupling J�\−�

For strong ferromagnetic Kondo coupling, an effective
spin 1 is formed on each rung. The Hamiltonian describing
the interaction between these spins takes the form of an an-
tiferromagnetic spin-1 Heisenberg chain,

Heff =
J

4�
j

T� j · T� j+1. �3�

Here, Tj
� are spin-1 operators. The antiferromagnetic spin-1

chain is known to display a spontaneously broken Z2 � Z2
symmetry characterized by a nonzero string order Ostring

�

�0, where32

Ostring
� = lim

n→�
�Tj

� exp�i� �
k=j+1

j+n−1

Tk
�	Tj+n

� 
 . �4�

It is well known that excitations in the spin-1 Heisenberg
chain are described in terms of a triplet of gapped magnons.

B. Antiferromagnetic Kondo coupling J�\�

In this limit, the ground state is that of decoupled singlet
dimers. This is, in fact, the same ground state as for the
regular two-leg ladder with Jrung�Jleg in the limit Jrung→�.
It also can be characterized by a string order parameter,
e.g.,33

Ostring = lim
n→�
��

k=j

j+n

�− 4� j
zSj

z

 = lim
n→�
�exp�i��

k=j

j+n

�k
z + Sk

z	
 .

�5�

The excitation spectrum in this limit again has a gap.

III. WEAK KONDO COUPLING

The question we want to address is what happens for
weak Kondo couplings �J���J. The Kondo necklace model
can be viewed as a particular limit of an asymmetric two-leg

S(1)

σ (1)

S(2)

σ (2)

S(3)

σ (3)

J J

J' J' J'

S(1)
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J J
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FIG. 1. �Color online� One-dimensional Kondo necklace model:
a “master” S=1/2 Heisenberg chain with antiferromagnetic cou-
pling J, where each spin interacts with an extra, Kondo spin degree
of freedom �=1/2, via coupling J�.
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ladder model, in which the coupling along the first leg J is
much larger than the rung coupling J�, which in turn is large
compared to the exchange J2 along the second leg

J � J� � J2. �6�

This case is difficult to analyze for the following reason.
Bosonizing the spin chains making up the two legs of the
ladder results in a two-flavor Luttinger liquid. However, the
cutoff of this theory is equal to J2. The rung coupling J� can
then not be treated as a perturbation of the two-flavor Lut-
tinger liquid as it is much larger than the cutoff of the latter.
In the Kondo necklace model, the role of J2 is played by the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction in-
duced by J�, which is of order J�2 /J� �J��.

In order to analyze the small J� regime, we have em-
ployed Wegner’s flow equation method.34–39

A. Flow equation method

In the flow equation method,34,35 a one-parameter family
of unitarily equivalent Hamiltonians H�l� is constructed via
the differential equation

dH�l�
dl

= �	�l�,H�l�
 . �7�

The anti-Hermitian generator 	�l� is taken as

	�l� = �H0�l�,H�l�
 , �8�

where H0�l� is a particularly chosen “diagonal” part of the
Hamiltonian. For the Kondo necklace model, we chose H0�l�
as

H0�l� =
1

N
�

k

Jk�l�Sk · S−k +
1

N
�

k

�k�l��k · �−k. �9�

Here, the Fourier transformed spin operators are defined as

Sk = �
n

S�n�e−ikn, S�n� =
1

N
�

k

Ske
ikn. �10�

In the initial Hamiltonian �1� the second term is absent,
but it will be generated under the flow. The full Hamiltonian
will be of the form

H�l� = H0�l� + H1�l� + H2�l� , �11�

where

H1�l� =
1

N
�

k

Jk��l�Sk · �−k. �12�

The contribution H2�l� will, loosely speaking, contain all
multispin interaction terms compatible with the global SU�2�
spin rotational symmetry. A key element in implementing the
flow equation approach is that the initial coupling J� is small
and all terms in H2�l� will be of order J�2 or higher. As long
as we constrain our attention to the small J� limit, we may
therefore neglect H2�l� when calculating the generator 	�l�
of the unitary transformation

	�l� = �H0�l�,H1�l�
 = 	1�l� + 	2�l� . �13�

The explicit forms of 	1,2�l� are

	1�l� =
i

N2�
kk�

Jk�
� �l��Jk�l� − Jk+k��l�
�Sk+k� 
 S−k
 · �−k�,

	2�l� =
i

N2�
kk�

Jk�
� �l���k�l� − �k+k��l�
��k+k� 
 �−k
 · S−k�.

�14�

Working out the required commutators of 	1,2�l� with H0,1�l�
�see Appendix A�, we arrive at the following expression for
the Hamiltonian H�l�:

H�l� =
1

N
�

k

Jk�l�Sk · S−k +
1

N
�

k

�k�l��k · �−k

+
1

N
�

k

Jk��l�Sk · �−k +
1

N3 �
k,p,q

Mk,p,q
�1� �l�


Sk+p+q · �−pS−k · �−q +
1

N3 �
k,p,q

Mk,p,q
�2� �l�


Sk+p · SqS−k · �−p−q +
1

N3 �
k,p,q

Mk,p,q
�3� �l�


Sk+p+q · S−k�−q · �−p +
1

N3 �
k,p,q

Mk,p,q
�4� �l�


�k+p · �q�−k · S−p−q +
i

N3 �
k,p,q

Mk,p,q
�5� �l�


�Sk+p+q 
 S−k
 · �−p−q +
i

N3 �
k,p,q

Mk,p,q
�6� �l�


��k+p+q 
 �−k
 · S−p−q. �15�

The initial values of the various couplings are

Jk�0� = J cos k, Jk��0� = J�, Mk,p,q
�a� �0� = 0.

In order to obtain a set of flow equations, we need to de-
couple the three- and four-spin terms. We do this by expand-
ing in fluctuations around the J�=0 ground state, i.e.,

Sk · Sk��q · �−k−k�−q = �Sk · Sk���q · �−k−k�−q

+ ��q · �−k−k�−q�Sk · Sk�

+ :Sk · Sk��q · �−k−k�−q: , �16�

Sk� · �qSk · �−k−k�−q =
1

3
�Sk� · Sk��q · �−k−k�−q

+
1

3
��q · �−k−k�−q�Sk� · Sk

+ :Sk� · �qSk · �−k−k�−q: , �17�
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Sk · Sk�Sq · �−k−k�−q

= �Sk · Sk��Sq · �−k−k�−q +
1

3
�Sk · Sq�Sk� · �−k−k�−q

+
1

3
�Sk� · Sq�Sk · �−k−k�−q + :Sk · Sk�Sq · �−k−k�−q: .

�18�

These expansions can be motivated by bosonizing the
Hamiltonian �15� �see Appendix B�. Substituting Eq. �18�
into Eq. �15�, we obtain expressions for H0�l� and H1�l�. The
static spin-spin correlation functions entering Eq. �18� and
hence the expressions for H0,1�l� should be calculated self-
consistently with respect to the flowing Hamiltonian H0�l�.
However, at weak coupling �J���J, one may calculate the
correlators with respect to the initial Hamiltonian H0�0�, as
the corrections are of higher order in J�. Taking into account
that

�Sk · Sk�� = �k,−k��Sk · S−k� ,

��k · �k�� =
3N

4
�k,−k�, �19�

and retaining only terms quadratic in spin operators, the
Hamiltonian �15� is reduced to

H̃�l� =
1

N
�

k

Jk�l�Sk · S−k +
1

N
�

k

�k�l��k · �−k

+
1

N
�

k

Jk��l�Sk · �−k. �20�

The flow equations for the couplings take the form

dJk

dl
=

2

3N
�
k�

�Jk�
� �2�2Jk − Jk+k� − Jk−k��

��k� · �−k��

N

+
2�Jk��

2

3N
�
k�

�2�k� − �k+k� − �k−k��
��k� · �−k��

N
,

�21�

d�k

dl
=

2

3N
�
k�

�Jk�
� �2�2�k − �k+k� − �k−k��

�Sk� · S−k��

N

+
2�Jk��

2

3N
�
k�

�2Jk� − Jk+k� − Jk−k��
�Sk� · S−k��

N
, �22�

dJk�

dl
=

4Jk�

3N
�
k�

��Jk� − Jk��Jk+k� + Jk−k� − 2Jk��
�Sk� · S−k��

N

+ ��k� − �k���k+k� + �k−k� − 2�k��
��k� · �−k��

N
�

+
4

3N
�
k�

Jk�
� Jk+k�

� ��Jk+k� − Jk�
�Sk+k� · S−k−k��

N

+ ��k+k� − �k�
��k+k� · �−k−k��

N
� . �23�

As we have remarked earlier, in order to solve the flow equa-
tions, we need to know the static spin-spin correlator
�Sk ·S−k� for the isotropic spin-1 /2 Heisenberg chain. This
can be calculated accurately from the results of Refs. 30 and
31. There, the large distance asymptotics of spin-spin corre-
lations functions was determined by combining exact results
for correlation amplitudes40 with renormalization group im-
proved perturbation theory in the marginally irrelevant inter-
action of spin currents present in the continuum description
of the spin-1 /2 Heisenberg chain,

�S�m + j� · S�j�� �
3

4
� �− 1�m

m
� 2

�3g
f1�g� −

f2�g�
�2m2� ,

�24�

where

0 π 2ππ/2 3π/2
k

0

2

4

6

8

10

<
S

k
S

-k
>

N
-1

FIG. 2. Static spin-spin correlation function on the isotropic
spin-1 /2 Heisenberg chain.
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0

0.01
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J’
k/J
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l=8
l=32
l=128

FIG. 3. �Color online� Kondo coupling Jk� as a function of the
momentum k for several values of the parameter l characterizing the
flow, l=1, l=4, l=8, l=32, and l=128. The initial value is Jk�
=0.05J. The Kondo interaction becomes small under the flow ex-
cept in the vicinity of k=0,2�.
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f1�g� = 1 + �3

8
−

c

2
	g + � 5

128
−

c

16
−

c2

8
	g2

+ � 21

1024
+

7c

256
−

7c2

64
−

c3

16
+

13��3�
32

	g3,

f2�g� = 1 +
g

2
+ �c +

3

4
	g2

2
+

c�c + 2�
2

g3. �25�

Here, g is the running coupling constant depending on the
distance m between spins,

�ge1/g = 2�2�e
E+cm , �26�

and c is a free parameter that is related to the choice of
renormalization scheme. �In what follows, we set c=−1.� It
was demonstrated in Ref. 31 that for m�2, Eq. �24� is in
very good agreement with numerical results. Supplementing
these results with the known values

�S�j� · S�j + 1�� =
1

4
+ �

n=1

�
�− 1�n

n
= − 0.443 147 . . . ,

�S�j� · S�j�� =
3

4
, �27�

and then Fourier transforming, we arrive at the result shown
in Fig. 2. We see that in momentum space, the spin-spin
correlator is dominated by the logarithmic divergence at k
=�.

B. Solution of the flow equations

We are now in a position to solve the flow equations
�21�–�23� numerically. We find that for small initial values
on the Kondo interaction �J���0.1J, the behavior of the so-
lutions to the flow equations exhibits two regimes. In the
following, we measure l in units of J−2. For large flow pa-
rameters l�100, the couplings appear to approach a fixed
point. However, as l increases further, the behavior eventu-
ally changes and the couplings diverge. We interpret the
eventual runaway flow as being indicative of the emergence
of a strong coupling phase, characterized by the formation of
a spectral gap.

2π1.96π 1.98π
k

0

0.01

0.02

0.03

0.04

0.05

J’
k/J

l=128
l=256
l=512
l=10000

FIG. 4. �Color online� Kondo coupling Jk� in the vicinity of k
=2� for several values of the parameter l characterizing the flow.
The initial value is Jk�=0.05J.
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l=512
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FIG. 5. �Color online� Kondo coupling Jk� as a function of the
momentum k in the vicinity of k=� for several values of the pa-
rameter l characterizing the flow. The initial value is Jk�=0.05J. The
couplings Jk� tend to a small but finite limit for large values of l.

0 100 200
n

0

0.0002

0.0004

0.0006

0.0008

0.001

J’
(n

)/
J

l=128
l=256
l=512
l=10000

FIG. 6. �Color online� Kondo coupling J��n� in coordinate space
for various values of the flow parameter l. The initial value of the
Kondo coupling is J�=0.05J. There is a long range smooth compo-
nent as well as a shorter range staggered one.
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FIG. 7. �Color online� Kondo coupling Jk� as a function of the
momentum k in the vicinity of k=� for large values of the param-
eter l characterizing the flow. The initial value is J�=0.06J. The
absolute values of the couplings are seen to increase with l.
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1. Kondo interaction

We find that for l�100 and small initial values of the
Kondo interaction �J���0.1J, the couplings Jk� become very
small everywhere except at k=0,2�. This holds in the ferro-
magnetic as well as the antiferromagnetic case. This behav-
ior is shown in Fig. 3, where we plot Jk� as a function of k for
different values of l and J�=0.05J. The vicinity of k=2� is
shown in greater detail in Fig. 4. In Fig. 5, we show the
Kondo coupling in the vicinity of k=� for several values of
the flow parameter l. We observe that for large values of l,
Jk��l� appears to approach a small but finite limit. In position
space, the Kondo coupling J� becomes more and more long
ranged as the flow parameter l increases. This is shown in
Fig. 6. For very large values of the flow parameter l, we
always enter a regime in which Jk� diverge. This is shown for
the case J�=0.06J in Fig. 7.

2. Ruderman-Kittel-Kasuya-Yosida interaction

The flow of the RKKY couplings �k�l� is shown in Fig. 8
for several values of the flow parameter l. We see that the
flow appears to approach a small finite limit quite quickly.
The RKKY couplings are strongest in the vicinity of k=�,
where they become of order J�2 /J.

For sufficiently large values of the flow parameter l, the
RKKY interaction starts to decrease quite quickly and even-
tually diverges.

3. Heisenberg interaction

The Heisenberg interaction changes only weakly under
the flow. We therefore plot the difference Jk�l�−Jk�0� rather
than Jk�l� itself in Fig. 9. We find that the k dependence is
unchanged under the flow, so that

Jk�l� = J�l�cos�k� . �28�

Here, J�l�=J+O�J�2 /J�.

IV. DISCUSSION

The above analysis of the flow equations shows that a
small Kondo interaction drives the system to a strong cou-

pling regime. On the basis of the analysis presented in this
work, we cannot establish the nature of the strong coupling
phase. However, using exact diagonalization of small sys-
tems, one can see that there is a spin gap for J��0.3J, which
suggests that the large-J� phase extends at least down to such
interaction strengths. Combining this observation with the
result of the flow equation analysis suggests a form of the
phase diagram as shown in Fig. 10. This would imply the
presence of a spin gap � for any J��0, but the flow equation
approach presented here does not allow for a determination
of how � scales with J�.

The appearance of a spin gap induced by weak coupling
to the Kondo spins in the Kondo necklace problem consid-
ered here can be accounted for in terms of the following
physical argument. As we have argued above, a weak Kondo
coupling leads to a tendency to form rung singlets or triplets
between the master chain and the adjacent Kondo spin. In
other words, the energy of the system is lowered when each
Kondo spin forms an entangled state with its chain partner.
Flipping a single spin in the chain costs an entanglement
energy of a single Kondo bond, �J�. Propagating two
spinons resulting from such a flip to a distance m �i.e., flip-
ping m spins in the chain� would break m entangled bonds
and have energy cost proportional to m �this is somewhat
similar to spinon confinement in the problem of coupled
spin-1 /2 chains�.41 By this argument, there appears an effec-
tive linear attraction between spinons, V�mJ�, independent
of the sign of the Kondo exchange, which favors spinon
confinement in the master chain. Consequently, an arbitrarily
small Kondo coupling J�, independent of its sign, leads to
spinon confinement and appearance of the spin gap, i.e., the
phase diagram of Fig. 10.
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0

α k(l)
/J

l=8
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l=10000

FIG. 8. �Color online� RKKY coupling �k as a function of the
momentum k for several values of the parameter l characterizing the
flow. The initial value is Jk�=0.05J.
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FIG. 9. �Color online� Difference of Heisenberg couplings
Jk�l�−Jk�0� as a function of the momentum k for several values of
the parameter l characterizing the flow, l=1, l=4, l=8, and l=32.
The initial value was taken to be Jk�=0.05J.
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FIG. 10. Zero temperature phase diagram of the SU�2� invariant
one-dimensional Kondo necklace model.
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APPENDIX A: COMMUTATORS

In this appendix, we list the commutators needed for de-
termining the flow equations.

�	1,H0
 =
1

N3 �
k,p,q

�k,p,q
�1� Sk+p 
 S−k · �q−p 
 �−q

+
1

N3 �
k,p,q

�k,p,q
�2� Sq · S−kSk+p−q · �−p. �A1�

�	2,H0
 =
1

N3 �
k,p,q

�k,p,q
�3� �k+p 
 �−k · Sq−p 
 S−q

+
1

N3 �
k,p,q

�k,p,q
�4� �q · �−k�k+p−q · S−p. �A2�

�	1,H1
 =
1

N3 �
k,p,q

�k,p,q
�5� �Sk+p+q · �−pS−k · �−q

+ Sk+p · SqS−k · �−p−q − Sk+p+q · S−k�−q · �−p

− i�Sk+p+q 
 S−k
 · �−p−q + H.c.� . �A3�

�k,p,q
�1� = Jp��Jk − Jk+p
��q − �p−q
 ,

�k,p,q
�2� = − 4Jp��Jk − Jk+p
�Jq − Jk+p−q
 ,

�k,p,q
�3� = Jp���k − �k+p
�Jq − Jp−q
 ,

�k,p,q
�4� = − 4Jp���k − �k+p
�Jq − Jk+p−q
 ,

�k,p,q
�5� = − Jq�Jp��Jk − Jk+p
 ,

�k,p,q
�6� = − Jq�Jp���k − �k+p
 . �A4�

The commutator �	2 ,H1
 is obtained from �	1 ,H1
 by re-
placing ��5� by ��6� and interchanging S�↔��.

APPENDIX B: BOSONIZATION

In order to bosonize the Hamiltonian �15�, it is convenient
to transform the spin operators to coordinate space. At weak
coupling, the generated interactions are short ranged. In a
continuum description, the most relevant �in the renormaliza-
tion group sense� contributions can then be obtained by con-
sidering nearest-neighbor terms. Interactions between next
nearest neighbors will merely lead to a renormalization of
the couplings as well as generate �less relevant� derivative

terms. Using Eq. �10� and keeping only the terms corre-
sponding to nearest-neighbor interactions, we find

H�l� � J�l��
i

S�i� · S�i + 1� + ��l��
i

��i� · ��i + 1�

+ J��l��
i

S�i� · ��i� + J̃��l��
i

S�i� · ���i + 1� + ��i

− 1�
 + M�1��l��
i

S�i� · ��i + 1�S�i + 1� · ��i� + M�2�


�l��
i

S�i� · S�i + 1�S�i − 1� · ���i� − ��i + 1�


+ M�3��l��
i

S�i� · S�i + 1���i� · ��i + 1� + M�4�


�l��
i

��i� · ��i + 1���i − 1� · �S�i� − S�i + 1�


+ iM�5��l��
i

�S�i� 
 S�i + 1�
 · ���i� − ��i + 1�


+ iM�6��l��
i

���i� 
 ��i + 1�
 · �S�i� − S�i + 1�
 .

�B1�

We now bosonize the part H0=J�l��iS�i� ·S�i+1� of the
Hamiltonian �B1� by standard methods �see, e.g., Refs. 33
and 42–45�,

S��j� � J��z� + J̄��z̄� + �− 1� jn��x� , �B2�

J+�z� =
a0

2�
e−i��z�, J̄+�z̄� =

a0

2�
ei�̄�z�,

Jz�z� = − i
a0

4�
�z�, J̄z�z̄� = −

a0

4�
�z̄�̄ ,

n�x� = c�a0�cos��

2
	,− sin��

2
	,− sin��

2
		 . �B3�

Here, z=v�− ix, z̄=v�+ ix, �=�+ �̄, �=�− �̄, and we use a
normalization such that

�ei���z�e−i���0�� = z−2�2
. �B4�

The bosonized form of H0 is

H0 =
vs�l�
16�

� dx���x��2 + ��x��2
 . �B5�

Using operator product expansions, we then can extract the
dominant parts of the various other terms in Eq. �B1�. De-
noting x= ja0, we have

S�j� · S�j + 1���j� · ��j + 1�

� �c1 + �− 1� jc2 cos��

2
	���j� · ��j + 1� + ¯ ,

�B6�
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S�j� · ��j + 1�S�j + 1� · ��j�

� �c1 + �− 1� jc2 cos��

2
	���j� · ��j + 1�

+ c3�J�x� − J̄�x�
 · ��j� + ¯ , �B7�

�S�j� 
 S�j + 1�
 · ��j� � 2c3�J�x� − J̄�x�
 · ��j� + ¯ ,

�B8�

S�j� · S�j + 1�S�j − 1� · ��j� − S�j − 1� · S�j�S�j − 2� · ��j�

� �− 1� jn�x� · ��j� . �B9�

As expected, the interactions generated under the flow are
simply all terms that are compatible with the global spin

rotational SU�2� symmetry. The term �J�x�− J̄�x�
 ·��j�
breaks the left-right �chiral� symmetry of the free boson
Hamiltonian in the J�→0 limit. However, it is well known46

that interchange of left and right moving bosons is not a
symmetry of the spin-1 /2 Heisenberg model at low energies

due to the presence of a marginally irrelevant interaction of
spin currents �which we have omitted in Eq. �B5� for the
sake of brevity
. Inspection of the scaling dimensions of the
bosonic parts of the various terms generated along the flow
suggests that at low energies, the most relevant interaction of
staggered magnetizations is precisely the one picked out by
our decoupling scheme �Eq. �18�
. We note that the term
�B8� is not included in our decoupling scheme. While it is

likely to be as relevant as �J+ J̄� ·�, the bare coupling of the
latter is much larger, which justifies neglecting the former in
the weak coupling regime J��J.

Another fluctuation induced contribution that is not in-
cluded in our decoupling scheme is the interaction of dimer-
izations,

�− 1� j cos���x�
2

	��j� · ��j + 1� . �B10�

It is less relevant than the terms we keep. If it were the
dominant interaction in the problem, its effect would be to
open up dimerization gaps among the Kondo spins and spin-
chain spins, respectively.
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