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The angle-dependent interlayer magnetoresistance of overdoped Tl2Ba2CuO6+� has been measured in high
magnetic fields up to 45 T. A conventional Boltzmann transport analysis with no basal-plane anisotropy in the
cyclotron frequency �c or transport lifetime � is shown to be inadequate for explaining the data. We describe
in detail how the analysis can be modified to incorporate in-plane anisotropy in these two key quantities and
extract the degree of anisotropy for each by assuming a simple fourfold symmetry. While anisotropy in �c and
other Fermi surface parameters may improve the fit, we demonstrate that the most important anisotropy is that
in the transport lifetime, thus confirming its role in the physics of overdoped superconducting cuprates.

DOI: 10.1103/PhysRevB.76.104523 PACS number�s�: 74.72.Jt, 71.18.�y, 72.10.Bg, 73.43.Qt

I. INTRODUCTION

There are many routes to investigating the mechanism of
high-temperature superconductivity, and naively one might
expect the normal state to be the simplest. Despite concerted
experimental effort, however,1 the normal-state properties of
cuprates remain a profound theoretical challenge.2 Indeed,
even from the earliest transport measurements in these com-
pounds it was clear that the normal state was far from
conventional.3 Arguably the most remarkable phenomena are
the distinct power laws of the in-plane resistivity �ab and
inverse Hall angle cot �H temperature dependences. In opti-
mally doped YBa2Cu3O7−� �YBCO� and La2−xSrxCuO4
�LSCO�, for example, �ab�T� varies linearly with temperature
over a wide temperature range, whereas cot �H maintains a
strong T2 dependence.4,5 In other words, it is as if these ma-
terials exhibit distinct scattering mechanisms which are sepa-
rately manifested according to the experimental probe being
considered. Anderson coined the phrase “lifetime separation”
to describe this anomalous behavior, and today its interpre-
tation remains one of the greatest obstacles to the develop-
ment of a coherent description of the normal-state quasipar-
ticle dynamics in high-Tc cuprates.

Three contrasting approaches dominate the current think-
ing on the transport problem in cuprates: Anderson’s
two-lifetime picture,6 marginal Fermi-liquid �MFL�
phenomenology,7 and models based on fermionic quasiparti-
cles that invoke specific �anisotropic� scattering mechanisms
within the basal plane.8–12 In the two-lifetime approach, scat-
tering processes involving momentum transfer perpendicular
and parallel to the Fermi surface are governed by indepen-
dent transport and Hall scattering rates 1 /�tr and 1/�H with
different T dependences. The proponents of the MFL hypoth-
esis assume a single T-linear scattering rate which naturally
accounts for �ab�T�, but introduce an unconventional expan-
sion in the magnetotransport response whereby the Hall
angle, for example, is given by the square of the transport
lifetime.13 This anomalous expansion is attributed to aniso-
tropy in the �elastic� impurity scattering rate, possibly due to
small-angle scattering off impurities located away from the
CuO2 plane.13

Attempts to explain the anomalous behavior of �ab�T� and
cot �H�T� in cuprates within a Fermi-liquid �FL� approach

have centered around the assumption of a �single� inelastic
scattering rate that is strongly dependent on the quasiparticle
wave number k. This anisotropy can arise either due to an-
isotropic electron-electron �possibly umklapp� scattering12 or
coupling to a singular bosonic mode, be that of spin,8,9

charge,10 or d-wave superconducting fluctuations.11 Generat-
ing a clear separation of lifetimes within these single-lifetime
scenarios, however, requires a subtle balancing act between
different regions in k space with distinct T dependences.14

In order to test these various proposals and to proceed
towards a theoretical consensus, information on the momen-
tum �k� and energy �� or T� dependence of the transport
lifetime � at or near the Fermi level �F is urgently required.
This is a nontrivial exercise, however, since the transport
coefficients themselves are angle-averaged quantities involv-
ing differently weighted integrations around the Fermi sur-
face �FS�. While angle-resolved photoemission spectroscopy
�ARPES� can probe directly the in-plane quasiparticle life-
time via the imaginary part of the self-energy Im ��k ,��, its
relevance to dc transport is still unclear.15 Moreover, there
remains some dispute as to the correct form of Im ��k ,��
even for samples with nominally the same composition.16,17

Measurements of interlayer magnetoresistance as a func-
tion of angle have yielded important information about the
FS topology �size and shape� in a variety of layered metals
including organic conductors18 and quasi-two-dimensional
�Q2D� oxides.19–21 In a recent paper, we showed that this
technique could be developed to extract information on the
scattering rate anisotropy and applied the technique to over-
doped Tl2Ba2CuO6+� �Tl2201�.22 In the present paper, we
present a more thorough and detailed analysis of our angle-
dependent magnetoresistance �ADMR� measurements on
overdoped Tl2201, focusing in particular on the procedure
used to fit ADMR, and show how this analysis fails at higher
temperatures unless one includes such anisotropy in �. We
progressively introduce anisotropy into the formalism and
explore the effects of this in both the cyclotron frequency �c
and the transport lifetime �. The approach presented here is
similar to that described recently by Kennett and McKenzie
who derived a generalized expression for ADMR in layered
metals with basal-plane anisotropy.23 In this paper, we focus
on issues pertinent to Tl2201, the importance of each param-
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eter in fitting the ADMR signal and their interdependence,
and the issue of sample misalignment. Although it is difficult
to isolate anisotropy in one from anisotropy in the other, the
strong temperature evolution of the ADMR signal �and sub-
sequent measurements of its doping dependence15� suggests
that the dominant anisotropy is in � and not �c. The paper is
set out as follows. Section II describes the FS parametriza-
tion of Tl2201 and the necessary symmetry considerations
with respect to the ADMR analysis. Section III briefly de-
scribes the ADMR experiment itself. The Boltzmann formal-
ism and the resulting analysis is described in Sec. IV for the
cases where the parameters �c and � are both isotropic and
anisotropic �within the basal plane�. Our conclusions are pre-
sented in Sec. V.

II. THREE-DIMENSIONAL FERMI SURFACE
OF Tl2Ba2CuO6+�

The present FS parametrization is identical to that used
previously20,22,23 and so shall be described here only briefly.
The interested reader is referred to Ref. 19 which details a
similar parametrization of the 	 sheet of Sr2RuO4. Being
extended in the kz direction, the quasiparticle dispersion
contains a finite �though small �meV� transfer integral

t��
 ,kz�, where 
 is the azimuthal angle in the kx-ky plane.
The parameter t��
 ,kz� is anisotropic in the plane, and the
Fermi wave vector kF is therefore modulated by both the
in-plane dispersion and t��
 ,kz�. The clearest way to express
this is by expanding kF into cylindrical harmonics19,20

kF�
,�� = �
m,n=0

k
mn

� c
s �� c

s ��cos

sin
�n� � �cos

sin
�m
 . �1�

where � c
s
� denotes coefficients corresponding to cosine and

sine terms, �=kzc /2, and c=23.2 Å is the interlayer dimen-
sion of the unit cell. The symmetry of the Brillouin zone
limits the number of parameters of interest, and a pictorial
illustration of this is shown in Fig. 1. In the kz direction,
inversion symmetry �→−� requires that the only terms con-
taining � be cosines. Three further symmetries restrict the
parametrization: �i� the twofold rotational symmetry 
→

+
, �ii� the mirror plane 
→−
 /2−
, and �iii� the screw
symmetry � ,
→�+
 ,
+
 /2. The transformations differ
from those in Ref. 19 because of a different choice in coor-
dinate axes, but the operations are identical. The first sym-
metry requires that all m be even. The next symmetry re-
quires that all cosine terms have mmod4	0 and all sine
terms have mmod4	2. For example, cos 4
=cos 4�−
 /2
−
� whereas cos 2
=−cos 2�−
 /2−
�. The reverse is true
for the sine terms. The final symmetry requires that all of the
cosine terms be accompanied by n that are even and the sine
terms be accompanied by any n that are odd. For example,
cos � sin 2
=cos��+
�sin 2�
 /2+
�, but cos 2� sin 2

=−cos 2��+
�sin 2�
 /2+
�. The converse is of course true
for the cosine terms that have mmod4	0. Equation �1� can
thus be simplified to

kF�
,�� = �
m,n=0

m mod 4=0

n even

kmn cos�n��cos�m
�

+ �
m,n=0

m mod 4=2

n odd

kmn cos�n��sin�m
� . �2�

We have shown previously that the minimum number of
parameters required to fit the data that simultaneously satisfy
these symmetry constraints are k00, k04, k21, k61, and k101.

20

Figure 2 shows the warping created by progressive inclusion
of these parameters, beginning with a dispersionless �t�=0�
isotropic FS. Equation �2� has exact fourfold symmetry
though the modulation t� gives rise to eight highly symmet-
ric points where the transfer integral vanishes, as predicted
by band-structure calculations.24 Figure 3 shows the projec-
tion of the three-dimensional FS as deduced by ADMR20

overlaid on that determined by ARPES25 
see Eq. �15�; this
curve corresponds to the nominal doping level of this crys-
tal�. The agreement is very good, but most importantly the
two experiments, to a good approximation, share the eight
points of high symmetry. For ease of computation, the Fermi
surface can be described by

.

FIG. 1. �Color online� The Brillouin zone stacking for
Tl2Ba2CuO6+�. There is inversion symmetry about the kx−ky plane:
� ,
→−� ,
 and three further symmetries about the axis along the
X line. As described in the text they are �i� the twofold symmetry

→
+
, �ii� the mirror symmetry 
→−
 /2−
, and finally �iii�
the screw symmetry involving a translation in the kz direction and a
rotation: � ,
→�+
 ,
+
 /2.
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�F��,
� =
�2

2m
kF

�2�
� − 2t� cos �

�
a



�k21 sin 2
 + k61 sin 6
 + k101 sin 10
� , �3�

where kF
� �
�=k00+k04 cos�4
� and a=3.866 Å is the in-

plane lattice parameter.

III. EXPERIMENT

Tl2201 is the most suitable cuprate system for ADMR
studies due to its single Fermi sheet,26 its strong
two-dimensionality,27 its low residual resistivity,28–30 and its
accessibility to the whole overdoped region of the cuprate
phase diagram.31 Single crystals were fabricated using a self-
flux method in alumina crucibles.32 As-grown crystals are
naturally overdoped, and the doping level �and therefore the
desired Tc� is set by annealing in oxygen or argon or in a
vacuum.32 The crystal used in this study �300 �m
�150 �m�20 �m� was annealed in oxygen at 600 K for
200 min, resulting in Tc
17 K. Electrical contacts were at-
tached using Dupont 6838 silver paste in a quasi-
Montgomery four-wire configuration. ADMR measurements
were performed at 45 T in the hybrid magnet at the National
High Magnetic Field Laboratory, Tallahassee, FL, using a

probe with a two-axis rotator. Initially, the platform on which
the sample was mounted was rotated by an azimuthal angle

expt and then the interplane resistivity �zz was measured as
the polar angle �expt was swept at constant temperature and
constant field �see Fig. 4�.

IV. FITTING OF THE ANGLE-DEPENDENT
MAGNETORESISTANCE IN Tl2201

In this section we review how the Boltzmann transport
equation can be used to fit the ADMR data. We begin with
the simplest case whereby both �c and � are isotropic before
going on to discuss the more general case in which both
parameters are anisotropic within the conducting plane.

A. Isotropic � and �c

In the presence of a magnetic field a quasiparticle
traverses the FS following the contours defined by the dis-
persion. During this journey the quasiparticle will gain ve-
locity from the electric field until it encounters a scattering
event, after which it begins its journey again. As the angle of
the field with respect to the crystal axes is adjusted, the qua-
siparticle will traverse different orbits and the average veloc-
ity in the direction of the current can vary dramatically. This
picture is formalized in the Chambers tube integral, which is
the solution to the Boltzmann transport equation in the
relaxation-time approximation

�ij =
e2

4
3�2�
FS

dk� �fk

�k
�vi�k,0��

−�

0

v j�k,t�et/�dt , �4�

where fk is the mean occupation of state k and � is assumed
to be independent of k �or, equivalently, isotropic in the azi-

FIG. 2. �Color online� Quasi-2D Fermi surfaces described by
Eq. �2� with progressive inclusion of cylindrical harmonics �a� k00,
�b� k21, �c� k04, and �d� k61 and k101.

.

.

FIG. 3. �Color online� The projection of the 3D dispersion for
overdoped Tl2201as determined by ADMR �thin black lines�, plot-
ted over the ARPES �thick green line� results for a compound with
a nominally similar doping �Ref. 25�. The warping of the transfer
integral is exaggerated by approximately 100 times for clarity.

FIG. 4. �Color online� Diagram describing the ADMR experi-
mental technique, whereby the sample �schematically shown in
blue� is rotated by an azimuthal angle 
expt with respect to the
laboratory frame �xp ,yp ,zp�, and then data are continuously taken as
a function of polar angle �expt. In the actual experiment, the crys-
tallographic �xc ,yc� plane does not lie exactly in the laboratory
frame due to a slight misalignment and the corresponding polar
angle �crys	� �taken as the angle between the field direction and
the normal to the plane on the sample� differs from �expt. Moreover,
the azimuthal 
crys may change as a function of �expt as explained in
the Appendix.
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muthal angle 
�. The Chambers formula can be used in a
situation where both closed and open orbits are present.33,34

For our particular interest only closed orbits are involved
�the FS is Q2D�,20,25 and we are able to use the simpler
Shockley-Chambers tube integral. Furthermore, it is easier to
use cylindrical coordinates, in line with our description of
kF�� ,
�. The interplane conductivity is then given by

�zz =
e2

4
3�2 � d��− �f0

��
� � dkB

� �
0

2


d

vz�
,kB,��

�c
�

0

�

d
�
vz�
 − 
�,kB,��

�c

� e−
/�c�, �5�

where kB is the reciprocal-space direction parallel to the
magnetic field H, d
=�cdt, and �c is considered isotropic.
In order to use Eq. �5� to analyze the ADMR data, we follow
Yamaji35 and define a vector kz

0 as shown in Fig. 5�b�. The
projection of the magnetic field on the azimuthal plane rela-
tive to the kx axis �corresponding to the Cu-O-Cu bond di-
rection� is labeled 
crys 
see Fig. 5�a��. Each orbital plane is
then defined by three parameters: the polar angle �crys	�,
the azimuthal angle 
crys, and kz

0. The former two are deter-
mined during the experiment whereas the latter is an integra-
tion variable in the fitting procedure described below.36 The
intersection of this plane with the FS gives the path of the
quasiparticle in reciprocal space. This plane is given by the
equation

kx sin � + kz cos � = �kB� = kz
0 cos � . �6�

This is a convenient notation because kz can be uniquely
described in terms of kz

0 and the projection of the Fermi wave
vector onto the azimuthal plane as the quasiparticle traverses
an orbit, kF

� �
�. In summary,

kz = �kB� = kz
0 − kF

� �
�cos�
 − 
crys�tan � . �7�

We make the replacement �→�F in Eq. �5� by approxi-
mating �f0 /��→���−�F� for kT��F. The periodicity of
vz�
� and vz�
−
�� in 
 and 
−
�, respectively, is of some
computational benefit. Taking the Fourier transform of vz
�Refs. 37 and 38� and writing it as a Fourier sum gives

vz�
� = a0 + �
0

�

an cos n
 + bn sin n
 ,

vz�
 − 
�� = c0 + �
0

�

cn cos n�
 − 
�� + dn sin n�
 − 
�� , �8�

where an, bn, cn, and dn are Fourier coefficients. Using a
Laplace transform and after a few algebraic manipulations,
the conductivity is finally given by37,38

�zz =
e3�0B cos���

2
2�2 � dkz
0�0

−1

��a0c0 +
1

2�
n=1

� �ancn + bndn

1 + ��0�0�2 −
�andn − bncn��0�0n

1 + ��0�0�2 �� ,

�9�

where �c=�0 and �=�0 to emphasize that these parameters
are isotropic. Equation �9� is used to calculate the resistivity
in the transverse direction �zz by taking the inverse of �zz,
which is correct to a good approximation due to the large
anisotropy of the in-plane and interplane resistivity. Because
parameters such as the effective mass m* are not well known,
it is the usual practice to simulate the relative change in
magnetoresistivity ��zz /�zz0, where �zz0 is the interplane re-
sistivity at zero field, rather than �zz directly. This normaliza-
tion procedure means that the warping parameters in the kz
direction can only be determined as ratios. In other words,
the ADMR can be used to obtain values for k61/k21 and
k101/k21 but not k21, k61, or k101 directly.

The parameters we wish to determine therefore are k00,
k04, k61/k21, k101/k21, and �0�0 
the cyclotron frequency and
the scattering time always appear as a product in the sum of
Eq. �9� and thus behave as a single parameter�. In a number
of earlier studies on different Tl2201crystals, in which all
parameters were allowed to vary, a consistent set of FS pa-
rameters were obtained.15,20,22 This enables us to refine our
parametrization and minimize the number of free parameters
without losing confidence in their relative magnitudes. We
fix k00, for example, by first obtaining the doping level p
using the universal phenomenological relation39 between p
and the critical temperature Tc,

Tc�p�
Tc

max 
 1 − 82.6�p − 0.16�2, �10�

and then adopting the simple hole-counting procedure

�
k00
2 �/�2
/a�2 = �1 + p�/2. �11�

Our next simplifying assumption is that t��
� vanishes at
eight symmetry points on the FS �see Fig. 3� as expected
from band-structure calculations24 and revealed by earlier
ADMR measurements.20 For this to be the case, we require

1 −
k61

k21
+

k101

k21
= 0, �12�

which fixes k101/k21 to whatever value k61/k21 is given.
Hence, only three parameters k04, k61/k21, and the product
�0�0, are used to fit simultaneously five polar angle sweeps

FIG. 5. �Color online� Schematic representation of a single qua-
siparticle orbit with an oriented magnetic field. Panel �a� gives the
projected view of the Fermi surface, defining the azimuthal angle

crys, while panel �b� gives the definition of the parameters kB, kz

0,
and �crys.
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at different azimuthal angles �in other words, the data are
treated as a single data set, not five separate curves�. It is
important to realize that these constraints could be relaxed
without a significant effect on the other key parameters.

The fitting procedure begins by evaluating �zz for a given
polar angle �crys and azimuthal angle 
crys. The c-axis veloc-
ity is evaluated, vz=�−1���k� /�kz, as a function of 
 for a
given kz

0, where � is defined by Eq. �3�. The kz dependence is
determined by Eq. �7� and substituted into vz. For the given
kz

0, the Fourier transform is taken and the sum in Eq. �9� is
evaluated. This is then integrated over kz

0 across the whole
Brillouin zone and the result inverted to give �zz��crys ,
crys�.
This is calculated for all �crys and 
crys in a single data set.
This process is repeated for different parameter values until a
best fit is achieved using standard minimization procedures.

The solid lines in Fig. 6�a� are ADMR data taken at T
=4.2 K and �0H=45 T, normalized to the zero-field resistiv-
ity value �zz0. Each color represents a different azimuthal
angle at which the individual polar ADMR sweeps were
taken. Despite the fact that �0�0 is less than 0.5 in this
sample, the variations in the c-axis magnetoresistance are
significant, with both azimuthal and polar angles, thus tightly
constraining our parametrization. Note that these data were
obtained on a different crystal to those reported in Refs. 20
and 22 though the resulting parametrization �k00=0.729 Å−1,
k04=−0.022 Å−1, k61/k21=0.7� is very similar. The best least-
squares fits to Eq. �9� are shown as black dashed lines and
appear quite adequate for the full range of azimuthal and
polar angles studied. 
Data at larger angles were not taken at
this temperature in order to avoid the large torque forces that
accompany a transition to the superconducting state, which
occurs here when Hc2��� surpasses 45 T.�

Corresponding data and fits for T=14 and 50 K are shown
in panels �b� and �c�, respectively. For the fits at higher tem-
peratures �where a larger angular range can be swept�, all FS
parameters are fixed to their 4.2 K values and only the prod-
uct �0�0 is allowed to vary. The fits rapidly deteriorate as the
temperature is raised and are clearly no longer a reliable

representation of the data. In fact, even if we allow k00, k04,
and k61/k21 to vary with temperature, the fits do not signifi-
cantly improve. Furthermore, if k00 is allowed to be a free
parameter, the fitting procedure tends to minimize at values
where the Fermi surface is larger that the first Brillouin zone,
which is clearly unphysical. In response to this failing, we
abandon our naive picture of isotropic �c and � and proceed
to incorporate anisotropy into the formalism.

B. Isotropic � and anisotropic �c

To illustrate how significant anisotropy in �c can be, we
consider first the most elementary tight-binding description
of an isotropic square 2D lattice. The dispersion of such a
system can be described by the equation

��k� − �0 = − 2t
cos�kxa� + cos�kya�� , �13�

where �−�0 describes the quasiparticle dispersion taken rela-
tive to some reference �for example, the nonbonding energy
�0�. Quasiparticles complete orbits with a frequency �c that
depends on the scalar product kF ·vF via the expression

�c�
,�� = eB cos �
kF�
� · vF�
�

�kF�
�2 . �14�

Near the bottom of the band, the quasiparticle orbits in a
magnetic field appear almost circular and vF is isotropic and
nearly parallel to the crystal momentum k. As �F approaches
the Van Hove singularity �VHS�, however, anisotropy in vF
becomes significant33 and �c develops fourfold anisotropy
that essentially becomes infinite at the VHS.

Let us now turn to consider the analogous situation in
Tl2201. According to recent ARPES experiments,25 the FS
can be fitted by a tight-binding dispersion relation

FIG. 6. �Color online� The solid lines are c-axis magnetoresistivity data ��zz=�zz�H�−�zz0, normalized to the zero-field resistivity �zz0,
taken at different azimuthal rotations 

crys=8° �red�, 
crys=18° �orange�, 
crys=32° �green�, 
crys=46° �blue�, and 
crys=56° �violet�
relative to the Cu-O-Cu bond direction� at three different temperatures �a� 4.2 K, �b� 14 K, and �c� 50 K. The azimuthal angles given here
strictly apply only to �expt= ±90 due to misalignment of the crystal with respect to the platform axes �see the Appendix for details�. The black
dashed lines are the best least-squares fits obtained assuming that �c� �=�0�0� is independent of 
 and that the parameters k04 and k61/k21

are fixed to their values at T=4.2 K. Thus only �0�0 is allowed to vary with temperature.
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� − �0 =
t1

2
�cos kx + cos ky� + t2�cos kx cos ky� +

t3

2
�cos 2kx

+ cos 2ky� +
t4

2
�cos 2kx cos ky + cos 2ky cos kx�

+ t5�cos 2kx cos 2ky� , �15�

with t1=−0.725, t2=0.302, t3=0.0159, t4=−0.0805, and t5
=0.0034 �eV�.

In order to visualize the doping evolution of the FS pa-
rameters according to Eq. �15�, we show in Fig. 7 the varia-
tion of kF�
�, vF�
�, and �c�
� �left, center, and right pan-
els, respectively� for different values of the chemical
potential assuming a simple rigid band shift. The energy con-
tours have been centered on the X point of the Brillouin
zone. Though the band structure may change with hole
doping,40 this approximation scheme serves as a good illus-
tration of how the anisotropy in �c varies in a comparable
way to that in vF. As expected, the anisotropy grows as the
FS at �
 ,0� approaches the VHS, though in the doping range
relevant to Tl2201, it never exceeds 30%. Interestingly, as
the chemical potential is raised, the anisotropy of �c changes
sign, so that the cyclotron frequency goes from being maxi-
mal to being minimal along the zone diagonal, but retaining
fourfold symmetry throughout. We approximate this without
making any assumptions as to the sign of �c using the ex-
pression

�c�
�−1 
 �0
−1
1 + � cos�4
�� . �16�

The curves in the right-sided panel of Fig. 7 correspond to
a range of � values from �
0.3 �for p=0.3� to �
0 at
optimal doping.

The addition of this extra parameter causes only minor
modifications to the fitting procedure. The conductivity is
now replaced by the equation

�zz =
e2

4
3�2 � B cos �dkz
0

� �
0

2


d
�
0

�

d
�
vz�
,kz

0,�F�
�c�
�

vz�
 − 
�,kz
0,�F�

�c�
 − 
��

� exp
h�
� − h�
 − 
��� , �17�

where h�
�=−� d

�c�
��0

. Under isotropic circumstances h�
�

=−
 /�0�0 as in Eq. �5�. However, in the case where �c
satisfies Eq. �16�, this becomes

h�
� = −
1

�0�0
�
 +

1

4
� sin 4
� . �18�

We can now define two new periodic functions pz�
� and
pz�
−
�� whereby

pz��� 	
vz��,kz

0,�F�
�c���

e−��/4�sin 4�/�0�0. �19�

The Fourier transform of each function is given by Eq.
�8�. The form of Eq. �9� is identical, only that �0 is inter-
preted as the average of �c within the plane 
see Eq. �16��.
The fitting procedure proceeds as described in Sec. IV A
except our fitted parameters are now k04, k61/k21, �,
and �0�0. As before, k00=0.729 Å−1, k04=−0.022 Å−1 and
k61/k21=0.71 are fixed at low T �4.2 K�, and only �0�0 and �
are allowed to vary as a function of temperature. Figures
8�a�–8�c� show the best least-squares fits of the same ADMR
data under this new parameterization scheme. While the fits
are closer to the real data than in the corresponding isotropic
case, there is still a clear problem with the higher-
temperature fits. If we choose to allow k61/k21 to vary, how-
ever, the fits become reasonable at all temperatures, as shown
in Figs. 8�d�–8�f�. The mathematical reason for this is that �
has two competing roles: it appears in the exponent h�
� and
in the ratio vz�
� /�c�
�. In the latter, � plays a similar role
to k61/k21, as can be seen with an expansion using elemen-
tary trigonometric identities

�sin 2
 +
k61

k21
sin 6
 +

k101

k21
sin 10
��1 + � cos 4
�

= �1 − �/2 +
�k61

2k21
�sin 2
 + � k61

k21
+ �/2 +

�k101

2k21
�sin 6


+ � k101

k21
+

�k61

2k21
�sin 10
 +

�k101

2k21
sin 14
 . �20�

The k61/k21, k101/k21, and � terms can compensate each
other as long as � remains small �that is, as long as products
such as �k101/2k21 are negligible�. The only noncompensat-
ing contribution of � in this expansion is in the multiplica-
tion of the sin 2
 and sin 14
 terms, though perturbations of
the former would be noticeable first. In other words, the fit-
ting procedure tends to keep the sum � /2+k61/k21 constant
as a function of temperature and so the T-dependent changes
are contained in the behavior of h�
�. We return to this point
later in our discussion of Fig. 10.

The changes in k61/k21 and � required to satisfactorily fit
the data are significant ��20% change in k61/k21 and a factor
of 10 increase in �� and, if correct, would imply pronounced
FS reconstruction with increasing temperature. Between 4
and 50 K, one may expect the Fermi distribution to broaden
by around 2% of the bandwidth about the chemical potential.
At p=0.26 this is approximately equivalent to a change in
nominal doping of ±0.02, allowing a change in � of at most
±0.05, as is evident from Fig. 7. This is significantly less
than is required to quantitatively account for the evolution of

.

.

FIG. 7. �Color online� The parameters kF, vF, and �c for four
different doping levels �p=0.17, 0.22, 0.26, and 0.3� based on the
dispersion relation given by Eq. �15� and assuming a rigid band
shift. The black dashed line corresponds to the doping level of our
Tc=17 K sample.
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the ADMR. To our knowledge, the FS restructuring required
to fit the present data has never been reported in cuprates and
so justifying it would require some very subtle physical ar-
guments. Indeed, photoemission studies have reported insig-
nificant changes as a function of temperature on overdoped
compounds.41 Moreover, in a recent doping dependence
study,15 we found that the overall anisotropy decreases with
increasing carrier concentration—i.e., as one approaches the
VHS—in marked contrast to the band-structure picture dis-
cussed above and illustrated in Fig. 7. In the following sec-
tion, therefore, we turn to consider the effect of anisotropic
scattering, which not only allows the data to be fitted accu-
rately, but also avoids the physical and mathematical diffi-
culties we have encountered when considering anisotropy in
�c alone.

C. Anisotropic � and anisotropic �c

In the most elementary description, the scattering lifetime
� is the average time between collisions of an electron trav-
eling in a metal. In a FL picture, however, this is taken to be
the mean lifetime of an electron excitation, giving the decay

time of a quasiparticle to its ground state near the chemical
potential �. The rate of change of occupation of a state at k
is related to the intrinsic transition rate between two arbitrary
states k and k�, weighted by the occupation of k and the lack
of occupation of state k�.

The transition rate cannot be calculated without a priori
knowledge of the scattering processes that are present. In the
limit of elastic scattering, however, both k and k� are on the
same energy surface and this function is simply cos�
kk��,
where 
kk� is the angle between k and k�. We then use the
relaxation-time approximation, whereby Pkk�=P�
kk�� is a
function of 
kk� only, and this allows a natural definition for
the scattering time �:

1

�
�� 
1 − cos�
kk���P�
kk��sin�
kk��d
kk�. �21�

The relaxation-time approximation is often an excellent
starting point for interpreting transport data, and � is usually
considered to be independent of momentum, of both the ini-
tial and final states. A more general theory, however, would
allow Pkk� to be a function of the initial state k. In this

FIG. 8. �Color online� The raw data �solid curves with colors corresponding to 
crys as defined in Fig. 6� and best least-squares fits �black
dashed lines� for ADMR taken at three different temperatures T=4.2 K 
panels �a� and �d��, 14 K 
�b� and �e��, and 50 K 
�c� and �f��. In
panels �a�, �b�, and �c�, the parameters k04 and k61/k21 are fixed at their 4.2 K values while �0�0 and � are allowed to vary. In panels �d�, �e�,
and �f�, k61/k21 is also allowed to vary with temperature.
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instance, it may be assumed that the form of Eq. �21� stays
very similar,42 except that Pkk� is now k dependent, and
hence the replacement �→��k� needs to be made. In this
case, it can be shown42 that

gk��k� 	
gk

��k�
�� �gk − gk��Pkk�dk�, �22�

where gk= fk− fk
0, and fk and fk

0 are the probabilities of an
electron occupying a state k in the presence of a field and in
equilibrium, respectively. ��k� is the scattering rate. Equa-
tion �22� is general enough to include inelastic scattering
mechanisms too �involving energy transfers �kBT for any
given scattering event�, and this is a direct consequence of
the relaxation-time approximation. Such details would be
normally be contained in gk, and the Boltzmann equation
would be very difficult to solve. In the relaxation-time ap-
proximation, however, these details are deliberately ignored
and all that is required for Eq. �22� to hold is that the statis-
tical ensemble of quasiparticles return to equilibrium be-
tween collision events.43

Under these circumstances, we are able to define an an-
isotropic scattering time that will enter all of our calculations
of the conductivity. Since the scattering time always appears
in the product �c� in the sum of Eq. �26�, it is clear that the
procedure for incorporating anisotropic � will be identical to
Sec. IV B where we introduced anisotropy in �c. The sim-
plest model would involve a fourfold anisotropy, and in a
similar fashion to Sandeman and Schofield14 or Ioffe and
Millis11 we write

��
� = �0
1 + 	 cos�4
�� , �23�

where �0	1/�0.
Figure 9 illustrates the effect of this form of scattering

rate anisotropy on the mean free path l for the FS derived in
Eq. �15� �assuming p=0.26�. If 	=0, the scattering rate is
isotropic and l�k� simply follows the form of vF�k� 
panel
�a��. If 	�0 
panel �b��, ��k� is maximal in the direction
parallel to the zone axes and competes with vF�k�. If, on the
other hand, 	�0, ��k� is maximal along the zone diagonals,
the anisotropy in l�k� is enhanced in this direction.

With this definition of ��
�, the conductivity is identical
to Eq. �17�, but now we have h�
�=� d


�c�
���
� and

h�
� = −
1

�0�0
�
�1 +

	�

2
� +

1

4
�	 + ��sin 4


+
	�

16
sin 8
� , �24�

with the periodic functions pz�
� and pz�
−
�� now rede-
fined as

pz��� 	
vz��,kz

0,�F�
�c�
�

exp�−

�	 + ��
4

sin 4� +
	�

16
sin 8�

�0�0
� .

�25�

The conductivity is then given by

�zz =
e3�0B cos���

2
2�2 � dkz
0�	�

−1

� �a0c0 +
1

2�
n=1

� � ancn + bndn

1 + ��	��0�2

−
�andn − bncn��	��0n

1 + ��	��0�2 �� , �26�

where �	�=�0 / �1+	� /2�. Equipped with Eq. �26� we can
now follow the procedure described above. The variable pa-
rameters are now k04, k61/k21, 	, �, and �0�0. As before we
fix k00 �=0.729 Å−1� and k04 �=−0.022Å−1� and fit the low-
temperature data with all other parameters free to vary. In
this instance, however, we are now overparametrized since 	
and � can compensate each other to within a factor of
±	� /4. As a consequence, one cannot accurately quote ab-
solute values for each parameter individually, but rather the
sum 	+� 
see inset �b� of Fig. 10�.

We can parametrize the quality of the fits by the sum of
squared differences of the data from the fitted curve, which is
denoted ��2. As ��� becomes large, the terms 	 and k61/k21
are no longer able to compensate and the fits decline in qual-
ity. However, as shown in Fig. 10, there is also a broad flat
region over which ��2 is minimized and one cannot pinpoint
the exact value of �. The axes in inset �a� are shifted so that
it is apparent that the sum � /2+k61/k21 is pinned to a value
of about 0.72, a fact which continues to be true at higher
temperatures no matter what one forces � to be. Similarly,
the value of 	+� is pinned to nearly zero at low tempera-
ture. From the low-T parametrization used previously to set
the FS parameters, we can settle on a value of �

−0.1±0.1 which is comparable to that estimated from the
ARPES-derived dispersion despite being opposite in sign.

Panels �a�, �b�, and �c� of Fig. 11 show the resulting fits to
the new parametrization scheme, in which only 	 and �0�0
are allowed to vary with temperature, for T=4.2, 14, and
50 K, respectively. In contrast to previous schemes, the qual-
ity of the fits are comparable at all temperatures, without the
need for any variation in the other parameters. Hence, by
introducing T-dependent anisotropy in the scattering rate,
there is no longer any need to invoke FS reconstruction to
account for the evolution of the ADMR data. We therefore
conclude that this is the most elegant and physically realistic
parametrization scheme of all those considered here.

The sign of 	 is found to be positive, indicating that scat-
tering is weakest along the zone diagonals, as determined

FIG. 9. The mean free path l for three different cases of the
anisotropy parameter 	 for Tl2201 with p=0.26: �a� the isotropic
case �dashedline� 	=0, �b� 	=−0.1,−0.2,−0.3 �solidline, moving
inwards along the zone diagonal�, and �c� 	=0.1,0.2,0.3 
solidline,
moving outwards along �
 ,
��.

ANALYTIS et al. PHYSICAL REVIEW B 76, 104523 �2007�

104523-8



previously by azimuthal ADMR measurements.29 As the
temperature is raised, 	 increases markedly. This implies that
the anisotropy resides in the inelastic, rather than the elastic,
scattering channel. As with anisotropy in �c, anisotropy in
the scattering rate can be FS derived—e.g., due to FS insta-
bilities such as charge-density waves, spin-density waves, or
antiferromagnetic fluctuations. Spin, charge, or indeed super-
conducting fluctuations all have a specific momentum �and

frequency� dependence that is peaked at �or, in some cases,
confined to� particular regions in k space. Anisotropy in �−1

can also signify additional physics due, for example, to
strong electron correlations near a Mott insulating state or
anisotropic electron-impurity scattering.13 The present analy-
sis cannot of course reveal the microscopic mechanism of the
anisotropic scattering itself, but can identify some important
characteristics of the scattering mechanism, such as its mag-
nitude or its symmetry. Systematic measurements—e.g., as a
function of doping and or pressure—would then allow a de-
tailed comparison with the various theoretical proposals and
thus help to reveal important hints as to its microscopic ori-
gin.

V. CONCLUDING REMARKS

In this paper we have set out a detailed formalism for
incorporating in-plane anisotropy, both in the cyclotron fre-
quency and in the transport lifetime, into the analysis of in-
terlayer magnetoresistance of a Q2D metal. The focus of the
present paper has been to illustrate the need to introduce an
anisotropic scattering rate in order to explain the evolution of
the ADMR data in overdoped superconducting Tl2201
within a Boltzmann framework. An anisotropic cyclotron
frequency �c�
� can fit the data, but only if we allow the
parameters describing the Fermi surface itself to change as a
function of temperature. Given the absence of evidence for
such a reconstruction, this hypothesis seems unlikely. If, on
the other hand, an anisotropic scattering time is introduced,
all the FS parameters can remain constant and only �0�0 and
the anisotropy in ��
� are adjusted. Such a simple param-
etrization is both elegant and experimentally accurate, and
we therefore believe it to be the most likely explanation of
the observed ADMR data.

A cautionary note is perhaps appropriate here. In the pre-
ceding calculations we have assumed the relaxation-time ap-
proximation and so the microscopic relaxation dynamics

.

. . . . . . . .
.

.

.

FIG. 10. �Color online� The quality of fit parameterised by the
sum ��2 as a function of �, which is given a specific value between
−0.4 and 0.3. Conversely, the parameters �0�0 ,	 and k61/k21 are
free to vary. The parameter ��2 has a broad minimum, indicating
that a good fit can be achieved for a broad range of �. Insets �a� and
�b� show respectively the interdependence of k61/k21 and 	 on �
�see also Eqs. �20� and �24��. The axes in �a� are shifted as de-
scribed in the text.

FIG. 11. �Color online� Raw ADMR data �solid curves with colors corresponding to 
crys as defined in Fig. 6� plotted with the best
least-squares fits �black dashed lines� for three different temperatures �a� 4.2 K, �b� 14 K, and �c� 50 K. Here both �c and � are considered
anisotropic in the azimuthal angle 
. The parameters k04, k61/k21, and � are fixed to their values determined at T=4.2 K, while �0�0 and 	
are allowed to vary as a function of temperature.
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have been ignored. The concept of anisotropic scattering re-
mains valid as long as ��
� is interpreted as the exponential
decay of the distribution between scattering events.43,44

However, we cannot rule out more exotic relaxation dynam-
ics that depends on the presence of the magnetic field and
hence may be manifested differently if probed by a different
means �for example, photoemission�. We have discovered
that such exotic dynamics does not need to be invoked to
explain our ADMR data and conclude that its evolution with
temperature, when viewed from a Boltzmann framework us-
ing the relaxation-time approximation, is best explained by a
scattering rate with a temperature-dependent anisotropy.

At high doping levels, the lifetime separation in cuprates
is less apparent,28 leading some researchers to consider the
problem from this perspective. This route has the added ad-
vantage of allowing the limits of the conventional Boltzmann
transport theory to be explored as one moves across the
phase diagram towards to a more exotic and potentially
non-FL ground state on the underdoped side. The key mes-
sage here is that by generalizing the theory to include an
anisotropic scattering rate ��k�	�−1�k� one can continue to
apply the Boltzmann approach and successfully account not
only for the evolution of the ADMR with temperature, but
also the distinct T dependences of �ab and cot �H found in
overdoped Tl2201.22 Furthermore, initial measurements of
the doping dependence of 	 in Tl2201 suggest a significant
increase in anisotropy in �−1�k� as one moves towards opti-
mal doping,15 consistent with the observed increase in life-
time separation �as manifest in the temperature dependence
of the Hall coefficient� with decreasing doping.5,31,45 The in-
troduction of such anisotropy has proven a fruitful model to
understand the normal state of high-temperature
superconductors,8–12,46–48 though clearly more work is
needed to parametrize �−1�k� fully and to identify the origin
of the anisotropy.

Finally, although the focus of this paper has been a system
with body-centered-tetragonal symmetry, the analysis could
very easily be generalized to layered systems of other crys-
tallographic symmetries as already pointed out in Ref. 23
and perhaps also one-dimensional systems with anisotropic
scattering.49 ADMR experiments on BEDT-TTF-based or-
ganic superconductors have already been performed at low
temperature and explained in a Boltzmann framework with-
out the need to invoke an anisotropic scattering rate.34 A full
azimuthal and temperature dependence on other organic salts
may, however, require the introduction of such a parametri-
zation. Similarly the same ideas may also apply to layered
charge-density-wave compounds such as the rare-earth tritel-
lurides RTe3.50 The Boltzmann equation, though simple in its
assumptions, thus remains a powerful paradigm whose ex-
planatory power is still to be explored. ADMR is an ideal
probe for just such an exploration.
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APPENDIX: ACCOUNTING FOR SAMPLE
MISALIGNMENT IN THE ADMR

FITTING PROCEDURE

In this section we illustrate how sample misalignment can
be accounted for. The effect of sample misalignment on
ADMR has been considered by several authors before this
study, in particular Goddard et al.51 and Abdel-Jawad.37 Be-
fore we begin, let us define two frames of reference: that of
the laboratory, xp, yp, zp, in which the field is parallel to the
zp direction, and that of the crystal, xc, yc, zc. The yp axis is
taken as the axis of polar rotation, and xp is perpendicular to
this. The normal to the crystallographic plane shall be de-
fined as zc, and the in-plane directions xc and yc shall be
taken to be parallel and perpendicular to the copper-oxide
bonds, respectively. The angle between the field direction
and the crystallographic normal zc gives the crystallographic
polar angle �. The projection of the field onto the xc-yc plane
gives the crystallographic azimuthal angle 
, taken from the
xc axis.

There are two important differences between this study
and that of Goddard et al.51 First, instead of correcting ex-
perimental �expt and 
expt for misalignment to find the appro-
priate crystallographic � and 
, we fit the experimental data
by including the misalignment in the fitting procedure. Sec-
ond, in the analysis of Goddard et al.,51 the crystallographic
axes xc and yc can fall anywhere in the plane of the crystal
and do not have assigned direction with respect to the crystal
bonds. This gives the misalignment one fewer parameter, and
one of the crystal axes can always fall somewhere in the
xp-yp plane of the laboratory frame. In the present analysis
this is not the case and so three rotations need to be included
in the fitting procedure in order to account for every possible
misalignment.

�i� Beginning with the sample aligned with the laboratory
frame, there is a misalignment in azimuthal angle denoted by
�asym, rotated about zp as shown in Fig. 12�a�.

FIG. 12. �Color online� The reference frame of the laboratory,
xp, yp, zp, and that of the crystal, xc, yc, zc where xc is parallel to the
copper-oxide bonds. �a� The first misalignment considered is that
where the experimental zp and crystal zc directions coincide but the
axes on the azimuthal plane are offset by an amount �asym. The
second misalignment considered is that where the experimental and
crystal z directions do not coincide. Two rotations are responsible:
one about the platform yp axis by an angle �asym

y shown in �b� and
another about xp� by an angle �asym

x shown in �c�. This gives a
completely general description of the crystal misalignment with re-
spect to the platform axes.

ANALYTIS et al. PHYSICAL REVIEW B 76, 104523 �2007�

104523-10



�ii� A rotation about the yp axis denoted by �asym
y as

shown in Fig. 12�b�.
�iii� A rotation about the xp axis denoted by �asym

x as
shown in Fig. 12�c�.

These transformations are elegantly described algebra-
ically. We follow the notation whereby a rotation R����	 is a
rotation of a vector 	 by angle � about an axis �. In particu-
lar the laboratory axis zp� is tranformed relative to the crys-
tallographic zc�0,0� �before any azimuthal or polar rotation�
axis to

zp� = Rxp�
��asym

x �Ryp�
��asym

y �zc�0,0� , �A1�

due to the misalignment of the sample. In an ADMR experi-
ment, the sample is then rotated about the laboratory zp� azi-
muthally by an angle 
expt and then rotated about the xp� axis
a polar angle �expt. The position of the crystallographic
zc��expt ,
expt� after these azimuthal and polar rotations axis
is given by

zc��expt,
expt� = Rxp�
��expt�Rzp�

�
expt�zc. �A2�

With reference to Fig. 13 it is elementary to see that the
projection of the field parallel to zp� on the crystallographic
zc��expt ,
expt� will give �crys, which should be used to calcu-
late the value of the magnetoresistance in the analysis. Simi-
larly, the projection on the xc��expt ,
expt�−yc��crys ,
expt�
plane will yield 
crys. Algebraically we have

cos��crys� = zp�zc��expt,
expt� �A3�

and

tan�
crys� =
zp�xc��expt,
expt�
zp�yc��expt,
expt�

. �A4�

The asymmetries for the sample considered in the present
paper were estimated to be �asym=8°, �asym

y =0°, and
�asym

x =3°. The parameter �asym was approximately equal to
values estimated from diffractometry performed after the
ADMR experiment.
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