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In this paper we investigate the thermodynamical properties of “unbalanced” superconductors, namely,
systems where the electron-boson coupling � is different in the self-energy and in the Cooper channels. This
situation is encountered in a variety of situations, for instance, in d-wave superconductors. Quite interesting is
the case where the pairing in the self-energy is smaller than the one in the gap equation. In this case we predict
a finite critical value �c where the superconducting critical temperature Tc diverges but the zero temperature
gap is still finite. The specific heat, magnetic critical field, and the penetration depth are also evaluated.
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I. INTRODUCTION

Eliashberg’s theory of superconductivity represents an el-
egant and powerful formalism to extend the BCS theory to
real materials. Main achievements of Eliashberg’s theory are
the generalization of the BCS scheme to the strong coupling
regime, where the dimensionless electron-phonon coupling
constant � can be of the order or larger than unit, ��1, and
the inclusion of the retarded nature of the electron-phonon
interaction, characterized by the phonon energy scale �ph.

1

Within this framework it was possible to understand and pre-
dict a number of characteristic features of the strong-
coupling regime, such as a 2� /Tc ratio larger than the BCS
limit, the temperature dependence of the magnetic critical
field and of the specific heat, and the appearance of phonon
features for ��� in the tunneling and in the optical
spectra.2,3 Some results of the Eliashberg theory have be-
come widely used paradigmatic milestones, for instance, the
employment of McMillan-like formulas, Tc�exp�−�1
+�� /��, to estimate the critical temperature and its depen-
dence on the microscopic interaction in generic
superconductors.4 The strong-coupling limit Tc, ���0 of
Eliashberg’s theory has also been examined in detail, show-
ing a drastic change of the superconducting properties, with,
for instance, Tc, �����0.3,5–7

Different evolutions of Eliashberg’s theory have also been
later introduced in the course of years to adapt it to the par-
ticular cases of specific materials. Multiband effects,8–12 an-
isotropy and non-s-wave symmetries of the order
parameter,4,13–18 and effect of vertex corrections19–25 have
been, for instance, considered. In all these cases one should
consider in principle the possibility that the electron-phonon
coupling �or any kind of other mediator� can be substantially
different in the self-energy and in the superconducting Coo-
per channels. We shall call this situation as unbalanced su-
perconductivity. This is, for instance, the case when spin-
fluctuation �paramagnon� scattering is taken into account in
s-wave26–29 or p-wave30,31 superconductors, so that the cou-
pling in the self-energy �Z=�ph+�sf is larger than the cou-
pling ��=�ph−�sf ���=�sf for p-wave pairing� in the Cooper
channel. Here �ph and �sf represent, respectively, contribu-
tions from phonons and from spin fluctuations. Unbalanced

superconductivity occurs also when a k-dependent order pa-
rameter ��k� is induced by an anisotropic coupling described
by Eliashberg’s function 	2F�k ,k� ;��. In this case
indeed the momentum dependence of the order parameter
��k� would adapt itself to maximize the pairing in the
Cooper channel, ���k��	2F�k ,k� ;����k��FS/ �	��k�	2�FS

� �	2F�k ,k� ;���FS.
The anisotropic dependence of the pairing itself, sus-

tained, for instance, by spin fluctuations, can eventually in-
duce p- or d-wave superconductivity.32–35 It is important to
note that, in this case, since the coupling in the self-energy
and in the Cooper channel probes different angular averages,
there is no restriction on the relative magnitude of �Z and ��,
and in principle one can obtain ����Z provided the aniso-
tropic component is quite larger than the isotropic one. This
is the case for instance of the t-J model where the spin-
mediated exchange energy, at the mean-field level, is factor-
izable as J�k ,k���J
d�k�
d�k��,33,34 giving rise to d-wave
pairing with no contribution in the self-energy. This
is of course an extreme limit, and in real systems there will
be finite contributions in both the self-energy and the
Cooper channels, although in principle arising from different
electron-boson modes. The problem of unbalanced
superconductivity is also relevant in cuprates where mixed
s-d as well as purely d-wave phases are commonly modeled
by a factorized pairing 	2F�k ,k� ;���	2Fs���
+	2Fd���
d�k�
d�k��.14–18,33,36,37 Detailed studies in cu-
prates show indeed the tunneling spectra in these compounds
can be qualitatively reproduced by assuming ����Z.14,16–18

Although relevant in a variety of different situations, a
systematic study of the effects of an unbalanced coupling on
the superconducting properties is still lacking, especially in
the “strong-coupling” regime Tc, ���0 and in the ����Z
case. In this paper we provide an extensive investigation of
the consequences of a different coupling in the Z��� wave
function and in the gap equations. We focus here on thermo-
dynamical quantities which can be evaluated in the Matsub-
ara space. Spectral properties, involving analytical continua-
tion on the real axis, will be investigated in a future
publication. We show that, contrary to the common feeling,
an unbalanced coupling in Eliashberg’s theory has important
and drastic differences with respect to the conventional
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Eliashberg phenomenology. In particular, we show that for
�Z��� the superconducting critical temperature Tc is
strongly enhanced for finite values of ��1, and in the infi-
nite bandwidth limit Tc even diverges. We also show that
these new features are strictly related to the retarded nature
of any boson interaction, accounting for the fact that this
phenomenology was never discussed in the case of the non-
retarded BCS theory.

II. CRITICAL TEMPERATURE Tc VS �

Let us start by considering Eliashberg’s equations for the
simple representative case of an Einstein boson spectrum. To
simplify the notations, we define �=�Z /�� the ratio between
the electron-boson coupling in the Z and in the gap equa-
tions, and we simply denote �=��. In the Matsubara space
we have

Zn = 1 +
��T

�n


m

�0
2

�0
2 + ��n − �m�2

�m

��m
2 + �m

2
, �1�

Zn�n = �T

m

�0
2

�0
2 + ��n − �m�2

�m

��m
2 + �m

2
, �2�

where �0 is the energy scale of a generic bosonic mediator.
Equations �1� and �2� can be easily generalized in the case of
a d-wave symmetry for the gap order parameter �n
→�n
d�k� in the Cooper pairing. In the weak-intermediate
regime, defined as Tc /�0, � /�0�1, a simple analytical so-
lution for Tc and � is provided by the square-well model.4

Along this line one recovers, according to the common wis-
dom, a generalized McMillan-like formula Tc�exp�−�1
+�Z� /���, which predicts an upper limit for Tc in this case as
well as in the perfectly balanced �=1 case. The validity of
such result is, however, limited to the weak-intermediate
case where Tc /�0, � /�0�1. In the balanced case, for in-
stance, a careful analysis shows that, in the strong-coupling
regime Tc /�0, � /�0�1 the critical temperature as well as
the superconducting gap do not saturate for �→� but they
scale asymptotically as Tc, �����0.3,5–7

A first insight that things can be radically different for an
unbalanced Eliashberg’s theory comes from a reexamination
of the strong-coupling regime. Plugging Eq. �1� in Eq. �2� we
obtain the following for Tc:

�n = �Tc

m

�0
2

�0
2 + ��n − �m�2��m − ���m/�n��n

	�m	 � . �3�

For �=1 the term n=m vanishes in Eq. �3�, so that, for Tc
��0, the first contribution in the boson propagator comes
from �0

2 / ��0
2+ ��n−�m�2����0

2 /42Tc
2�n−m�2�.3 This is no

more the case for the unbalanced case where the leading
contribution comes from �0

2 / ��0
2+ ��n−�m�2���n,m. Equa-

tion �3� thus reads

1 =
��1 − ��
	2n + 1	

. �4�

Note that the temperature T does not appear anymore in
Eq. �4�. For ��1 Eq. �4� implies that there is an upper limit

�max1/ �1−�� above which the system is always unstable
at any temperature with respect to the superconducting pair-
ing. A detailed analysis �see the Appendix� shows

Tc
��1 =

�0

2
� ��c

�c − �
, �5�

where �c=1/ �1−��. On the other hand, for ��1, Eq. �4� is
never fulfilled signalizing that the limit Tc��0 is unphysical
and Tc must saturate for �→� limit.

We would like to point out that the analytical divergence
Tc→� for �→�c is strictly related to the infinite bandwidth
model employed in Eqs. �1� and �2�. On the other hand, in
physical systems the presence of a finite bandwidth W deter-
mines an additional regime, Tc�W, where the analytical di-
vergence of Tc at �c is removed and Tc��W �see the Appen-
dix�. In this respect the bandwidth W defines an upper
limiting regime for Tc. Since in physical systems, however,
W is some orders of magnitude bigger than the bosonic en-
ergy scale �0, in the following, for sake of simplicity, we
shall concentrate on the infinite bandwidth limit W�Tc, �,
�0, keeping in mind, however, that the analytical divergences
found in this case will be removed when finite bandwidth
effects are included in the regime Tc�W.

In Fig. 1 we show the critical temperature Tc as a function
of the electron-boson interaction � obtained from the nu-
merical solution of Eqs. �1� and �2�. We see that the conven-
tional Eliashberg case �=1, where Tc scales as ��, repre-
sents rather an exception than the rule: for ��1Tc diverges
at finite values of � determining, for each �, an upper value
of � above which the system is superconducting at any tem-
perature, while, for ��1, Tc saturates for �→� at some
value which also is dependent on �. We can estimate in this
case �see the Appendix� an upper limit for Tc as follows:

Tc,max
��1 =

�0

2�� − 1
. �6�

Before we proceed, we would briefly comment on the Tc
divergence at finite � for ��1. This result seems to contra-
dict apparently the BCS scenario Tc�exp�−1/�� which can
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FIG. 1. Critical temperature as a function of the pairing coupling
� for different values of �. Dashed lines: ��1; dotted lines: �
�1; the solid line is the conventional Eliashberg result for �=1.
From upper to lower line: �=0,0.5,0.8,0.9,0.95,1 ,1.2,1.5,2.
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be thought of as the extremely unbalanced �=0 case where
the one-particle renormalization processes are disregarded.
However, a closer look at Eq. �3� shows that a fundamental
role in deriving Eqs. �4� and �5� is played by the proper
treatment of the retarded nature of the electron-boson inter-
action, which gives rise to the correlation between �n and �m
within the energy window �0. In this sense, neglecting the Z
function for �=0 in Eqs. �1� and �2� corresponds to a “re-
tarded BCS” theory. This is quite different from the usual
conventional BCS framework where the interaction is sup-
posed to be nonretarded and the frequencies �n and �m are
uncorrelated. This scenario can be achieved in the retarded
BCS context only in the limit �0→�, which enforces the
Tc /�0→0 limit, namely, the weak-coupling regime.

The above discussion about the importance of the retar-
dation effects in the pairing sheds a useful light also on the
physical meaning of the Tc divergence for ��1. On the
mathematical ground, we have seen that, contrary to the con-
ventional balanced case, in unbalanced superconductors the
Cooper instability is driven by the n=m term in Eq. �3�. In
physical terms this corresponds to consider the classical
limit T��0 of the bosons. This is quite different from the
usual Eliashberg’s theory where only virtual bosons, which is
characteristic of energy scale �0, are responsible of the pair-
ing. Just as for the linear behavior ��T���T of the resistivity,
in the classical limit T��0 the energy scale �0 does not
provide anymore any upper limit and the effective pairing is
mainly ruled by the increasing bosonic population n�T��T
with temperature. In the absence of any other competing ef-
fect, increasing temperature will result thus in a stronger
pairing with a positive feedback which would lead to a high
critical temperature Tc��0, and the only limiting energy
scale in this case is provided by the electronic bandwidth. In
this scenario a competing effect in balanced superconductor
is provided by the fact that the increase of the boson popu-
lation, as T increases, would act in a similar way in the
self-energy channel. The competition between these two ef-
fects gives rise to the well-known Tc

���0 dependence in
perfectly balanced superconductors with �=1. Such equilib-
rium does not occur, however, in unbalanced superconduct-
ors with ��1 where the gain in the Cooper channel is larger
than the loss in the self-energy. In this case, at sufficiently
large T, the increase of the Cooper pairing due to the boson
population will prevail over the one-particle renormalization
effects and a superconducting ordering can be sustained up
to high temperatures Tc limited only by the electronic band-
width energy scale.

III. SUPERCONDUCTING GAP �M VS �

Interesting enough, the � vs � behavior in an unbalanced
superconductor can be quite different from the Tc vs �. In
Fig. 2 we plot the Matsubara superconducting gap �M, de-
fined as �M =limT→0 �n=0, and the ratio 2�M /Tc as a func-
tion of the electron-boson coupling �. We remind that, al-
though �M underestimates the physical gap edge obtained by
the analytical continuation on the real axis, the analytical
dependence of these two quantities is usually the same, so
that �M can be reasonably employed to study the limiting

behavior of the superconducting gap in the strong-coupling
regime. Detailed investigations on the real axis are, however,
needed to assess in a more formal way this issue. Figure 2
shows that, while for ��1�M has a saturating behavior
similar with Tc, in the case ��1 the superconducting gap
does not diverge at some finite value of �, as Tc, but rather
increases linearly with the electron-boson coupling. This dif-
ferent behavior can be also understood by applying some
analytical derivations properly generalized for unbalanced
superconductors.38 Assuming �M ��0, and following Eqs.
�4.29�–�4.35� of Ref. 3, the superconducting gap �M is de-
termined by the following relation:

1 + ��
�0

2�M
− c1��

�0
2

�M
2 = �

�0

2�M
− c2�

�0
2

�M
2 , �7�

where c1 and c2 are constant factors whose value is discussed
in the Appendix. For �=1 the terms ��0 /�M on both the left
and right sides cancel out, so that �M ����0.3,38 This is no
longer true for ��1. In particular, for ��1 we find

�M = ��1 − ��
�0

2
, �8�

while, for ��1, Eq. �7� does not admit solution signalizing,
once more, that the initial assumption �M ��0 is inconsis-
tent in this limit and that �M must be saturate for �→�. By
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FIG. 2. Matsubara superconducting gap �M �upper panel� and
ratio 2�M /Tc �lower panel� as a function of the pairing coupling �
for the same values of � as in Fig. 1.
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taking into account higher order terms we found an upper
limit �M for ��1 in the regime �→� in a similar way as
done for Tc:

�M,max =
4��c1 − c2��0

2�� − 1�
. �9�

Note that �M,max in Eq. �9� diverges as 1/ ��−1�, whereas
Tc,max in Eq. �6� scales as Tc,max1/��−1. This means that
the ratio 2�M /Tc is not bounded for ��1 and it can be even
larger than in the Eliashberg case �=1 and formally diverg-
ing for �→1, in agreement with the numerical results shown
in Fig. 2.

IV. TEMPERATURE DEPENDENCE OF �M„T…

In the previous sections we have studied the strong-
coupling behaviors of the critical temperature Tc and of the
zero temperature Matsubara gap �M in the limit ��1. We
have seen, for instance, that in the ��1 case, Tc diverges at
some critical value �c, so that for ���c the system is super-
conducting at any temperature. This behavior is in contrast
with the one of the Matsubara gap �M which is always finite
for any � and scales linearly with � for ��1. As shown in
Fig. 2, these different behaviors are reflected in a ratio
2�M /Tc smaller than the BCS limit 3.53 and vanishing for
�→�c. In this situation an interesting issue to investigate is
the temperature dependence of the superconducting gap
��T�, which is reflected in a number of observable physical
behaviors, as the temperature profile of the magnetic field
Hc�T�, of the London penetration depth �L�T�, or of the spe-
cific heat CV�T�. Also intriguing is the situation ��1 and
���c, where a finite superconducting gap exists at zero tem-
perature but where no finite critical temperature is predicted.
In this case the temperature behavior of the gap itself is not
clear and needs to be investigated.

In Fig. 3 we show the temperature dependence of
�M�T� /�M�0� �defined as �M�T�=�n=0� for different charac-

teristic cases, namely, for �=0 and different ���c, and for
�=2 and different ��1. Most regular is the �M�T� vs T
dependence for ��1, where �M�T� follows a conventional
behavior, independently of the coupling �. This regular be-
havior can be understood by reminding that for ��1, even
for very large coupling �, the values of Tc and of the super-
conducting gap �M�T� are always finite and �at most� of the
same order of the energy �0. Quite different is the case of
��1, here represented by �=0, where �M�T� shows a tem-
perature dependence remarkably different from the BCS one.

For � close to �c, in particular, the superconducting Mat-
subara gap has a first initial drop followed by a more regular
dependence. This change of curvature represents the cross-
over between a small temperature �T /�0�1/4� to a large
temperature �T /�0�1/4� regime, as shown in the inset of
Fig. 3 where we plot �M�T� /�M�0� as a function of T /�0.
Note that while the value of the critical temperature Tc is
strongly dependent on the coupling �, the initial dependence
of �M�T� is only weakly dependent on �. We note indeed
that the Tc divergence for �→�c is essentially a by-product
of having reached the T /�0�1 for a finite � in the unbal-
anced case. We can thus understand the results of Fig. 3 in
the following way: for low temperature �T /�0�1/4� the su-
perconducting gap probes a pairing kernel which is actually
increased by the lack of unbalance, but still regular �note that
�M�T=0�, contrary to Tc, does not diverge at �c, but it
steadily increases as �� in the strong-coupling regime�. For
low temperature �M�T� /�M�0� follows thus a standardlike
behavior which would be close to some finite Tc� not diverg-
ing at �c. When � is, however, close enough to �c, the range
T /�0�1/4 is achieved before Tc� is actually reached; in this
regime high temperature effects become dominant in the
pairing kernel, reflected in a change of the �M�T� vs T trend
and in a final, physical, Tc which diverges at �→�c.

It is interesting to investigate also how the superconduct-
ing gap �M�T� closes at Tc. In the conventional, perfectly
balanced, Eliashberg theory the normalized gap ��T� /Tc

�or equivalently ��T� /��T=0�� scales indeed for T→Tc as
���T� /Tc�2c�, where �=1−T /Tc and where c is a finite
constant which, in the weak-coupling BCS limit ��1, is c
=0.95 whereas for ��1 one gets c=2. This scenario is
qualitatively different in the case of unbalanced ��1 super-
conductors �Fig. 3, left panel� where the constant c strongly
depends on the coupling �.

For ��1 a first insight about the temperature dependence
of �M�T� close at Tc is gained simply by considering that, for
�→�c, �M�0� is finite while Tc→�, with a ratio
2�M�0� /Tc→0. This means that, as �→�c, the constant c
must vanish. This result can be shown in a more quantitative
way �see the Appendix� by employing a one-Matsubara-gap
approximation3 which, for T�Tc and for Tc��0, is quite
reasonably justified. For generic � one thus obtains

�0
2

2Tc
2 = 4�

1 − ��1 − ��
2 − ��1 − ��

, �10�

where �=1−T /Tc. Note that Eq. �10� reduces to the standard
relation ��0 /Tc�2=2� for �=1.3 On the other hand, for �
�1
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FIG. 3. Temperature evolution of the Matsubara superconduct-
ing gap �M�T� /�M�0� for different unbalanced cases. Left panel:
�=0 ��c=1� and different coupling �from top to bottom� �
=0.5,0.8,0.9,0.95,0.98,0.99,0.995. Right panel: �=2 and �from
bottom to top, but barely distinguishable� �=5,10,20. Inset: same
quantities as in the left panel ��=0� but as a function of T /�0.
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�0
2

2Tc
2 = 4�

�c − �

2�c − �
, �11�

showing that the coefficient c vanishes as c��c−� for �
→�c.

V. OTHER THERMODYNAMICAL QUANTITIES

The anomalous temperature dependence of �M�T� is re-
flected also in other thermodynamical, measurable quantities,
as the specific heat CV�T� or the magnetic critical field Hc�T�.
In order to investigate these properties we evaluate numeri-
cally the free energy difference �F between the supercon-
ducting and the normal state,3

�F�T� = − TN�0�

n
�Zn

S −
Zn

N	�n	
��n

2 + �n
2����n

2 + �n
2 − 	�n	� ,

�12�

where N�0� is the electron density of states at the Fermi level
and Zn

S and Zn
N are the Z-renormalization functions calculated,

respectively, in the superconducting and in the normal state.
From Eq. �12� we obtain the magnetic critical field Hc�T�
=�−8�F�T� and the specific heat difference as �CV�T�
=−T�2�F /�T2. One can also obtain the total specific heat
CV�T�=�CV�T�+CV

N by adding the contribution that the sys-
tem would have in the normal state, CV

N=�T, where �
= �2/3�2N�0��1+��� is the Sommerfeld constant. In a simi-
lar way we can evaluate the London penetration depth �L�T�
as3

1

e2vF
2N�0��L

2�T�
=

2T

3 

n

�n
2

Zn��n
2 + �n

2�3/2 , �13�

where e is the electron charge and vF the Fermi velocity.
In Fig. 4 we show the temperature dependence of the

specific heat as a function of � for the two representative
cases �=0 and �=2. In this latter case the specific heat has
a regular activated behavior and it is almost independent of

�, in agreement with the corresponding weak � dependence
of the temperature behavior of �M�T� reported in Fig. 3.
Note also that for this value of � the asymptotic value �
→� of the specific heat jump �CV /�Tc�4.2 is quite larger
than the BCS limit, ��CV /�Tc�BCS�1.43, pointing out that
the superconductor is in an effective strong-coupling limit.
We should remark that the asymptotic value
lim�→� �CV /�Tc is actually dependent on the specific value
of the parameter ��1.

Quite anomalous is also the temperature behavior for �
�1. In this case we see that approaching �→�c the jump is
remarkably reduced. Equations �10� and �11� can be used to
estimate the jump �CV at Tc of the specific heat. Using once
more the one-Matsubara gap approximation, and employing
a standard analysis,3 one can show that the formal expression
for the free energy difference �F close to Tc is just equal as
in the standard case,

�F = −
N�0��Tc�2

2
�1 + ��

�0
2

42T2���0�T�
Tc

�4

. �14�

Plugging Eqs. �5� and �10� in Eq. �14�, and using the stan-
dard derivation of �CV, we thus obtain

�CV

�Tc
=

24

1 + ��
�1 + �

�c − �

�c
�� �c − �

2�c − �
�2

, �15�

showing that, for ��1, also �CV /�Tc as ��0 /Tc�2 scales as
��c−� for �→�c. Once more, Eq. �15� reduces to the stan-
dard analytical result �CV /�Tc=12/� for �=1 and �→�.39

It is interesting to note that the vanishing of �CV /�Tc for
�→�c is mainly due to the vanishing of �CV� ��c−��3/2,
whereas Tc�1/��c−�. This means that, contrary to the per-
fectly balanced case �=1 where the vanishing of �CV /�Tc is
driven by �Tc→� which overcomes the divergence of �CV,
in the unbalanced ��1 case the specific heat jump �CV is
itself vanishing. Such an observation points out that, al-
though Tc is much higher, the superconducting properties in
the T /�0 regime of ��1 unbalanced superconductors are
much weaker than the usual.

This scenario is once more outlined in Fig. 4, where we
see that the vanishing of �CV is accompanied by the devel-
oping of a shoulder at T��0 /4 �see inset�. Above this tem-
perature the specific heat scales roughly linearly with T as a
normal ungapped metal with a smaller and smaller jump at
Tc as �→�c.

A similar trend is observed in the study of the temperature
dependence of the magnetic critical field Hc and of the Lon-
don penetration depth �L, shown in Fig. 5. For �=2 we find
again that the temperature dependence of both Hc�T� and
�L

−2�T� presents again a conventional behavior with an even
more marked curvature with respect to the BCS curve. This
is compatible with the specific heat jump which is also larger
than the BCS limit. Quite different is the case for �=0. Here
we observe a change of curvature at low temperature which
is more marked as �→�c.

40 Once again such change of cur-
vature occurs for T��0 /4 and for ���c it is reflected in a
sudden drop of Hc�T� and �L

−2�T� signaling once more that,
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FIG. 4. Specific heat CV�T� for the two characteristic unbal-
anced cases previously considered. Left panel: �=0 ��c=1� and �
=0.5,0.8,0.9,0.95,0.98,0.99,0.995. Right panel: �=2 and �
=5,10,20. Inset: specific heat for �=0 as a function of T /�0.
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although the critical temperature is strongly increasing, the
high temperature superconducting properties of unbalanced
systems are quite poor.

VI. SUMMARY AND DISCUSSION

In this paper we have investigated the properties of unbal-
anced retarded superconductors, namely, systems where the
electron-boson coupling �Z in the one-particle renormaliza-
tion function is different than the one relevant for the gap
equation, ��. We have shown that the superconducting prop-
erties are strongly dependent on the ratio �=�Z /��. We have
analyzed both the cases ��1 and ��1. In the first case we
show that, contrary to the perfectly balanced case, the critical
temperature is always finite and it even saturates at a finite
value for �→�. The superconducting properties in this case
are quite similar to the conventional case in the weak-
intermediate regime where the magnitude of � rules the rel-
evance of the strong-coupling effects. Quite anomalous on
the other hand is the case ��1, which is relevant in a variety
of situations, for instance, for d-wave superconductors. In
this case we find that the critical temperature, in the infinite
bandwidth limit, diverges at a finite value �c�1 ��c=1 for

�=0�. We would like to remark once more that in real sys-
tems finite bandwidth effects remove the analytical diver-
gence of Tc at �c when Tc�W. We show also that, although
for ���c the critical temperature Tc is strongly enhanced for
�→�c, the zero temperature gap is still finite and it scales as
���. The anomalous temperature dependence of the super-
conducting gap is reflected in a variety of other physical
properties, such as the magnetic critical field, the penetration
depth, and the specific heat. All these quantities show a
strong anomaly at T��0 /4 above which the system presents
very weak superconducting properties, which, however, per-
sist up to the higher critical temperature Tc. These findings
suggest an interesting pseudogap scenario. In the Tc��T
�Tc regime indeed, since the superconducting binding ener-
gies are quite small, the robustness of the long-range order of
this phase towards phase fluctuations, disorder, phase sepa-
ration and other different kinds of instability is highly ques-
tionable. In case of loss of the long-range order, these weak
superconducting properties will present themselves as a
pseudogap phase in the range temperature Tc��T�Tc, where
the temperature Tc� will appear as the thermodynamical criti-
cal temperature where true lost-range order is lost, and Tc
�Tc will set the pseudogap temperature T*. Note that, even
in this case, the critical temperature of the long-range order
will result to Tc���0 /4, which can be significantly higher
than the predictions of the standard Eliashberg’s theory.

We think that the present results open interesting routes in
looking for high-Tc superconducting materials. Earlier than
the discovery of copper oxides, indeed, search for high-Tc
compounds moved along two different lines: materials with
large coupling � and materials with large boson mediator
energy �0. Our analysis suggests that high Tc is achievable
even in moderate � and moderate �0 systems provided some
degree of unbalancement ��1 is present. Such conditions
can be realized, for instance, when the total pairing results
from two competing interactions, for instance, in nearly fer-
romagnetic systems where the spin-fluctuation pairing in the
triplet p-channel ���� could be in principle larger than the
sum of the phonon and spin-fluctuation contributions in the
self-energy �s-wave� channel ��Z�. We would like to stress,
however, that, as discussed in the Introduction, the possibil-
ity of having ����Z is quite general and it appears naturally
in systems with strongly anisotropic coupling where
the anisotropy of the order parameter ��k� makes the mo-
mentum angular average in the Cooper channel larger than
in the self-energy, ���k��	2F�k ,k� ;����k��FS/ �	��k�	2�FS

� �	2F�k ,k� ;���FS. This is, for instance, the case of the
magnetic exchange coupling which, at the mean-field level,
supports d-wave pairing in the Cooper channel but does not
provide any one-particle self-energy contribution. In a more
general perspective, unbalanced ��1 coupling will be es-
tablished in the presence of anisotropic modes where the
difference ��−�Z� ���k��	2F�k ,k� ;����k��FS/ �	��k�	2�FS

− �	2F�k ,k� ;���FS thus represents the total amount of cou-
pling which supports the anisotropy of the order parameter
but do not contribute to isotropic self-energy renormaliza-
tion.

As a matter of fact, it is this component which rules the
onset of high-Tc superconductivity in unbalanced systems as
it can be seen by writing Eq. �5� as
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FIG. 5. Temperature dependence of the magnetic critical field
Hc�T� /Hc�0� and of the London penetration depth �L

2�0� /�L
2�T� for

the two characteristic unbalanced cases previously considered. Left
panels: �=0 ��c=1� and �=0.5,0.8,0.9,0.95,0.98,0.99,0.995.
Right panels: �=2 and �=5,10,20. Insets: the same quantities as a
function of T /�0.
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Tc
��1 =

�0

2
� ��

1 − ��� − �Z�
. �16�

Note also that Eqs. �5� and �16� were derived in the limit
Tc��0. This observation suggests that most favorable com-
pounds to observed unbalanced high-Tc effects are materials
close to same kind of highly anisotropic lattice or magnetic
instability, where the softening of the lattice�magnetic� mode
assures the condition Tc��0. Further research on this line is
in progress.
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APPENDIX: ANALYTICAL FORMULAS FOR
ASYMPTOTIC BEHAVIORS Tcš�0, �Mš�0

In this appendix we derive some useful limit expressions
for the critical temperature Tc and the Matsubara supercon-
ducting gap �M in the regimes Tc��0, �M ��0.

1. Critical temperature Tc

Let us start by considering Eq. �3� and let us assume Tc
��0. In this regime we can employ the one-Matsubara-gap
approximation,3 where the only not vanishing terms of the
Matsubara gap function �n are �n=0=�n=−1. We thus have

�0 = ��0 + ��−1
�0

2

42Tc
2 − ���0


m

�0
2

�0
2 + ��n − �m�2 sgn��m� ,

�A1�

and, note that �−1=�0 and 
m sgn��m��0
2 / ��0

2− ��n=0

−�m��=1, we have

1 = ��1 − �� + �
�0

2

42Tc
2 . �A2�

For �=1 the first term on the right-hand side is zero, and we
recover the usual result Tc

�=1=���0 / �2�. On the other
hand, for ��1 we obtain

Tc
��1 =

�0

2
� �

1 − ��1 − ��
, �A3�

or, equivalently,

Tc
��1 =

�0

2
� �c�

�c − �
, �A4�

where �c=1/ �1−��.
Finally, the same expression �A3� can be used to evaluate

an upper limit for Tc in the case ��1. We can thus write

Tc
��1 =

�0

2
� �

1 + ��� − 1�
, �A5�

and, for �→�,

Tc,max
��1 =

�0

2�� − 1
. �A6�

Note that Eq. �A6� predicts a saturating upper limit for Tc
��1

for �→�, violating the assumption Tc��0. This value,
Tc,max

��1 , can thus be assumed as an upper limit for the
asymptotic behavior of Tc

��1 in the regime �→�.
Let us now consider finite bandwidth effects in the �

�1 case. For simplicity we shall focus on the representative
case �=0. Finite bandwidth effects can be included in the
linearized Eliashberg’s equations, Eq. �3�, by replacing the
term  / 	�m	→ �2/�m�arctan�W /2�m�, where W /2 is the
half-bandwidth in a symmetric particle-hole system. In this
case, in order to obtain an analytical expression for Tc in the
limit Tc��0, it is sufficient to retain only the n=m term in
Eq. �3�, and, in the one-Matsubara-gap approximation, we
obtain

�0 = ��0
2


arctan� W

2Tc
� . �A7�

Inverting Eq. �A7� we thus obtain, for Tc�W, Tc
= �W /2� / tan� /2����W /2, showing that Eq. �A4� is
valid as far as �0�Tc�W, whereas for Tc�W the diver-
gence at �c is removed and a linear behavior as a function of
� is achieved.

2. Superconducting Matsubara gap �M

Let us now investigate the asymptotic behavior of the
zero temperature Matsubara gap �M. Once more, we assume
the limit �M ��0 and we shall check later the consistency of
this ansatz. To get an analytical expression for �M, we es-
sentially follow Refs. 3 and 38. Transforming, in the zero
temperature limit, the Matsubara sum in an integral, T
m
→�d� /2, we can write

Z��� = 1 +
��

2�
� d����

���2 + �2����

�0
2

�0
2 + �� − ���2 , �A8�

Z������� =
�

2
� d�������

���2 + �2����

�0
2

�0
2 + �� − ���2 . �A9�

We also employ the simple model3,38

���� = ��M for � � 	�M

0 for � � 	�M ,
� �A10�

which we have tested numerically to be appropriate even for
unbalanced superconductors. Here 	 is a constant of the or-
der of unity. Using this model and expanding Eqs. �A8� and
�A9� in powers of �0 /�M we end up with

1 + ��
�0

2�M
− c1��

�0
2

�M
2 = �

�0

2�M
− c2�

�0
2

�M
2 , �A11�

where c1 and c2 are constant factors depending on 	. For
	=1 we have, for instance, c1=2��2−1/2�, c2=�2,38 while
for 	=2 we have c1=�5−1, c2=�5/2.3

In the perfectly balanced case �=1 the linear terms in
�0 /�M in Eq. �A11� cancel out, and one recovers the usual
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result �M
�=1=���c1−c2�0 �note that c1−c2 is a positive quan-

tity�. On the other hand, for ��1 the solution of Eq. �A11�
is dominated by the linear terms giving

�M
��1 = ��1 − ��

�0

2
. �A12�

More complex is the case ��1, where retaining only the
linear term is not sufficient. In this case one needs to con-
sider explicitly also the ��0 /�M�2 and to solve the quadratic
equation �A11�. We obtain

��M

�0
�2

+
��� − 1�

2
��M

�0
� − ���c1 − c2� = 0, �A13�

so that

�M,max
��1

�0
=

1

2
�−

��� − 1�
2

+��22�� − 1�2

4
+ 4���c1 − c2�� �

4��c1 − c2�
2�� − 1�

,

�A14�

showing that for ��1 �M saturates at a finite value for �
→�, and Eq. �A14� can be considered an upper limit for it.

3. Temperature dependence of �M„T…

In this section we investigate the temperature behavior of
the Matsubara gap �M�T� close to Tc. We assume once more
the limit Tc��0 and thus the validity of the one-Matsubara-
gap model. Within these approximations we can rewrite Eq.
�1� as

Z0 = 1 + �� 

m=0,−1

�0
2

�0
2 + ��n − �m�2

�m

��m
2 + �m

2

+ 

m�0,−1

�0
2

�0
2 + ��n − �m�2 sgn��m�

= 1 +
��T

�2T2 + �0
2�1 −

�0
2

42T2� +
���0

2

42T2 , �A15�

where we have used �0=�−1, and in a similar way,

Z0�0 = �T
�0

�2T2 + �0
2�1 +

�0
2

42T2� . �A16�

Plugging Eq. �A15� in Eq. �A16� we have

�0 = ��1 − ��
T�0

�2T2 + �0
2

+ ��1 + ��
T�0

�2T2 + �0
2

�0
2

42T2

−
���0

2�0

42T2 , �A17�

which we can rewrite as

�2T2 + �0
2

T
=

��1 − �� + ��1 + ��
�0

2

42T2

�1 +
���0

2

42T2� . �A18�

Expanding the left- and right-hand sides of Eq. �A18� at
the second order in � and at the linear order of �=1−T /Tc,
we have

�0
2

22Tc
2 =

2���0
2

42Tc
2 + ���0

2 = 2�
1 − ��1 − ��
2 − ��1 − ��

, �A19�

where we made use of Eq. �A2�. Equation �A19� reduces to
the standard relation ��0 /Tc�2=2� in the perfectly balanced
case �=1.3 On the other hand, for ��1 we have

�0
2

2Tc
2 = 4�

�c − �

2�c − �
, �A20�

which shows that ��T��c�Tc−T �for T�Tc� with a vanish-
ing coefficient c for �→�c. Finally, for ��1, Eq. �A19� is
well behaved in the limit �→� and it gives

�0
2

2Tc
2 = 4� , �A21�

with a coefficient c twice larger than the usual.
Equation �A18� can also be employed to study the tem-

perature behavior of the superconducting gap in the regime
��1 and ���c, where the system is superconducting even
at high temperature and no finite Tc is predicted. Performing
the limit T��0 we obtain

�2T2 + �0
2

T
= ��1 − �� �A22�

and

�0 � T���/�c�2 − 1, �A23�

showing that �0 increases linearly with T in this regime.
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