
Competing superfluid and density-wave ground-states of fermionic mixtures with mass imbalance
in optical lattices

Tung-Lam Dao,1 Antoine Georges,1 and Massimo Capone2

1Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau Cedex, France
2SMC, CNR-INFM and Dipartimento di Fisica, “Sapienza” Universitá di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy

and ISC-CNR, Via dei Taurini 19, I-00185 Roma, Italy
�Received 2 July 2007; revised manuscript received 27 August 2007; published 24 September 2007�

We study the effect of mass imbalance on the phase diagram of a two-component fermionic mixture with
attractive interactions in optical lattices. Using static and dynamical mean-field theories, we show that the pure
superfluid phase is stable for all couplings when the mass imbalance is smaller than a limiting value. For larger
imbalance, phase separation between a superfluid and a charge-density wave takes place when the coupling
exceeds a critical strength. The harmonic trap induces a spatial segregation of the two phases, with a rapid
variation of the density at the boundary.
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I. INTRODUCTION

The remarkable advances in handling ultracold atomic
gases have given birth to the new field of “condensed matter
physics with light and atoms.” Cold atoms in optical lattices,
with tunable and controllable parameters, have been studied
in many different contexts �for reviews, see Ref. 1�. Mixtures
of two-component atoms with different masses �e.g., 6Li and
40K� introduce an additional parameter, namely, the differ-
ence between the hopping amplitudes associated with each
species in the optical lattice. This may affect the stability of
the possible quantum phases or even induce new ones. Re-
cently, a phase diagram has been worked out in the one-
dimensional �1D� case2 and in continuum models.3

In this paper, we consider such fermionic mixtures in
three dimensions, with an attractive on-site coupling. Using
analytical and numerical techniques, we establish a ground-
state phase diagram as a function of coupling strength and
mass imbalance, in all regimes of couplings. We also con-
sider the experimentally relevant effect of the trap potential,
which is shown to induce a spatial segregation between su-
perfluid and density-wave phases.

Under conditions discussed, e.g., in Refs. 1, 4, and 5,
fermionic mixtures are described by a Hubbard model,

H = − �
�i,j�,�

t��ci�
† cj� + H.c.� − �U��

i

ni↑ni↓. �1�

The �pseudo�spin index � refers to the two different species.
Feshbach resonances between 6Li and 40K are currently un-
der investigation,6 and it would allow for an attractive inter-
action with a tunable strength, as assumed in Eq. �1�. For an
example of heteroatomic resonances in the boson-fermion
case, see e.g., Ref. 7. In the following, we consider a bipar-
tite optical lattice made of two interpenetrating �A ,B� sublat-
tices arranged such that the neighbors of A sites are all of B
type and vice versa �this happens, for instance, in the cubic
lattice�. For simplicity, we consider an equal number of at-
oms for each species, leaving for future work the study of
imbalanced populations.

The paper is organized as follows: in Sec. II, we antici-
pate the phase diagram obtained by means of dynamical

mean field theory �DMFT�, and we introduce the DMFT
method itself; in Sec. III, we discuss the results of weak- and
strong-coupling static mean-field methods; in Sec. IV, we
consider the effect of the trapping potential within local den-
sity approximation; while Sec. V is dedicated to concluding
remarks.

II. GENERIC PHASE DIAGRAM AND DYNAMICAL
MEAN-FIELD THEORY

In order to study the zero temperature ground-state phase
diagram of model �1�, we use DMFT,8 together with analyti-
cal mean-field theory calculations for both weak and strong
couplings. Let us anticipate the DMFT phase diagram of the
uniform system, displayed in Fig. 1. When the fermions have
the same mass, the ground state is a superfluid �SF� for all
�U�. A competing ordering exists, namely, a charge-density
wave �CDW�, considered here in the simplest �commensu-
rate� case in which the charge is modulated with an alternat-
ing pattern on A and B sublattices. At half-filling, i.e., when
the number of fermions is equal to the number of lattice sites
��n↑+n↓�=1�, it is well known that the SF and CDW states
are degenerate. This no longer applies in the “doped” system,
in which the number of fermionic atoms no longer coincides
with the number of sites in the optical lattice; for equal
masses, the SF phase is stabilized by doping for all �U�, but a
large mass imbalance favors the CDW phase over a SF state
in which the Cooper pairs must be formed by fermions with
different mobilities.2 Hence, the SF/CDW competition be-
comes more interesting in the presence of mass imbalance.
As displayed in Fig. 1, we find that the uniform system has a
SF ground state for all values of �U� as long as the mass
imbalance z��t↑− t↓� / �t↑+ t↓� is smaller than a limiting value
zc �which depends on the average density�. For z�zc, a
�first-order� phase boundary is crossed as �U� is increased,
beyond which the uniform system undergoes a phase separa-
tion �PS� between a SF and a CDW phase. As discussed later
in this paper, this implies that, in the presence of a harmonic
trap, the CDW and SF phases may both exist in different
regions of the trap.
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DMFT is one of the most popular modern theoretical ap-
proaches designed to treat correlated fermions on a lattice.
The idea of the method is to extend to the quantum domain
the mean-field strategy by replacing the static mean-field av-
erages with frequency-dependent �dynamical� objects. Just
like classical mean-field theory, the method freezes the spa-
tial correlations, but the DMFT allows for an unbiased treat-
ment of the dynamics. A practical implementation of DMFT
requires the self-consistent solution of a quantum impurity
model, i.e., a model of a single interacting site coupled to a
bath that allows for quantum fluctuations on the correlated
site. In the mean-field spirit, the site is representative of any
site of the original lattice. This correspondence is imple-
mented via a self-consistency condition which contains in-
formation about the original lattice through the noninteract-
ing density of states. The self-consistency condition relates
the frequency-dependent “Weiss field” which describes the
dynamics of the bath �analogous to the static Weiss field in

mean-field theory of magnetism� Ĝ�i�� entering the effective
“impurity model” to the Green’s function.

The general form of the self-consistency equation �we
write it for simplicity for the normal metallic phase, but the
generalization to the broken-symmetry phases is straightfor-
ward� is

G�i�� =� d�
D���

i� + � − � − ��i��
, �2�

where ��i��=G−1�i��−G−1�i�� is the local self-energy and
D��� is the noninteracting density of states. For the case of a
semicircular density of states D���=2/	��D�	4t2−�2 with
bandwidth W=4t, this equation is greatly simplified, and it
becomes

G�i�� = i� + � − t2G�i�� . �3�

In this work, we use this density of states, which has been
shown to satisfactorily reproduce results in d=3 in the con-

text of solid state physics. For more details on DMFT, we
refer to Ref. 8.

A crucial property of DMFT is that it does not require any
assumption on the values of the coupling terms appearing in
the Hamiltonian, and it indeed becomes exact both in the
small interaction limit and in the strong interaction one. This
has been explicitly shown in DMFT studies of the attractive
Hubbard model with equal masses, where the crossover from
Bardeen-Cooper-Schrieffer superconductivity to Bose-
Einstein condensation of preformed pairs has been studied
both in the normal9 and the superconducting,10 and both the
limiting regimes are basically exactly reproduced.

To describe the superconducting phase, it is convenient to
work with Nambu’s spinors 	+= �c↑

+ ,c↓�. The key quantity in

DMFT is the local �on-site� Green’s function, Ĝ�
�
= �T
	i�
�	i

+�0��, and its Fourier transform for imaginary fre-
quencies is

Ĝ�i�� = 
G↑�i�� F�i��
F*�i�� − G↓�− i�� � , �4�

where G�
�=−�Tc�
�c†�0�� is the normal Green’s function on
a given site, and F�
�=−�Tc↑�
�c↓�0�� is the anomalous
Green’s function associated with superfluid ordering. The su-
perfluid order parameter is indeed given by �SF= �ci↑ci↓�
=F�
=0�=��F�i��.

In this work, we also consider the possibility of a CDW
state which establishes on our bipartite lattice. In this case,

the local Green’s function takes different values �ĜA and ĜB�
on the two alternating sublattices. The CDW order parameter
is the difference of densities on the two sublattices: �CDW
= �nA−nB�.

We can generalize the self-consistency of Eq. �3� to the
case where both SF and CDW are possible. The result is

ĜA�B�
−1 �i��= i�1̂+ �̂− T̂ĜB�A��i��T̂, in which T̂=diag�t↑ ,−t↓

z (hopping imbalance)
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FIG. 1. �Color online� Phase diagram of the
uniform system in the �z , �U�� plane obtained
from DMFT. Below the curves �displayed here
for two “doping” levels ��n−1=0.1,0.2�, the
SF is stable. Above the curves, the system is
phase separated into a half-filled CDW and a SF.
The arrows indicate the analytical strong-
coupling values. The dotted lines are the weak-
coupling mean-field approximation �see text�. �U�
is normalized to the bandwidth W of ��k↑
+�k↓� /2.
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and �̂=diag��↑ ,−�↓ are diagonal matrices, whose elements
are the half-bandwidths and the chemical potentials of the
two species.

Since we are able to study all the different broken-
symmetry phases, the T=0 phase diagram is easily deter-
mined by comparing the energies of the different solutions.
The energy is evaluated as �H�= �K�− �U ��i�ni↑ni↓�. The ex-
pectation value of the interaction term is easily computed
through the calculation of the expectation value of �ini↑ni↓,
while the kinetic energies �K� in the SF and CDW phases
read �K�SF=−1��,�t�

2�G�
2��i��−F2�i�� and �K�CDW

=−1��,�t�
2GA��i��GB��i��, respectively.

We performed DMFT calculations14 exploiting the non-
perturbative nature of DMFT to span the whole range of
coupling �U� and imbalance z. We focused on the vicinity of
half-filling and found the phase diagram of the uniform sys-
tem �Fig. 1� to be qualitatively independent on the “doping
level,” i.e., the relative difference between the number of
atoms and optical lattice sites, �= �n↑+n↓−1�. For small
enough values z�zc��� of the mass imbalance, a pure SF
solution is stable for all �U�. In contrast, for z�zc, the pure
SF phase is stable only for small interactions �below the line
drawn in Fig. 1�. Above this line �which depends on ��, the
pure SF solution becomes unstable toward phase separation
between a SF and a CDW phase. �Note that we did not find
a homogeneous CDW solution out of half-filling, except at
z=1�. This means that it is more convenient to separate the
system into a fraction 1−x with CDW order and �=0 and a
fraction x with SF order accommodating the rest of the par-
ticles. This conclusion is reached by minimizing over x the
expression EPS�x�= �1−x�ECDW+xESF. We note that the SF
phase is more stable than in the 1D case2 �in which nesting
favors a CDW with Q=2kF�. We underline that this diagram
has been obtained by comparing the energies of the different
possible states �normal, SF, and CDW�, and that a normal
ground state is never stable, either as a pure state or as one of
the phases in the case of phase separation. No solution with
coexistence of SF and CDW in the same homogeneous state
has, instead, been found.

III. MEAN FIELD THEORY ANALYSIS

A. Strong-coupling mean-field theory

In this section, we describe analytical mean-field calcula-
tions for both weak and strong couplings which help in un-
derstanding the DMFT phase diagram established numeri-
cally. We first present a strong-coupling analysis, which
holds for �U�� t↑ , t↓. In order to analyze this limit, we find it
useful to resort to a particle-hole transformation �Table I�
that maps our negative-U model onto the positive-U Hub-
bard model and work in the repulsive-U framework. We em-
phasize that we are not switching to truly repulsive interac-
tions, but we simply exploit a mathematical property to gain
information on the physical system of our interest. Under
this mapping, our model is transformed, at large �U � � t↑ , t↓,
into an XXZ quantum spin-1 /2 model:2,5

H = J�
�i,j�

Si
� · Sj

� + �J�
�i,j�

Si
zSj

z − h�
i

�2Si
z − m� , �5�

in which S� � 1
2d�

+�� �d, J=4t↑t↓ / �U�, and �= �t↑− t↓�2 /2t↑t↓
=2z2 / �1−z2�. Hence, the mass imbalance turns into a spin
exchange anisotropy. The uniform magnetic field h corre-
sponds to the original chemical potential �− �U� /2 and the
magnetization to the doping � �Table. I�. The mean-field
approach11 amounts for treating the spin variables as classi-
cal and minimizes the energy over the angles �A, �B describ-
ing the orientation of the spins in the two sublattices. The
energy per site reads �with � the lattice connectivity and
cA,B�cos �A,B and sA,B�sin �A,B�

E

N
=

�

8
JsAsB +

�

8
J�1 + ��cAcB −

h

2
�cA + cB − 2m . �6�

The phase diagram is characterized by the competition be-
tween the xy spin-density wave �SDWxy� with order param-
eter �xy = ��−1�iSi

x� �corresponding to SF ordering for U�0�,
and Néel order �SDWz� �z= ��−1�iSi

z� �corresponding to
CDW�. The solution changes according to the magnetization
m of the system �i.e., the doping of our physical model�. The
m vs h curve has a discontinuity of amplitude mc

=	� / ��+2�=z. For m=0 �half-filling �=0�, a SDWz �CDW�
state is obtained. For m� �mc ,1, the homogeneous SDW
SDWxy �SF� state is stable, while for 0�m�mc phase sepa-
ration takes place between the two types of ordering. Thus,
when working at fixed magnetization �corresponding to fixed
doping ��, one finds a SF for z�zc=m=� and phase separa-
tion for z�zc=�. This strong-coupling value �indicated by
arrows in Fig. 1� agrees very well with our DMFT results.

B. Weak-coupling mean-field theory

We now turn to the opposite weak-coupling limit. We de-
couple the interaction term in the SF and the CDW channels
and determine the regions of stability of each phase. We first
consider the BCS decoupling of the interaction, introducing
the order parameter �BCS= ��U� /N��k�ck↑

† ck↓
† � to make the

Hamiltonian quadratic. In Nambu formalism, it reads

HBCS = �
k

	k
†
 �k↑ − �BCS

− �BCS − �k↓
�	k + EG. �7�

Here, �̃���−Un−�, �k�=�k�− �̃�, and EG=�k�k↓
+N�U�n↑n↓+N�BCS

2 / �U�. The diagonalization of Eq. �7�

TABLE I. Particle-hole transformation mapping the U�0
model with �n↑�= �n↓� onto a half-filled U�0 model with a mag-
netic field.

−�U��0 �U��0

ci↑
+ , ci↓

+ di↑
+ , �−1�idi↓

nc↑, nc↓ nd↑, 1−nd↓
��nc−1= �nc↑+nc↓�−1 md= �nd↑−nd↓�
Chemical potential �c Field hd=�c− �U� /2

hc �d=hc+ �U� /2

SF: �ci↑
+ ci↓

+ � SDWxy: �−1�i�di↑
+ di↓�

CDW: �−1�i�n̂ci� SDWz: �−1�i�Sdi
z �
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yields the Bogoliubov modes with eigenvalues Ek
±= ± ��k↑

−�k↓� /2+	��k↑+�k↓�2 /4+�BCS
2 . Defining new variables �k

= ��k↑+�k↓� /2 and �̃= ��̃↑+ �̃↓� /2, the usual form of the BCS
gap equation is recovered. We can readily compute the en-
ergy of BCS phase, obtaining EBCS−En=−�BCS

2 /2W, which
tells us that the normal state is always unstable toward SF
ordering.

Analogously, we can decouple the interaction in the CDW
channel defined by the order parameter ��

= ��U� /N��k�ck+Q�
† ck�� with Q= �� ,� ,��. Introducing the

spinor 	k�
† = �ck�

† ,ck†Q�
† �, the mean-field Hamiltonian reads

HCDW = �
k�RBZ,�

	k�
† 
�k� − �̃� − ��

− �� − �k� − �̃�
�	k� + E0,

�8�

with E0=N�↑�↓ / �U�+N�U�n↑n↓. It is readily diagonalized,

with eigenvalues, Ek�
± = ±	�k�

2 +��
2 − �̃�. This yields the fol-

lowing two self-consistent conditions:

1

N
�

k�RBZ
�f�Ek�

+ � + f�Ek�
− � = n�,

��

N
�

k�RBZ

f�Ek
−� − f�Ek

+�
	�k�

2 + ��
2

=
�−�

�U�
. �9�

At a fixed value of the chemical potential, these CDW equa-
tions have the following solutions: �i� for all �U� and z, a
normal solution with �CDW=0, which is unstable toward SF;
�ii� for large enough �U�, a half-filled �commensurate� CDW;
and �iii� for large values of z close to 1, a homogeneous
CDW solution is also found with a density different from
unity ���0�.

We first compare the ground-state energies of the two
mean-field solutions: the homogeneous SF and the SF/half-
filled CDW phase-separated solution obtained from a Max-
well construction. The resulting phase boundary �Fig. 1� is
seen to be qualitatively reasonable and even quantitatively

accurate �in comparison to the numerical DMFT result� for
some intermediate range of z. Indeed, the weak-coupling
mean field is justified only when �U�� t↑ , t↓, i.e., �U� /W
� �1−z�.12 An indicative line below which weak-coupling
static mean field is reliable is shown in panel �b� of Fig. 3

In Fig. 2, we perform a more detailed comparison of the
ground-state energies of three mean-field solutions: the ho-
mogeneous SF, the phase-separated SF/CDW, and the homo-
geneous CDW with ��0 �when it exists�. This comparison
yields a small region of parameters, for large z, in which a
homogeneous CDW with a density different from one atom
per site is stable. The phase transition between SF and CDW
could be studied by a more sophisticate mean-field approach
allowing simultaneously for both CDW and BCS orders.
Within this approach, a different scenario from a first-order
transition can be realized. Namely, CDW and BCS orders
can coexist in the same solution for some range of param-
eters, giving rise to a supersolid phase, which here becomes
favored by the presence of the underlying optical lattice. In
light of the absence of a supersolid state in DMFT, we did
not consider this possibility in the weak-coupling mean-field
theory.

IV. LOCAL DENSITY APPROXIMATION
FOR THE HARMONIC TRAP POTENTIAL

We finally discuss the effect of the trap potential. For
simplicity, we perform an explicit calculation only in the
strong-coupling limit, using again the particle-hole transfor-
mation �Table I� and considering the effective spin model
�Eq. �5�. A harmonic trap potential yields a position-
dependent chemical potential which corresponds under the
particle-hole transformation to a spatially varying magnetic
field h�r�=h−h0r2 /R0

2. Here, R0 is the radius of the circular
trap, h0=m�0

2R0
2 /2, and h=�− �U� /2 is related to the chemi-

cal potential at the center of the trap, which must be adjusted
so that the local density n�r� integrates to the total number of
atoms. We start from a local density approximation �LDA�
and also compare with a Monte Carlo solution of the strong-
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FIG. 2. �Color online� Phase diagram for �
=0.05 from weak-coupling mean field �whose va-
lidity is questionable above the dotted line� �see
text�. For simplicity, a square density of states
was used here.
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coupling model in the presence of h�r�. As described above,
the strong-coupling analysis of the uniform system yields a
critical magnetic field �chemical potential� at which m�h� is

discontinuous. For �h � �hc=J�	���+2�= 8z�

1−z2

t↑t↓
�U� , we have a

SDWz �CDW� phase; otherwise we have a SDWxy �SF�
phase. Within the LDA approximation, this implies that in a
region where �h�r�� is smaller �larger� than hc, we locally
observe SDWz /CDW ordering �SDWxy /SF�. According to
the values of the parameters h and h0, and noting that h
−h0�h�r��h, one finds several different regimes:

�i� h−h0�hc or h�−hc. The trap potential is always
larger than hc, or smaller than −hc, so that the system is in a
SDWxy �SF� phase everywhere inside the trap, and the den-
sity profile varies smoothly.

�ii� h�hc and �h−h0��hc. In this case, h�r��hc inside a
circle of radius R1=R0	�h−hc� /h0 centered at r=0. Hence,
one has phase separation into two distinct regions:
SDWxy�SF� ordering within this circle and SDWz�CDW� in
the outer ring �Fig. 3, left panel�.

�iii� h−h0�−hc and �h��hc. We find again phase separa-
tion with the opposite spatial arrangement. The SDWxy�SF�
part is stable out or a circle of radius R2=R0	�h+hc� /h0,
inside which there is a SDWz�CDW� phase �Fig. 3, middle
panel�.

�iv� h�hc and h−h0�−hc. Then, the magnetic field pro-
file crosses both hc and −hc, so that there are three spatial
regions: R�R1 where we find SDWxy�SF�, then the ring
R1�r�R2 where SDWz�CDW� establishes, and finally an
outer ring r�R2 with SDWxy�SF� ordering �Fig. 3, right
panel�.

In the three last cases ��ii�–�iv�, in which phase separa-
tion occurs, the LDA approximation predicts a jump of the
magnetization at the phase boundaries R1 and R2, corre-
sponding to a jump of the density in the original U�0 model
�see also Refs. 13�. In order to test this prediction and assess
the validity of LDA, we performed a classical Monte Carlo
simulation of model �Eq. �5� in the presence of a spatially

dependent field h�r�. For simplicity, this test was performed
in a one-dimensional geometry. We find a remarkable agree-
ment between the LDA density profiles and the Monte Carlo
solution, which confirms that very sharp variations of the
local density indeed takes place at the boundary between
domains in cases ��ii�–�iv�.

V. CONCLUSION

In this paper, we have studied the phase diagram of mix-
tures of fermionic atoms with different masses in a cubic
optical lattice in the case in which the interaction is attrac-
tive. For small values of the unbalance, the system remains
in a homogeneous superfluid phase, exactly as in the case of
equal masses. When the anisotropy exceeds a given critical
value, which depends on the density of fermions, the system
is a pure superfluid only in weak coupling, and increasing the
coupling determines a phase separation between a superfluid
state and a commensurate charge density wave, in which an
alternated pattern of atoms is observed. Once the harmonic
trap potential is taken into account, the phase separation is
actually realized in different regions of the trap �for example,
the superfluid can be present in the central region, while the
density wave is confined to the outer part of the trap�, with
rapid variations of the local density at the phase boundaries.
We note finally that, in the case of the 6Li/ 40K mixture, a
simple estimate shows that the mass imbalance z can be var-
ied over a large range by changing the lattice depth V0 /ER
�z�1 at small V0 /ER and z�0.9 for V0 /ER�15�, so that the
effects discussed in this work can indeed be actually observ-
able in these systems.
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FIG. 3. �Color online� Density
profiles and domains with differ-
ent orderings inside the trap �bot-
tom panels�, as discussed in text.
The top panels show how the trap
potential intersects the character-
istic values of the chemical poten-
tial in each case.
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