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We study fundamental limitations on the energy relaxation rate of a superconducting charge qubit with a
large-gap Cooper-pair box, �b��r. At a sufficiently large mismatch between the gap energies in the box �b

and in the reservoir �r, “quasiparticle poisoning� becomes ineffective even in the presence of nonequilibrium
quasiparticles in the reservoir. The qubit relaxation still may occur due to higher-order �Andreev� processes. In
this paper, we evaluate the qubit energy relaxation rate T 1

−1 due to Andreev processes.
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I. INTRODUCTION

A large number of recent experimental studies1–9 indicate
the presence of quasiparticles in superconducting single-
charge devices at low temperatures. The operation of these
devices, of which the best known is the Cooper-pair box
qubit, requires 2e-periodic dependence of the charge of the
box on its gate voltage, and thus an introduction of an un-
paired electron �quasiparticle� in the Cooper-pair box �CPB�
is a significant problem. The superconducting charge qubit
operates at the degeneracy point for Cooper pairs, Ng=1,
with Ng being the dimensionless gate voltage. For equal gap
energies in the Cooper-pair box and reservoir, �b=�r, the
states of the qubit at Ng=1 are unstable with respect to qua-
siparticle tunneling to the box. The quasiparticle changes the
charge state of CPB from even to odd and lowers the charg-
ing energy. This phenomenon, commonly referred to as
“quasiparticle poisoning,” is well known from the studies of
the charge parity effect in superconductors, see, for example,
Ref. 10 and references therein. Quasiparticle poisoning can
degrade the performance of the charge qubit in two ways.
First, it causes the operating point of the qubit to shift sto-
chastically on the time scale comparable with the measure-
ment time.6 Second, it contributes to the decoherence.11 One
of the approaches to improve the performance of charge qu-
bits is to use superconducting gap engineering. In most
single-charge superconducting devices, quasiparticle poison-
ing can be suppressed even in the presence of nonequilib-
rium quasiparticles in the reservoir by engineering a large
mismatch between �b and �r. Gap energies in superconduct-
ors can be modified by oxygen doping,2 applying a magnetic
field,4,5 and adjusting layer thickness.7,8 In this paper, we
study the fundamental limitations on the energy relaxation
time in a charge qubit with a large gap in the box, �b��r.

For equal gap energies in the box and reservoir, �b=�r,
the energy relaxation rate due to quasiparticle poisoning11 is

1

T1
�

gTnqp

��F

� T

EJ
, �1�

with nqp, gT, and �F being the density of quasiparticles in the
reservoir, dimensionless conductance of the junction, and
density of states at the Fermi level, respectively. The relax-
ation rate 1 /T1 in Eq. �1� was derived under the assumption
that an unpaired electron tunnels from the reservoir to the
box to minimize the energy of the system. Indeed, for

�b=�r, the odd-charge state of the CPB has lower energy at
Ng=1 due to the Coulomb blockade effect. By properly en-
gineering superconducting gap energies �i.e., inducing large
gap mismatch, �b��r�, one can substantially reduce the
quasiparticle tunneling rate to the Cooper-pair box. Suppose
initially that the qubit is in the excited state with energy E�+�,
and the quasiparticle is in the reservoir with energy Ep. Upon
quasiparticle tunneling to the box, the minimum energy
of the final state is Ef

min=�b+EN+1 with EN+1 being the
energy of the CPB in the odd-charge state. Therefore, the
threshold energy for a quasiparticle to tunnel to the box is
Ep

min=�b+EN+1−E�+�, see also Fig. 1. If Ep
min−�r�EJ�T,

only exponentially small fraction of quasiparticles are able to
tunnel into the island. �Note that the energy difference
between excited and ground states of a charge qubit is
EJ, while the energy of the qubit in the excited state is
E�+�=Ec+EJ /2. Here, Ec, EJ, and T are the charging energy
of the CPB, the Josephson energy associated with the tunnel
junction, and the temperature, respectively.� Thus, the contri-
bution to the qubit relaxation rate T 1

−1 from the processes
involving real quasiparticle tunneling to the island becomes

1

T1
�

gTnqp

��F
exp�−

�b − �r − Ec − EJ/2

T
� �2�

and is much smaller than the one of Eq. �1�. �To obtain Eq.
�2�, we used the fact that EN+1=0 at Ng=1.	 However, there

FIG. 1. �Color online� The spectrum of the Cooper-pair box as a
function of the dimensionless gate voltage for a large-gap mis-
match, �b��r. The solid and dashed lines correspond to even- and
odd-charge states of the box, respectively.
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is also a mechanism of energy relaxation originating from
the higher-order tunneling processes �Andreev reflection�.
The contribution of these processes to the qubit relaxation is
activationless and can be much larger than the one of Eq. �2�.
In the rest of the paper, we study qubit energy relaxation due
to Andreev processes in detail.

II. THEORETICAL MODEL

Dynamics of the Cooper-pair box coupled to the super-
conducting reservoir through the tunnel junction is described
by the Hamiltonian

H = HC + HBCS
b + HBCS

r + HT. �3�

Here, HBCS
b and HBCS

r are BCS Hamiltonians for the box and
reservoir; HC=Ec�Q /e−Ng�2 with Ng and Q being the di-
mensionless gate voltage and the charge of the CPB, respec-
tively. We consider the following energy scale hierarchy:
�b��r, Ec�EJ�T. In order to distinguish between Cooper
pair and quasiparticle tunneling, we present Hamiltonian �3�
in the form12

H = H0 + V and V = HT − HJ. �4�

Here, H0=HC+HBCS
b +HBCS

r +HJ, and HJ is the Hamiltonian
describing the Josephson tunneling,

HJ = �N�
N�HT
1

E − H0
HT�N + 2�
N + 2� + H.c.

The matrix element 
N�HT
1

E−H0
HT�N+2� is proportional to

the Josephson energy EJ. The perturbation Hamiltonian V
defined in Eq. �4� is suitable for the calculation of the qua-
siparticle tunneling rate. The tunneling Hamiltonian for the
homogeneous insulating barrier is

HT = �
	
� dxdx��T�x,x��
	

†�x�
	�x�� + H.c.	 , �5�

where x and x� denote the coordinates in the CPB and res-
ervoir, respectively, and T�x ,x��, in the limit of a barrier with
low transparency, is defined as

T�x,x�� =
1

4�2� T
�F

2 �2�r − r����z���z��
�

�z

�

�z�
. �6�

Here, T is the transmission coefficient of the barrier, and r
and z are the coordinates in the plane of the tunnel junction
and perpendicular to it, respectively. Hamiltonian �5� along
with the above definition of T�x ,x�� properly takes into ac-
count the fact that in the tunnel-Hamiltonian approximation,
the wave functions turn to zero at the surface of the
junction.13,14 In terms of the transmission coefficient T, the
dimensionless conductance of the tunnel junction gT can be
defined as gT=TSJkF

2 /4�= 1
3TNch, where SJ is the area of the

junction and Nch is the number of transverse channels in the
junction.

The energy relaxation rate of the qubit due to higher-order
processes is given by

A =
2�

�
�
p,p�

2�Ap�p�2��Ep� − Ep − EJ�fF�Ep��1 − fF�Ep��	 .

�7�

Here, fF�Ep� is the Fermi distribution function with Ep

=��p
2 +�r

2 being the energy of a quasiparticle in the reservoir.
The amplitude Ap�p is given by the second order perturbation
theory in V,

Ap�p = 
− ,Ep�↑�V
1

Ei − H0
V� + ,Ep↑� . �8�

At Ec�EJ and Ng=1, the eigenstates of the qubit are given
by the symmetric and antisymmetric superpositions of two
charge states, i.e., �−�= �N�+�N+2�

�2
and �+ �= �N�−�N+2�

�2
with the

corresponding eigenvalues E�±�=Ec±EJ /2. In the initial
moment of time, the qubit is prepared in the excited state
and the quasiparticle is in the reservoir, i.e., �+ ,Ep↑�
�+ � � �Ep↑�. The energy of the initial state is Ei=Ep+E�+�.
The denominator in the amplitude �Eq. �8�	 corresponds to
the formation of the virtual intermediate state when the qua-
siparticle has tunneled to the island from the reservoir. Since
a quasiparticle is a superposition of a quasielectron and a
quasihole, the contributions to Ap�p come from two interfer-
ing paths,

Ap�p =
1

2

N + 2,Ep�↑�V

1

Ei − H0
V�N,Ep↑�

−
1

2

N,Ep�↑�V

1

Ei − H0
V�N + 2,Ep↑� . �9�

To calculate the amplitude Ap�p, we use the particle-
conserving Bogoliubov transformation,15–17

�n	
† =� dx�Un�x�
	

†�x� − 	Vn�x�
−	�x�R†	 ,

�n	 =� dx�Un�x�
	�x� − 	Vn�x�
−	
† �x�R	 . �10�

The operators R† and R transform a given state in an
N-particle system into the corresponding state in the �N+2�-
and �N−2�-particle systems, respectively, leaving the quasi-
particle distribution unchanged, i.e., R†�N�= �N+2�. Thus,
quasiparticle operators �n	

† and �n	 defined in Eq. �10� do
conserve particle number.18 The transformation coefficients
Un�x� and Vn�x� are given by the solution of the
Bogoliubov–de Gennes equation. For spatially homogeneous
superconducting gap �, the functions Un�x� and Vn�x� can be
written as Un�x�=un�n�x� and Vn�x�=vn�n�x�. The coher-
ence factors un and vn are given by

un
2 =

1

2
�1 +

�n

En
� and vn

2 =
1

2
�1 −

�n

En
� .

Here, En=��n
2+�2; �n and �n�x� are exact eigenvalues and

eigenfunctions of the single-particle Hamiltonian, which may
include a random potential V�x�, e.g., due to impurities. The
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single-particle energies �n and wave functions �n�x� are de-
fined by the following Shrödinger equation:

�−
�2

2m
�� 2 + V�x���n�x� = �n�n�x� .

In the presence of time-reversal symmetry, un, vn, and �n�x�
can be taken to be real. Then, with the help of Eq. �10�, we
obtain the amplitude of the process Ap�p,

Ap�p =
1

2
� dx1dx1�dx2dx2�T�x1,x1��T�x2,x2���Up��x1��Vp�x2��

− Up�x1��Vp��x2��	�
k

Uk�x1�Vk�x2�
Ep + �E+ − Ek

, �11�

where �E+E�+�−EN+1=Ec+EJ /2. The minus sign in the pa-
rentheses here reflects the destructive interference between
quasielectron and quasihole contributions, see also Eq. �9�.

III. DISORDER AVERAGING

It is well known that Andreev conductance is sensitive to
disorder, see, for example, Refs. 19 and 20. Similarly, the
rate A is affected by electron backscattering to the tunnel
junction, see Fig. 2. If a quasiparticle bounces off the walls

of the box or impurities many times, it is reasonable to ex-
pect the chaotization of its motion. Thus, one is prompted to
consider ensemble-averaged quantities rather than their par-
ticular realization. Using Eqs. �7� and �11�, we obtain


A� =
�

���
p,p�

� �
i=1..4

dxidxi�T�x1,x1��T�x2,x2��T�x3,x3��T�x4,x4���up�vp�p��x1���p�x2�� − upvp��p�x1���p��x2��	

��up�vp�p��x3���p�x4�� − upvp��p�x3���p��x4��	�
k

ukvk�k�x1��k�x2�
Ep + �E+ − Ek

�
k�

uk�vk��k��x3��k��x4�

Ep + �E+ − Ek�

���Ep� − Ep − EJ�fF�Ep��1 − fF�Ep��	� . �12�

Here, the brackets 
¯� denote averaging independently over
different realizations of the random potential in the box and
reservoir. In order to average over the disorder in the CPB,
one has to calculate the following correlation function:

I ��
k,k�

ukvk�k�x1��k�x2�
Ep + �E+ − Ek

uk�vk��k��x3��k��x4�

Ep + �E+ − Ek�
�

=� �b
2d�1d�2

4E��1�E��2�


K�1
�x1,x2�K�2

�x3,x4��

�Ep + �E+ − E��1�	�Ep + �E+ − E��2�	
,

�13�

where K��x1 ,x2�=�k�k�x1��k�x2����k−�� and E���
=��2+�b

2. The correlation function 
K�1
�x1 ,x2�K�2

�x3 ,x4��
consists of reducible and irreducible parts,


K�1
�x1,x2�K�2

�x3,x4�� = 
K�1
�x1,x2��
K�2

�x3,x4��

+ 
K�1
�x1,x2�K�2

�x3,x4��ir.

�14�

The reducible part can easily be calculated by relating

K��x1 ,x2�� to the ensemble-averaged Green’s function:

K��x1 ,x2��− 1

� Im
G�
R�x1 ,x2��=�Ff12. �Upon averaging

over disorder, one can neglect the energy dependence of the
density of states here, i.e., 
�F����=�F. The function f12 is
given by f12= 
eik�x1−x2��FS with 
¯�FS being the average over
electron momentum on the Fermi surface. For three-
dimensional system, the function f12 is equal to f12

=
sin�kF�x1−x2��

kF�x1−x2� .� The irreducible part 
K�1
�x1 ,x2�K�2

�x3 ,x4��ir

can be expressed in terms of the classical diffusion
propagators—diffusons and Cooperons, see, for example,

FIG. 2. The diagrams corresponding to the interference of elec-
tron trajectories in the �a� box and �b� reservoir. The contribution of
the diagrams with interference in both electrodes �not shown� is
much smaller than the one of the above diagrams �Ref. 19�.
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Ref. 21. In the absence of magnetic field, diffusons and
Cooperons coincide, P��x1 ,x2�=P�

D�x1 ,x2�=P�
C�x1 ,x2�, and

the irreducible part of the correlation function �Eq. �14�	
reads


K�1
�x1,x2�K�2

�x3,x4��ir =
�F

�
Re�f14f23P��2−�1��x1,x3�

+ f13f24P��2−�1��x1,x4�	 . �15�

The spectral expansion of P��x1 ,x2� for the diffusive system
is

P��x1,x2� = �
n

fn
*�x1�fn�x2�
− i� + �n

. �16�

Here, �n and fn�x� are the corresponding eigenvalues and

eigenfunctions of the diffusion equation, -D�� 2fn�x�
=�nfn�x�, satisfying von Neumann boundary conditions in
the box.

Equation �15� can be simplified in the case of large Thou-
less energy, i.e., ET��b ,�r ,Ec ,EJ. �Here, ET=� /�D with
�D�Sb /D being the time to diffuse through the box and Sb

being the area of the island, see Fig. 3� This condition is
fulfilled for a small aluminum island22 with Sb�1 �m2 and
mean free path l�25 nm,23 when the time spent by the vir-
tual quasiparticle in the box, t�� / ��b−�r−�E+�, is much
longer than the classical diffusion time �D.24 In this case, the
irreducible part in Eq. �14� is given by the universal limit,


K�1
�x1,x2�K�2

�x3,x4��ir =
�F

Vb
���1 − �2��f14f23 + f13f24� .

�17�

Here, Vb is the volume of the box. Upon substituting Eqs.
�14� and �17� into Eq. �13� and evaluating the integrals over
energies �1 and �2, we obtain

I = 4�F
2 f12f34L1�Ep + �E+

�b
�

+ �F
2 �b

2�b
�f14f23 + f13f24�L2�Ep + �E+

�b
� , �18�

where �b=1/�FVb is the mean level spacing in the box. The
functions L1�y� and L2�y� are defined as

L1�y� =
1

1 − y2 arctan2��1 + y

1 − y
� ,

L2�y� = �
1

�

dx
1

�x2 − 1

1

x�x − y�2 . �19�

The expressions above are valid for y�1. The function L2�y�
has the following asymptotes:

L2�y� � � �/4 + �4/3�y , y � 1

�/2�2�1 − y�3/2, 1 − y � 1.
� �20�

After substituting Eq. �18� into Eq. �12� and averaging over
disorder in the reservoir, we obtain the following expression
for 
A�:


A� =
��F

2

2�
� d�1�d�2���E��2�� − E��1�� − EJ�fF�E��1��	�1 − fF�E��2��	� � �

i=1,. . .,4
dxidxi�T�x1,x1��T�x2,x2��T�x3,x3��T�x4,x4��

��4f12f34L1�E��1�� + �E+

�b
� +

�b

2�b
�f14f23 + f13f24�L2�E��1�� + �E+

�b
���1 −

�r
2

E��1��E��2��
�
K�1�

�x1�,x3��K�2�
�x2�,x4��� .

�21�

Here, E����=���2+�r
2. The correlation function in the

reservoir 
K�1�
�x1� ,x3��K�2�

�x2� ,x4��� follows from Eqs. �14� and
�15�. Using Eq. �6� and evaluating the spatial integrals
over the area of the junction as well as the integrals
over energies �1� and �2�, we finally obtain the answer for

A�,


A� = 1 + 2, �22�

with 1 and 2 being defined as

1 �
2�

�

3C1

�4�2�2

gT
2

Nch
� EJ

2�r + EJ

nqp

�F
L1��r + �E+

�b
� �23�

and

FIG. 3. The layout of the Cooper-pair box qubit considered in
the text.
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2 �
2�

�

gT
2

8�4�2�2

�b

�b
� EJ

2�r + EJ

nqp

�F
L2��r + �E+

�b
� .

�24�

Here, C1 is a numerical constant of the order of 1,

C1 =
1

�3kF
2SJ
�

kF
2SJ

dy1dy2dy3dy4P12P13P24P34,

with y being a dimensionless coordinate in the plane of a

tunnel junction and P12=
sin��y1−y2��−�y1−y2�cos��y1−y2��

�y1−y2�3 . The func-
tions L1 and L2 are defined in Eq. �19�, and their dependence
on the ratio ��r+�E+� /�b is shown in Fig. 4. The rate 1

describes the contribution from the reducible terms, see Eq.
�14�, and is similar to the ballistic case when electron scat-
tering from the impurities or boundaries is negligible. The
other term, 2, reflects the enhancement of 
A� in the diffu-
sive limit due to the quantum interference of quasiparticle
return trajectories25 and originates from the irreducible con-
tributions, see Fig. 2. In the case of Nch�b /�b�1, the con-

tribution of this interference term becomes dominant,
2�1. The contribution of the interference in the reservoir
to the rate 2, see Fig. 2�b�, is geometry dependent. For a
typical charge qubit with the small junction connected to a
large electrode, backscattering of electrons to the junction
from the reservoir side gives much smaller contribution to 2
than the similar one for the box side of the junction. In par-
ticular, for the layout of the qubit shown in Fig. 3, the con-
tribution of the interference in the reservoir to 2 is smaller

than the one in the box by a factor
db

dr

�b

ET
ln� �D

�rSJ
� L1�a0�

L2�a0� �1.

�Here, a0= ��r+�E+� /�b, and db�r� is the thickness of the
superconducting film in the box �reservoir�.	 Therefore, we
neglected the terms corresponding to the interference in the
reservoir in Eq. �24�.

IV. CONCLUSION

We have studied the fundamental limitations on the en-
ergy relaxation time in a charge qubit with a large-gap
Cooper-pair box, �b��r. For sufficiently large �b, real qua-
siparticle transitions can be exponentially suppressed, and
the dominant contribution to the charge qubit energy relax-
ation time T1 comes from the higher-order �Andreev� pro-
cesses, see Eq. �22�. For realistic geometry of the charge
qubits and the density of nonequilibrium quasiparticles in the
reservoir nqp�1019–1018 m−3,11 we estimate the Andreev re-
laxation rate to be 
A��10−1–10−2 Hz. Thus, in the ab-
sence of other relaxation channels, the mismatch of gap en-
ergies leads to extremely long T1 times. �For comparison, the
quasiparticle-induced T1 found in Ref. 11 for the charge qu-
bit with equal gap energies was T 1

−1�105–103 Hz.�
The charge qubit with a large gap in the box also permits

to reduce quasiparticle-induced decoherence. Since real qua-
siparticle transitions into the island are suppressed, see Eq.
�2�, the dephasing time of the qubit is limited by the energy
relaxation processes, i.e., T2�2/ 
A�.
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