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Although d,2_> gap symmetry is well established for the hole-doped cuprates, and for at least a portion of
the electron-doped cuprates, the possibility of higher-harmonic gap functions remains. Here we analyze the
higher-harmonic problem within a spin-fluctuation-mediated pairing framework by solving the BCS gap equa-
tion on a quasicylindrical Fermi surface, explicitly considering deviations from a cylindrical Fermi surface,
with specified band structure. We find a number of interesting effects: the shape of the gap function is virtually
insensitive to the value of the correlation length assumed; the gap near the node gets steeper with underdoping,
implying a flatter density of states; the higher-harmonic components show a complex doping dependence; and
the shape of the gap function is insensitive to impurity scattering in the unitary and Born limits.
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I. INTRODUCTION

d-wave (d,»_,2) pairing in the optimally doped high-T,
cuprates was established in the mid-1990s through a number
of experiments: Josephson interferometry,! tricrystal
experiments,” various thermodynamic measurements indicat-
ing nodal superconductivity,> and Andreev spectroscopy
work.® More recent tricrystal work’ suggests the predomi-
nance of this symmetry over a wide range in doping. Despite
the robustness of these experimental data,® the possibility of
higher-harmonic gap functions remains. The phase-sensitive
experiments suffice to demonstrate a 7 change in the order
parameter phase for quasiparticles moving parallel to the a
and b axes. However, appropriate higher-harmonic gap func-
tions would show the same w phase change. Much past
work?* has indicated a low-temperature density of states lin-
ear in energy near £=0. While not entirely excluding higher-
harmonic gap functions, this work has been taken as support-
ive of d,2_,» superconductivity.

Previous work on higher-harmonic gap functions'? stud-
ied the effect of extended gapless regions in the cuprates
induced by higher harmonics through solution of generalized
Abrikosov-Gorkov equations. Ghosh'® examined s+d pair-
ing in the cuprates in a generalized harmonic context, while
Bang et al.'"* employed a higher-harmonic model to account
for several anomalous properties of the superconductivity
observed in the heavy-fermion material CeRhlIns.

Two  angle-resolved  photoemission  spectroscopy
(ARPES) studies'>'® on underdoped Bi,CaSr,Cu,Oq,s
(BSCCO) have depicted a gap structure significantly flatter
near the node than the pure d-wave gap. Mesot et al.'® found
evidence for a gap function with an 8—12 % higher-harmonic
[cos(6¢)] content, while Borisenko et al.'> found the leading
edge gap to contain an approximate 21% cos(6¢) content.
Within the BCS theory, such gap structures will tend to pro-
duce low-energy densities of states (DOSs) that are enhanced
relative to that expected for a pure d wave [for which N(E)
=E/A]

It is therefore most surprising that recent tunneling work'”
on underdoped BSCCO found a low-energy DOS which,
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while not implying a fully gapped order parameter, is sub-
stantially depleted relative to the pure d-wave case. One hy-
pothesis consistent with these data is the use of a gap func-
tion steeper near the nodes by including higher harmonics.
Since, as will be shown later, the clean-limit low-energy den-
sity of states and gap slope at the node are inversely
proportional'® a steeper gap function would yield a depleted
low-energy density of states.

Given the conflicting data in this area, what we have done
is to solve the BCS gap equation assuming a spin-
fluctuation-mediated pairing mechanism and study the evo-
Iution of the gap function throughout the entire phase dia-
gram of the cuprates, from the hole-doped cuprates
(overdoped to underdoped) through to the electron-doped cu-
prates. We have also studied the effect of correlation length,
temperature, and impurity scattering within the unitary and
Born limits. We have not attempted to include the effects of
the intervening antiferromagnetic state near zero doping; our
purpose is to study the effect of these several quantities on
order parameter symmetry.

II. MODEL

We begin with the spin fluctuation pairing mechanism
proposed by Monthoux, Balatsky, and Pines:"”

1
=2 g(@)s(q) - S(-q) (1)
q
where
1
s(q) = 5 > '//L,k+q‘7a,ﬁ¢k,/3 (2)
a,B.k

with S the spin-fluctuation operator whose correlation func-
tion is modeled by the susceptibility

1
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FIG. 1. (Color online) Top: Schematic diagram of the Fermi
surface integration used to solve the gap equation. Note the hot
spots and ordering vectors. Bottom: Schematic phase diagram of the
electron- and hole-doped cuprates.
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where § is the antiferromagnetic correlation length, w is the
spin fluctuation frequency, y, is the long-wavelength limit of
the susceptibility («£&?), and the ordering vector Q
=(x7/a,+m/a). The &2 in the denominator of the first
equation follows from dimensional grounds, yielding yx,
o £. We note that, in general, £, oy, and o will depend on
the doping level. '

Use of the above susceptibility leads to the following
BCS weak-coupling gap equation for the superconducting
order parameter (like Monthoux er al., we neglect the imagi-
nary part of the susceptibility):

Pk’ Re[x(k - k', E)Jtanh(E,/2T)A(K')
Alk) = f 8 2m? 2E,

(5)
where E;r=1/(g—u)*+A%(k’), p is the chemical potential,

and g, represents the tight-binding quasiparticle dispersion,
which we take as

gy == 21(cos k; +cos k}) + 41’ cos k; cos k|
- 21"(cos 2k + cos 2k}',) (6)

with 7,1’ "> 0. We have taken the coupling constant g to be
2.0 for all calculations, as in Ref. 20, with no doping depen-
dence. In many problems of this kind the above integral is
taken over the entire Brillouin zone, implying a A(k) that
must be solved over an entire octant of the Brillouin zone.
However, for calculational simplicity our approach, shown in
Fig. 1, is to treat the interaction as relevant only in a strip of
finite width around the Fermi surface, as in the original BCS
approximation,?! and assume that the order parameter de-
pends only on the angle on the Fermi surface, not the dis-
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tance from the Fermi surface. This greatly facilitates the nu-
merical calculations necessary to solve the gap equation,
particularly for large correlation lengths, which require a
very fine mesh in the momentum integration variables. (For
shorter correlation lengths, we have found excellent agree-
ment between the results of our approximation and those of a
full two-dimensional calculation.) However, we retain the
quasiparticle dispersion and choose an integration strip of
sufficient width (typically |k’ |<0.6) that the essential two-
dimensional character of the problem is retained.

For all calculations we have taken ¢’ to be 0.22 and ¢”
=0.1, consistent with ARPES data’>?* on La,_,Sr,CuO,
(LSCO) and other published work on this issue. For simplic-
ity, for all the calculations we have simply set w= so that
we are effectively studying the static limit. We note that, by
using the actual Fermi surface determined by the quasiparti-
cle dispersion g;, we no longer use the approximation of a
cylindrical Fermi surface. To treat the integration properly
we define new variables k=(k,~k,)/\2 and k, =(k,
+ky)/ V2 and exploit the fourfold symmetry of the Fermi sur-
face, integrating along k; (essentially along the Fermi sur-
face) and across k; (crossing the Fermi surface). Since the
Fermi surface is not square, in this approximation k, is not
exactly perpendicular to the Fermi surface, but for most of
the Fermi surface this does not introduce significant error,
and near the antinodal points (where k, and the normal to
the Fermi surface are at significantly different angles) we
simply expand the k, integration range so that the integra-
tion is still effectively performed over a region of constant
width inside and outside the Fermi surface. To avoid double
counting we have restricted the integration range to be inside
a single Brillouin zone.

We have assumed symmetries consistent with d-wave
higher-harmonic gap symmetry; the gap vanishes along the
directions along the Brillouin zone diagonals and is antisym-
metric upon reflection about these diagonals. We have not
explored the possibility of other pairing symmetries emerg-
ing as the hot spots move down the zone diagonals with
underdoping, as was examined in Ref. 20.

Finally, we note that for the orthorhombic material
YBa,Cu;0q,, (YBCO), there is substantial evidence for a
mixed, s+d order parameter, based on tunneling
spectroscopic?*?® and phase-sensitive measurements,”® with
the s component approximately 10-20 % as large as the d
component. Such an s component is expected on the basis of
simple group theory,® as the orthorhombicity breaks the
square symmetry of the CuO planes. In this work we do not
consider such mixed s+d symmetries, but simply focus on
the generalized d-wave symmetry of a spin-fluctuation pair-
ing scenario.

II1. RESULTS
A. Gap symmetry and correlation length

Depicted in Figs. 2 and 3 is one main result of this paper.
These figures show the gap functions obtained for both hole-
doped and electron-doped cuprates by solving the gap equa-
tion for various values of the correlation length £ (in units of
the lattice constant a). The figures depict a strong relation-
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FIG. 2. (Color online) Gap amplitudes, solved within a spin-
fluctuation scenario, for (a) hole-doped (u=-1.2, n,=0.30) and (b)
electron-doped (u=-0.4, n,=0.03) cuprates.

ship between the correlation length and the amplitude of the
gap function; longer correlation lengths are associated with
larger gap amplitudes. This is not surprising given the as-
sumption that y, varies «&. Upon dividing the real part of
the susceptibility by &, one finds in the denominator a
broadening factor which is proportional to &2, so that the
susceptibility grows as & grows.

However, the shape of the gap functions in Fig. 3 (ob-
tained by simply scaling the gap functions by their maximum
value) shows comparatively little dependence on & These
counterintuitive results are a direct result of performing an
essentially two-dimensional calculation, and can be ex-
plained as follows. In two dimensions, the relevant integral
in momentum space that determines the gap function has the
form

2
I= J 1 (7
£ +(@-Q

Simple power counting in q shows that the integral depends
on the cutoff momentum, so that the hot spots, while signifi-
cant, do not contribute the majority of the pairing interaction.
Another way to see this is to note that the hot spots are most
effective in a region of momentum space of radius & !. Plug-
ging this into the expression for /, and integrating over the
interior of a circle of this radius, we find that the absolute
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FIG. 3. (Color online) Normalized gap amplitudes for (a) hole-
doped and (b) electron-doped cuprates; parameters as in Fig. 2.

contribution of the hot spot to / is independent of correlation
length, while clearly I is a strongly increasing function of &.
The relative contribution of the hot spot to the pairing poten-
tial therefore decreases sharply with increasing correlation
length, so that there is little reason to expect a significantly
sharper gap function as ¢ increases.

B. Doping effects

An additional factor affecting the structure of the gap is
that of doping. As one moves down the phase diagram from
optimally hole doped toward underdoped, and on to electron
doping, the size of the relevant Fermi surface centered at
(77, 77), as in Fig. 1, shrinks and the hot spots move down the
antiferromagnetic (AF) Brillouin zone (BZ) diagonal. An im-
portant question to answer is the following: How does the
slope of the gap near the node change with doping? Based on
the motion of the hot spots down the zone diagonals, one
would expect that the slope of the gap (relative to its maxi-
mum value) would increase with underdoping, while one
might expect that the increase in correlation length with un-
derdoping would flatten the gap near the node. There is
therefore a competition between these two factors.

To answer this question, we have performed a calculation
at various dopings, assuming that the correlation length var-
ies in direct proportion to the distance between hole
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FIG. 4. (Color online) Gap amplitudes for varying doping. Cor-
relation lengths varied as described in text. Inset: Doping—chemical
potential relationship.

dopants.27 In general, this distance is o1/ V’;, with x the hole
doping. For these calculations, the correlation length & varied
from S5a for the u=-1.2 case to 10a for the u=-0.7 case.
We see at once in Fig. 4 that as the hot spots move down the
AF BZ diagonals, the gap function becomes significantly
steeper near the nodes. The increasing correlation length
with underdoping has very little impact on gap shape, even
near the nodes. It is easily shown that this greater slope leads
to depleted low-energy quasiparticle density of states.'® Here
we have parametrized the angular dependence of the order
parameter by f(¢):

N(E/A) = N(x) =Re (8)

_
Vx* = ()

For x<<1 only those values of f near 0 will contribute to the
integral, and we may expand f around the node:

f=vale—¢y) ©))
yielding
dox
MO ) e 1o
x/v dd)x

~), T ()
=£sin"1 (V—(ﬁﬂ(/):xwocf. (12)

14 X $=0 14

We see that the slope of the gap near the node and the low-
energy density of states are inversely proportional, so that as
the hot spots move down the zone diagonals, the low-energy
density of states is depleted, in qualitative agreement with
the data of Vedeneev and Maude'” on underdoped BSCCO.

We have checked that, with the inclusion of a finite spin-
fluctuation frequency (taking w,=0.17), the gap function still
steepens near the node with underdoping; this tendency,
however, is weakened. A full assessment of this issue, in-
cluding the doping dependence of w,;, would require a much
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FIG. 5. (Color online) Higher-harmonic content of the gap func-
tion at various chemical potentials is shown. Inset: Coefficient of
the cos(2¢) term. Coefficients defined such that X,A,=1.

more elaborate calculation”® which is beyond the scope of
this paper.

We also note that the maximum in the order parameter
moves away from the “antinodal” point with underdoping.
This is a direct consequence of the motion of the hot spot
down the antiferromagnetic BZ diagonal as the Fermi sur-
face [centered at (m,w); see Fig. 1(a)] shrinks with
underdoping.?’ As stated earlier, it is possible that with suf-
ficient underdoping into the electron-doped cuprates, another
pairing symmetry becomes energetically?® favorable; we
have not considered this here.

C. Evolution of higher harmonics with doping

In general, one may write down an expansion of A(K) in
higher harmonics as follows:

A(k)=Aqcos(2¢p) + A cos(6¢) + - --. (13)

This is the most general expansion consistent with the sym-
metry of the d-wave order parameter [i.e., even parity, van-
ishing at ¢=(2n+1)7/4 and antisymmetric around these
nodal points]. Previous studies!>!>1® have focused on the
evolution of the first higher harmonic (the 6¢ term) with
impurity scattering and doping, and it is generally thought
that the proportion of this harmonic increases as one reduces
doping from the optimally hole-doped cuprates. Here we
show that, within a spin-fluctuation model, a more complex
behavior exists, while the proportion of still higher harmon-
ics [cos(10¢p) and higher] varies with underdoping. To study
this issue, we Fourier-transform the gap functions deter-
mined as a function of doping, normalized to unity at the
maximum amplitude. The coefficients are defined such that
the sum of the coefficients, including the main 2¢ term, is
unity. Figure 5 shows the coefficients of the various terms in
the Fourier expansion at several doping levels. As the plot
indicates, the magnitude of the cos(6¢)) term at first in-
creases, as one moves from the optimally doped regime to-
ward the underdoped. However, it then begins to decrease,
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and its amplitude is approximately zero at a chemical poten-
tial of approximately —0.6. From there, the coefficient grows
steadily more negative, reaching about —0.5 at the last point
modeled. This is in qualitative agreement with the ARPES
data™'® on BSCCO and the electron-doped cuprate
Nd,_,Ce,Cu0, (NCCO),> which show a 6¢ term content
rising from O at underdoping to approximately 0.25 at opti-
mal doping, and falling to approximately —0.43 for NCCO.?’
Concomitantly, in our model, the magnitudes of the
cos(10¢), cos(14¢), and cos(18¢) terms initially decrease
with underdoping, and the 14¢ and 18¢ terms later increase.

The rather complex, unexpected behavior of the expan-
sion coefficients can in fact be explained rather easily, based
upon the motion of the hot spots with underdoping (we use
the term loosely here to include all dopings less than optimal,
including the “negative” dopings of the electron-doped cu-
prates). The hot spots move because the Fermi surface
shrinks with underdoping, as indicated in Fig. 1 of Ref. 20.

Superposed onto Fig. 4 is a plot of the gap harmonic
cos(6¢). We see that, for w=—1.2, the maximum of the order
parameter is still at ¢=0, while A(k) drops rather rapidly
away from the maximum. It is only a third of its maximum
value at the first nodal point (77/12) of cos(6¢), and contin-
ues to decrease thereafter. Given that the Fourier coefficient
agy>* [A(p)cos(66), it is clear that when the hot spot (coin-
ciding with the maximum of the gap function) is at ¢»=0, this
coefficient will be positive. As the hot spot moves to the
right, the coefficient first increases slightly, as more area is
gained on the right-hand side by the motion of the gap func-
tion than is lost on the left. It then reaches a maximum and
begins to fall, as increasing portions of the gap function be-
gin to lie in regions where cos(6¢) is negative. Ultimately,
the peak in the gap function begins to lie in the region be-
tween ¢p=1/12 and /4, where cos(6¢) is negative, and it is
at this point that the coefficient becomes negative, while its
magnitude increases steadily. This picture also implies that at
sufficient underdoping, as the hot spot moves toward /8,
the coefficient of the 6¢ term will begin to increase toward
zero again. It is possible, however, that another gap symme-
try will emerge as this happens.?”

The behavior of the cos(10¢) coefficient follows a similar
pattern to that of cos(6¢), including the initial increase in
amplitude, while the 14¢ and 18¢ terms first decrease and
then increase. This can be understood as well on the basis of
the motion of the hot spots from the positive regions of the
harmonic to the negative regions. It is evident from the plot
that, as the harmonic order increases, the minimum of the
coefficient occurs at lower chemical potential. This is sen-
sible, for as the first node of the harmonic moves closer to
¢=0, the hot spot passes this point more quickly, driving the
coefficient negative, but then also reaches the next nodal
point more quickly, driving the coefficient back into the posi-
tive regime.

D. Temperature effects

The results presented above were all performed at zero
temperature, and the question naturally arises: Does the
shape of the gap function evolve with temperature? At first
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FIG. 6. (Color online) Narrowing of the gap function with in-
creasing temperature.

glance the temperature dependence of the gap would seem to
be largely an overall scale effect due to the thermal
tanh(BE,/2) factor in the gap equation, and for most of the
scenarios studied the gap shape does not change significantly
with temperature. However, there is one situation, relevant to
the electron-doped cuprate NCCO,*" in which some tempera-
ture effects do exist. Figure 5 plots normalized gap functions
at increasing temperature for the chemical potential u=
—0.4, corresponding to an electron-doped cuprate. Here
&rrym/ a was taken as 20. At relatively large antiferromagnetic
correlation lengths, as observed in Ref. 30, the peak in the
gap function becomes slightly narrower as temperature in-
creases, which is rather surprising as one generally expects
increasing temperature to smear out features in gap spectra.
This, however, can be explained as follows: the thermal fac-
tor tanh[ 8/2+/(,— u)*+A%(k)] only acts to limit the gap am-
plitude in those regions where the quasiparticle energy is
significantly less than the temperature. This means that, as
the temperature increases, the small-A(k) regions are
suppressed more than the rest of the gap function, whose
energy is larger. This is exactly the behavior demonstrated in
Fig. 6.

E. Impurity scattering effects

One important point regarding the gap functions pre-
sented in the previous plots is that while the qualitative evo-
Iution of the gap functions with doping is consistent with the
experimental data, the gap functions for the u=-1.2 case are
much shallower near the nodal region than those observed in
experiment.!>!® This form is only weakly dependent on cor-
relation length, as shown earlier, and we must therefore con-
sider possible alternative explanations, such as impurity scat-
tering, for the differences between theory and experiment.

Impurity scattering would generally be expected to
weaken the effect of the DOS singularity at the Van Hove
point (77,0) by introducing an additional self-energy compo-
nent to the dispersion, so that the quasiparticle energy at the
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Van Hove point, relative to the chemical potential, is in-
creased slightly. This effect is expected to be stronger at the
Van Hove point than at the nodal point due to the much
larger Fermi velocity near the nodal point, so that the self-
energy effect is comparatively smaller. (We have here ne-
glected the self-consistent calculation of the Fermi surface
with the modified dispersion.)

We take here the Born and unitary limits for isotropic,
s-wave scattering, within which the quasiparticle energy w is
renormalized to @ as follows:*!

o r —cﬁ B (14)
w=w+ T .
V& + AK)? ] g

The + sign is for the Born limit, while the — sign is the
unitary limit. The integral is taken over the Fermi surface,
and I'=n;/wN,, with n; the impurity concentration and N,
the normal-state density of states. In practice, the second
term on the right-hand side of this equation is the self-energy
resulting from the impurity scattering and is added to the
quasiparticle energy in the dispersion. Therefore, we have
solved this equation self-consistently with the gap equation,
as follows:

A(K')
2Ek/

&k’
A(k):Jgw[x(k—k')]tanh(EkrOT) (15)

where Ej = \[gp—u+3 ()P +A%(K'), where 3(gy) is the
self-energy for g,,=w. In Fig. 7 we present a calculation of
the effects of impurity scattering on gap shape at a few im-
purity scattering levels, for u=-1.2 and &/a=5. Within this
approximation, in both the Born and unitary limits, impurity
scattering is seen to have a negligible impact on gap symme-
try (it does significantly decrease gap amplitude, which is
shown in the inset) This is due to the relatively small size of
the impurity energy scale3? (~TA ~0.05¢) involved relative
to t. If the strength of the superconducting pairing is in-
creased substantially and the impurity concentration is also
increased, significantly stronger gap symmetry changes
emerge. This, however, produces unrealistically high transi-
tion temperatures of the order of 0.1z, or 400 K (taking 7 as
0.35 eV), and so we think it unlikely that impurity scattering
is responsible for the primarily concave cos(2¢) shape of the
order parameter observed in cuprates. From an experimental
point of view, it is likely that s-wave impurity-doped cu-
prates have essentially the same gap symmetry as the pure-
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FIG. 7. (Color online) Effect of impurities on gap symmetry, for
pu=-1.2 (n,=0.3) and ¢/a=>5. Inset: Unnormalized gap functions.

case material. ARPES measurements would be most useful
in this regard.

IV. SUMMARY

In this paper, we have presented the effects of correlation
length, doping, temperature, and impurity scattering on order
parameter symmetry in the high-7, cuprates. We have found
that within a two-dimensional spin-fluctuation model the gap
symmetry is essentially independent of correlation length.
We find good quantitative agreement with experiment for the
proportion of the first d-wave harmonic, cos(6¢), in the so-
Iution to the generalized gap equation. We observe a slight
but unusual dependence of gap symmetry on temperature for
the electron-doped cuprates. Finally, we find little effect of
impurity scattering, in either the Born or unitary limit, on
gap symmetry.
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