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The phase diagram of the XXZ spin-1 quantum magnet on the kagome lattice is studied for all cases where
the z-component nearest-neighbor spin interaction J, is antiferromagnetic. Besides J, and the nearest-neighbor
in-plane spin interaction J,,, the system is also parametrized by an on-site anisotropic term D(5%)2. In the zero
magnetic field case, the six previously introduced phases, found using various methods, are the nondegenerate
gapped photon phase, which breaks no space symmetry or spin symmetry; the sixfold degenerate phase with
plaquette order, which breaks both time-reversal symmetry and translational symmetry; the “superfluid” (fer-
romagnetic) phase with an in-plane global U(1) symmetry broken when J,, <0; the V33 order when Iy
>(; the nematic phase when D <0 and large; and a phase with resonating dimers on each hexagon. We obtain
all of these phases and partial information about their quantum phase transitions in a single framework by
studying condensation of defects in the sixfold plaquette phases. The transition between nematic phase and the
sixfold degenerate plaquette phase is potentially an unconventional second-order critical point. In the case of a
nonzero magnetic field along Z, another ordered phase with translation symmetry broken is opened up in the
nematic phase. Due to the breaking of time-reversal symmetry by the field, a supersolid phase emerges
between the sixfold plaquette order and the superfluid phase. This phase diagram might be accessible in nickel
compounds, organic compound m-MPYNN-BF,, or optical lattices of atoms with three degenerate states on

every site.
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I. INTRODUCTION

The behavior of “frustrated” magnets, in which not all
interaction energies can be simultaneously minimized, is al-
ready quite complex when the individual spins are treated
classically. Models of quantum spins with frustrating inter-
actions are an active subject of current experimental and the-
oretical study. A simple example of a frustrated quantum
magnet is the standard nearest-neighbor Heisenberg antifer-
romagnet on any lattice with closed loops containing an odd
number of sites: important examples include the triangular
and the kagome lattices in two dimensions and the pyro-
chlore lattice in three dimensions.

For physical magnets with finite values of the spin s, there
are general approaches such as computing 1/s corrections to
the classical limit s — % and expanding the spin algebra from
SU(2) to a larger group. Such approaches are powerful and
predict many interesting ordered phases, but their applicabil-
ity to real magnets with only SU(2) symmetry and small
values of the spin (e.g., s=1/2 or s=1) is uncertain. In recent
years, interest has shifted to understanding specific examples
of finite-spin magnets in detail, even though the necessary
theoretical methods are less general than either the 1/s or
large-N expansions. Frustrated quantum antiferromagnets
with small spin s=1/2 or s=1 have been proposed to show
various exotic behaviors, including gapped or algebraic spin
liquids with gauge-boson-like excitations or unconventional
second-order phase transitions.!=3

It is often possible to compare such predictions with
large-scale numerical Monte Carlo studies in cases with re-
duced symmetry [e.g., with SU(2) broken down to U(1)], but
frustrated magnets with full SU(2) symmetry are, in general,
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accessible only by exact diagonalization, series expansion, or
density-matrix renormalization group on relatively small sys-
tems because of a “sign problem” associated with the frus-
tration. The s=1 model on the kagome lattice studied in this
paper is motivated both by the existence of materials such as
organic material m-MPYNN-BF, (Refs. 4 and 5) and
Ni?*-based materials including Ni;V,Og (Ref. 6) and by in-
trinsic interest in the unexpected phases of the model. Our
goal is to present a single treatment of the two-parameter
phase diagram of the model that unifies previous studies of
parts of the phase diagram’~® and allows consideration of the
various phase transitions occurring in the model.

The specific model we will study is a s=1 kagome lattice
antiferromagnet with uniaxial anisotropy (XXZ anisotropy),
with Hamiltonian

H=2J 885+ D(S5)* + 7, (1S + S)SY). (1)
Cij)

Here, the sum is over nearest-neighbor bonds on the kagome
lattice. Note that the on-site anisotropy term would be for-
bidden for s=1/2 and is compatible with inversion symme-
try, unlike the Dzyaloshinksii-Moriya term, also quadratic in
spin, that appears if the other ions of the crystal break inver-
sion symmetry. For general couplings, this Hamiltonian
breaks the spin rotation symmetry SU(2) down to the U(1)
subgroup generated by S° and has time-reversal symmetry.
We discuss both easy-plane and easy-axis limits and also
briefly consider the effects of a magnetic field that breaks
time-reversal but preserves the U(1). Section II reviews pre-
vious theoretical work on the zero-temperature physics of
this Hamiltonian, which, for different values of the cou-
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plings, has found a gapped phase with a massive photonlike
excitation,” a critical line separating plaquette-ordered
phases,® and an Ising-type spin nematic.’ Section III presents
the gauge field theory description of the plaquette-ordered
phases in terms of dual height variables. From Sec. IV to
Sec. VII, we study the transitions between the sixfold degen-
erate phase and other phases; we will see that all the other
phases can be interpreted as the condensates of different
kinds of defects in the sixfold degenerate plaquette phases.
In Sec. VIII, the situation under longitudinal magnetic field
(along Z) is studied, and several new phases are found. Sec-
tion IX is devoted to the point with spin-SU(2) symmetry,
and Sec. X is about other transitions in phase diagram (Fig.
5). Part of the results in this work can be generalized to
higher integer spin system with similar XXZ model on
kagome lattice, and we will briefly discuss this generaliza-
tion in Sec. XI.

II. EXPERIMENTAL SYSTEMS AND PREVIOUS STUDIES

So far, two types of kagome spin-1 materials have been
found. The first type is the organic material
m-MPYNN~BF4,4’5 and the second is Ni?*-based material
Ni;V,04.° Also, the kagome lattice has been constructed
with laser beams;!? an effective spin model can also be real-
ized in cold-atom system trapped in optical lattice, but there
the existence of biquadratic interactions comparable in
strength to the standard Heisenberg interaction makes the
phase diagram even more complicated.'!

In general, the model we are going to discuss is described
by Eq. (1). This Hamiltonian is the simplest example which
can potentially realize all the physics discussed in this work,
but our formalism is supposed to be more general and inde-
pendent of the details of the model on the lattice scale. This
is the simplest spin model which is invariant under time-
reversal transformation. Three coefficients J_, J,,, and D are
used to parametrize this model. If all the coefficients are
positive, this model can be realized in magnetic solids such
as those given above; when J,, D>0 and J,, <0, this model
could possibly be realized in cold-atom systems with pseu-
dospin degrees of freedom on each site. For instance, sup-
pose on every site there are three orbital levels (the three
orbital levels can be the degenerate p-level states, as dis-
cussed in several previous papers'?), the orbital degrees of
freedoms can be viewed as spin-1 pseudospin, with natural
XXZ symmetry. The antiferromagnetic couplings J, and D
can be generated by the on-site s-wave scattering and off-site
dipole interactions.'*'* The J,, coupling resulted from the
superexchange, which should be ferromagnetic due to the
bosonic nature of the system. Therefore, in the following
discussions, both positive J,, and negative J,, cases will be
discussed.

In solids, the spin-SU(2) symmetry can be broken by
spin-orbit coupling and the layered nature of the material, or
by an external magnetic field; in the cold-atom pseudospin
system, the SU(2) symmetry is missing at the very begin-
ning, as the orbital level pseudospin system has natural
uniaxial anisotropy.

Several previous papers have studied the kagome spin-1
system,” 1> at different parameter regimes of this particular
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FIG. 1. (Color online) The ¢g=0 order.

model [Eq. (1)]. There are five phases that are already
known.

Superfluid phase. When J,,<0 and |J,,|>D, J,, in this
case, J,, is the dominant term in the Hamiltonian (1): the
expected phase is a superfluid phase that breaks the global
U(1) symmetry. In the spin language, this phase is a ferro-
magnet in the XY plane. Here, the term superfluid phase is
used since the broken symmetry of this phase is the same as
the superfluid phase.

V3 X3 phase. When J,,>0 and becomes the dominant
term in the Hamiltonian, the phase is not obvious at first
glance. When D=J,=0 and the spin § — +, the system is at
the classical XY limit. It has been shown that the ground state
of this classical XY model has a large discrete degeneracy, in
addition to a U(l) that rotates all the spins: the zero-
temperature entropy associated with this degeneracy is pro-
portional to the size of the system. The ground state configu-
rations satisfy the requirement that every triangle has zero
net spin. If one spin is fixed, the whole ground state configu-
rations can be one-to-one mapped to the classical ground
states of the three-color model.'® Three-color model is de-
fined as follows: on the honeycomb lattice, each link is filled
by one of the three colors, green, red, and blue, and the
whole lattice is colored in such a way that every site joins
links of all three colors. The classical partition function is
defined as the equal weight summation of all the three-color
configurations. This partition function and entropy have been
calculated exactly by Baxter.!” It has also been shown that
the classical model can be mapped to a critical two-
component height model (similar to our model);'®!” the low
energy field theory of this model is a ¢=2 conformal field
theory with SU(3),_,; symmetry.!*?°

The large degeneracy of the classical model is not univer-
sal, and it can be easily lifted by the second- and third-
nearest-neighbor interactions J, and J;. When J,>J;, the q
=0 state (Fig. 1) is stabilized, while if J;>J,, the V33
state (Fig. 2) is stabilized.?! The large three-color degeneracy
is also lifted by 1/S expansion, and some ordered pattern is
picked out from all the classical degenerate ground states;
this effect is usually called “order from disorder.” At the
isotropic case (J,=J,,, D=0), it was proven that after 1/S
expansion, both coplanar g=0 state and the \3 X 3 state are
stable,?? i.e., they are both local minima in all the ground
states; the spin wave modes around these two minima do not
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FIG. 2. (Color online) The V3 X \3 order.

destabilize the order. Later on, more detailed studies suggest
that the global minimum state is the 3 X 3 order,?® as de-
picted in Fig. 2. Although the 1/S expansion is carried out at
the isotropic point, the coplanar 3 X \3 phase is expected to
extend to the limit when J,, is dominant.

Gapped photon phase. When |J,,| <J,<D, a gapped
phase without any symmetry breaking has been found.” The
low energy excitation with the smallest gap is a loop excita-
tion with the same polarization and gauge symmetry as a
photon: the effective theory can be described as a one-
component massive compact gauge field.

Plaquette phase. When |J,,| <D and |J.-D|,0<D<J , a
gapped phase with a sixfold degenerate ground state has
been found.® The sixfold degenerate ground state has
plaquette order: spins resonate around a subset of the hexa-
gons in the kagome lattice. In this parameter regime, the
classical part of this model can be written as

3 2
H=2, %(E Sf) + 2, (D= J)(55)°. @)
A i=1 i

When 0<D <J_, the classical ground states are all the con-
figurations with every triangle occupied by $?=(1,-1,0).
Again, the classical ground states can be mapped onto the
classical three-color model,!” although the three-color states
correspond to S¢ instead of spins in the XY plane (Fig. 3).

If small J,, is turned on (either J,,>0 or J,,<0), the
large degeneracy of three-color ground states is lifted, and
the effective Hamiltonian which operates on the low energy
Hilbert space is

H=Y, —1(S}5,515,5555 + H.c.). (3)
O

1-6 are the sites of each hexagon on the kagome lattice. The
flippable hexagons have four kinds of configurations; they
are (1,0,1,0,1,0) (denoted as A,;), (0,1,0,1,0,1) (denoted as
A,), (=1,0, -1, 0, -1, 0) (denoted as B,), and (0, -1, 0, —1,
0, —1) (denoted as B,). The ring exchange term (3) can flip
A, to A, (and vice versa) (Fig. 4) and can also flip B, to B,
(and vice versa). Two compact U(1) gauge fields were intro-
duced to describe this system, and due to the monopole pro-
liferation, the system is generally gapped, with crystalline
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FIG. 3. (Color online) The classical ground states of Eq. (1)
when J,,=0. Every triangle has configuration (1,-1,0), which can
be mapped to the three-color model on the dual honeycomb lattice.

order. The particular order which happens here is the
plaquette order, which breaks both translational and time-
reversal symmetries. The simplest way to view this state is
that, since the ring-exchange term (3) can flip either A, to
A, configurations or flip B; to B, configurations, the con-
figurations with the largest number of flippable hexagons are
favored in order to benefit from this ring-exchange term.
Notice that the hexagons form a triangular lattice with three
sublattices; then, one out of the three sublattices of the trian-
gular lattice can be resonated. Also, one can choose either to
resonate between A; and A, configurations or to resonate
between B, and B, configurations (these two resonances can-
not both happen at the same state). Therefore, there are in
total 3 X2=6 degenerate ground states.

The simple picture of the ground state will be further
justified in the next section by studying the dual quantum
height model. The classical height model was introduced to
study the classical three-color model, and since there are two
components of free boson height fields in the continuum
limit, it is believed that the low energy field theory should be
c=2 CFT.?° We will see that the quantum effect is relevant at
the classical three-color critical point, and a gap is opened
due to the vertex operators of the height fields.

Recently, a mean-field treatment of a similar model has
been studied.”® The plaquette phase we obtained is similar
but not entirely identical to the “plaquette-ordered phase” in
this recent work, which is identified as the fully packed
string crystal. The main difference between the two ap-
proaches is that the monopole effect of compact gauge
theory has been taken into account in our work from the very
beginning. The monopole effect is supposed to be very rel-

-1 -1
-1 -1 -1
-1 0 +1 +1 0
—_—
+1 0 0 +1
-
0 +1 +1 0 \
-1 \/ -1 -l \/ -1
1 -1

FIG. 4. (Color online) The effect of the ring-exchange term (3).
It can flip A, (B;) to A, (B,) and vice versa.
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FIG. 5. (Color online) The phase diagram with zero magnetic
field. When D>J_ and |ny| is small, the system is in the nondegen-
erate gapped photon phase; when 0 <D <J, and with small |ny s
the ground state breaks both translational and time-reversal symme-
try, resulting in the sixfold degenerate plaquette order. When J,, is
negative and large, basically the system is in superfluid order which
spontaneously breaks _the global spin $* conservation; when J,, is
positive and large, V3 X \3 order is supposed to be favored; and
when D is negative and large, the system has nematic order, with
nonzero expectation of (S+)2.

evant at the z=1 Gaussian fixed point of gauge theory and
dominate the physics close to the Gaussian fixed point. The
nonlocal monopole effects can be described by a local field
theory in the dual formalism, and the ordered pattern is pre-
dicted in this dual local field theory.

Nematic phase. When D<0 and |J,,|,J,<|D|, a nematic
phase with nonzero expectation value of (S')? has been
found.’ In this case, because D is negative and large, the
system favors S*=+1 on every site. Since the $°=0 state
costs too much energy, every site can be viewed as an Ising
spin, and this model is effectively equivalent to a spin-1/2
model. Since (S7)? flips $?=1 to §?=-1 state, it plays the
same role as 0~ =0"—io” on the effective Ising spin. There-
fore, the superfluid phase of this spin-1/2 system is actually
the nematic phase of the original spin-1 model.

The rough phase diagram is shown in Fig. 5. The goal of
the current work is to understand all the phases we know
from the excitations of the sixfold degenerate phase. Basi-
cally, all the phases can be interpreted as the condensates of
various defects which violate the (1,—1,0) constraint in the
plaquette phase above. Since the low energy Hilbert space is
a constrained one, creating one single defect cannot be real-
ized from local moves of the ground state configurations;
instead, global change of all the spins is involved. This im-
plies that one defect in this phase not only carries the global
U(1) charge but also carries the gauge charge, with the gauge
symmetry emerged at the low energy constrained Hilbert
space. Therefore, the condensate of defects is also the Higgs
phase of the compact gauge fields.

Besides the states discussed in this section, there were
other proposals about spin-1 systems on kagome lattice,
mostly on the SU(2) symmetric case. For instance, Hida pro-
posed a hexagon singlet solid with no symmetry breaking
and energy gaps for both magnetic and nonmagnetic
excitations.’* This state is essentially the same as the dimer
plaquette phase discussed in Sec. IX. There was another ap-
proach which relies on the perturbative expansion around the
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disconnected trimer state.”> However, this approach gener-
ally breaks the lattice symmetry; whether this approach is
applicable to the case with full lattice symmetry is unclear.

In the next section, we will develop a U(1) X U(1) com-
pact gauge field formalism as the starting point of the explo-
ration in all the following sections; it will be shown that the
confined phase of the compact gauge fields is exactly the
sixfold degenerate plaquette order.

III. GAUGE THEORY OF THE
PLAQUETTE-ORDERED PHASE

When J,,=0 and 0 <D <J,, the set of degenerate ground
states can be mapped exactly® to those of the three-color
model.!” Every triangle on the kagome lattice has S° configu-
ration (1,-1,0) on this classical critical line. The
z-component spin configuration on the kagome lattice can be
viewed as two-component dimer configurations on the dual
honeycomb lattice, with repulsive interaction between two
flavors of dimers (every link of the honeycomb lattice can
only be occupied by one dimer). It is well known that the
one-component quantum dimer model can be mapped to
compact gauge theory,?; therefore, it is natural to describe
this spin-1 system as two compact U(1) gauge fields, since
we can interpret the three-color constraint as two indepen-
dent U(1) constraints: every site on the honeycomb lattice
connects to exactly one S°=1 dimer and one S°=-1 dimer.
We may map the three values of S* to three configurations of
a two-component electric field:

1
Sf=0 = (EI’EZ) = VT§(170)7

1{ 1.3
S?=12>(E1,E2): /—<__,\ ),
V3\ 2 2
1{ 1 \3
\
S$=—1=(E,E =—<——,——). 4
=-1=EE) = - @)

Next, note that a two-dimensional (2D) unit vector fi; can
be assigned parallel or antiparallel to each link i of the hon-
eycomb lattice (dual lattice of the kagome lattice), so that
vertices of sublattice A of the honeycomb have three incom-
ing bonds, while those of sublattice B have three outgoing
bonds. Now, define two-component vector fields on bonds:

E,=E i;. The three-color constraint is now equivalent to the
Gauss’s law constraint

6‘5‘1='§'E_:2=0. (5)

Also, we can generalize the configuration of the E vector

to a 2D triangular lattice. The lattice is formed by basis b,
=(y3/2,1/2) and b,=(0,1),

E =nb, +mb,— (1/2\3),172). (6)

If we add the following interaction to the Hamiltonian, the
E fields only take three smallest vectors as Eq. (4):
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1 - -
;(E%+E§). 7)

Thus, the low energy configurations of electric fields can
be one-to-one mapped to the low energy configurations of
spins; the spin formalism and the electric field formalism are
equivalent.

The perturbation theory of J,, generates a ring exchange
[Eq. (3)]. The ring-exchange term breaks the 7, symmetry.
Define conjugate operators on each bond (A4;;,A,;) with
commutation relations

[Aaj Egil =i8056- (®)

Then, the operator T, ;=exp(iA, ) acts as a raising operator:
it increases the quantum number E,; by 1. This enables a
compact representation of the rmg exchange terms propor-
tional to #: on bond j, exp(zAajl ) will raise §;=0 to §;=1if
1W=(=\3/2,1/2). Similarly, if [@=(-\3/2,-1/2), then

exp(iA, jlf)) takes $;=0 to $;=-1. Defining vector A o
=A, M, the ring-exchange term around each hexagon be-
comes

2

rmg E

t cos(ﬁ X gal(;)). 9)

Here, as usual in gauge theories of lattice spin models, the

meaning of VXA is that one takes the lattice circulation
around a plaquette: for §;, a clockwise assignment of unit
vectors along the links around a hexagon is

6
X=E (10)

If no defect is present, i.e., the Gauss’s law constraint is
strictly imposed, the theory is described by two compact
U(1) gauge fields without matter fields. Now, let us consider
the defects, which are also the gauge charges. When D is
much smaller than J_—D, the excitation with the smallest gap
is to flip one site with =0 to 1 (or —1); this process actually
creates a pair of (1,1,-1) [or (=1,-1,1)] defects. Let us
denote the density of the (1,1,—1) configuration defect as p,
and denote the density of the (1,—1,—1) defect as p,; then,
from the definition of electric field, we can obtain the fol-
lowing relations;

. 3
V'Elz—_(Pl"'Pz) v Ez‘“(P1‘P2)~ (11)

The charges can be effectively viewed as matter fields
defined on the sites of the honeycomb lattice, and the gauge

fields A and E are fields defined on the links of the honey-
comb lattice.

For the convenience of later calculations, we need to de-
fine a new set of variables as follows:

1 - - . 1 - -
e2=—$E1—E2,

e =- —=E +E;,
V3
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—
- \3 - 1- N v3- 1
=——A/+-A =——A, - -A,. 12
012122,022122()
Also, one can check that ¢, and a, are still conjugate
variables:

[ea,ivaﬁ,j] = iéijéaﬁ' (13)

If the definition for ¢, and ag is plugged in Eq. (11), one
can see that ¢, is the electric field corresponding to the
charge p,, in the sense that

>

Ve, =—p,. (14)

Since the electric fields are subject to constraint (5), it is

convenient to define height fields h on the dual triangular
lattice,

- -

=3 X Vh, VXAy=,, (15)

where ,, and A, are a pair of conjugate variables. The value
of h, is also defined on a triangular lattice configuration
space; in order to satisfy definition (15), ., is defined in the
following way:

/3 1
(hl’h2)a=(\ (m + 1), ~(m — n)) +(q1.92)0>  (16)

where m and n are both integers. Here, a=A,B, C denote the
three sublattices on the triangular lattice (dual lattice of the
honeycomb lattice). ¢, are three vectors, taking different val-
ues on three sublattices,

1 1
=5 1)
4a= 914924 2\6 6

1 1
7 =( > )=<_ N _)7
4p=\41,8:92,B 23 6

- 1
6]c=(6]1,c’CI2,c)=<0’§)~ (17)

The two-component height variables 4, are the same as
those introduced in the classical three-color model (cf.
Kondev and Henley?’), although the Z; symmetry of the
classical three-color model has been broken once J,, is
turned on. Since m and n are both integers, the vertex opera-
tors should enter the effective low energy theory. We will see
later that, due to quantum effect, these vertex operators be-
come very relevant and drive the system away from the clas-

104427-5



CENKE XU AND JOEL E. MOORE

sical criticality, resulting in a sixfold degenerate plaquette-
ordered phase. These vertex operators read

1
H,= > —w COS|:27T(T§]’11(}’) + hy(r)
r N

1
+ qu,a(r) + q2,a(r)>:|
V3

2 -w cos{Zw( %hl(r) —hy(r)
V3

r

1
+ ~91.a(r) — qZ,a(r)) :| s (18)
V3

where w is the coupling constant for the vertex operators. In
this equation and in the following, a(r)=A, B, C denote three
sublattices of the triangular lattice formed by hexagons. For
later convenience, we define a new height fields ¢, and its
conjugate variable m, as

1 1
=—=h+hy,, ¢=—Fh;—h,,
o) B 1+ 2 B 1~
\6 1 \6 1
771=?7Th1+577112, 772:?77111_577%2- (19)

One can check the commutators and see that ¢, and ,
are conjugate variables, and based on definition (12), they
are exactly the height fields corresponding to ¢ and a,

6= XV VXd,=m,. (20)

The vortex of ¢, is the charge field p,.
Now, in terms of the new height fields, the vertex opera-
tors read

H,= E - w{cos(Zmﬁl(r) + 2?77(1",(,) - l))

+cos<27r¢2(r)+2?w(ia(,)+ 1))] (21)

In the above equation, a(r)=A,B, C denote three different
sublattices of the triangular lattice formed by hexagons, and
iy=1, ip=2, and i-=3. These vertex operators have oscillat-
ing signs on the triangular lattice, from the phase incorpo-
rated in each cosine function in Eq. (21) depending on the
sublattice. Then, in the low energy theory, the relevant terms
should be higher orders of vertex operators which do not
contain oscillating signs on the lattice:

H,= f d*x — v[cos(67,) + cos(67,)]

—v[cosRme, +4mp,) + cos(dm, + 27,)]
— v, cos(2mQ = 2m@y) + -+, (22)

where ¢, is the coarse-grained mode of ¢,. As the vertex
operators correspond to the creation and annihilation of
gauge fluxes, the total gauge flux is conserved by mod 3 in
the low energy continuum limit. In Eq. (22), v is supposed to
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be positive, but v; and v, are supposed to be negative, be-
cause when we subtract ¢, from ¢, from Eq. (21), it gains an
angle of 27/3, which generates a factor of —1/2 before the
cosine term in Eq. (22). Sine functions of ¢, are excluded by
symmetries of the system. For instance, sinQ2 (¢, —¢,)) is
excluded by time-reversal symmetry.

After coarse graining the system, the action in terms of ¢,
can be written as

2
L= J drd*x 2 (9,0,)* + p2(Ve ) + H,+ ¥V ¢, V .

a=1
(23)

The 7y term in Eq. (23) is a flavor mixing term between ¢,
and ¢,, and therefore the two flavors of height fields do not
only couple to each other through the vertex operators but
also through one of the kinetic terms.

In (2+1) dimensions, the potential operators with cosine
functions are generally very relevant at the fixed point de-
scribed by the Gaussian part of the action (23), as long as the
k> term [p, in Eq. (23)] is present. Vertex operators are re-
sponsible for the gapped crystalline phases of quantum dimer
models, both on the square lattice?’-?® and the honeycomb
lattice.?® In the current work, the vertex operators are also
responsible for the crystalline phases. First of all, let us tune
v, and v, to zero and minimize v terms in Eq. (22). Each ¢,
has three minima 0, 1/3, and 2/3. Therefore, there are, in
total, nine different combinations. However, negative v; and
v, terms will raise the energy of all the minima with ¢;
=¢,, and hence we end up with 9-3=6 minima. This result
is actually quite general; for a large parameter regime, there
are always six minima of the vertex potential in Eq. (22).
Because the vertex operators in Eq. (22) is invariant under
transformation ¢;— ¢+ 1/3, ¢, — @,+1/3, and also invari-
ant under transformation ¢; = ¢,, all six minima can be ob-
tained from performing transformations on one single mini-
mum.

Now, we can write down the plaquette order parameter in
terms of the field theory variables ¢,. The order parameter
we are searching for, in the lattice model, is

P(r) = e V3(sT 5381578557 + H.c.)<2 Sf) . (24)
O

In the above equation, r denotes the coordinate of the
center of a hexagon, and iy=1, iz=2, and i-=3. S1,..., S are
the six spins in the hexagon centered at r. The low energy
representation of this order parameter can be deduced from
symmetry argument. The most obvious transformations for
this order parameter are translational (T) and time-reversal
(TR) transformations,

T:P — ¢?™pP, TR:P — - P. (25)

If the whole lattice is rotated around hexagons at sublat-
tice A by angle 27/3 (R,,3), the order parameter is invari-
ant; under space inversion (SI) 7— —r and reflection (P,)
along £ (y ——y) centered at sublattice A, the order parameter
becomes its complex conjugate,

SLP.:P— P". (26)
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Under the transformations discussed above, ¢; transforms
as follows:

1
T: ¢ — Pit 3 TR: ¢y = ¢, SL ¢, — — ¢,

Px: Pa 7~ Pas R27T/3: b — @i (27)

Summarizing all the transformations above, the field
theory representation of the plaquette order parameter P is

P ~ (&2™%2 — ¢i27e1), (28)

We can plug in the six minima of the vertex operator
[Egs. (22)—(28)], and it gives us 6 different values. All the six
expectation values can be obtained by transformation (P,)
=exp(imn/3){Py), with n=1-6. This implies that the system
is in a plaquette order with sixfold degeneracy. The descrip-
tion of the six ordered states in terms of the original spin
variables can be found in Ref. 8, where it is also explained
why there are only six possible states.

When both v and v, are positive, the vertex operators
give three degenerate minima: ¢;=¢,=0 or +1/3. These
three degenerate ground states do not break time-reversal
symmetry, but they break translational symmetry. The par-
ticular order in this case is another type of plaquette order
with (-=1,1,-1,1,-1,1) hexagons resonating on one of the
three sublattices.

The field theory description is only valid when the theory
is close to a critical point, i.e., the correlation length is either
infinite or finite but much longer than the microscopic lattice
constant. Thus, the prediction of plaquette order is only rig-
orous close to the classical critical point J,,=0. However, the
phase is expected to extend over a finite region in the phase
diagram until a transition into either a disordered phase or
one of the other ordered phases derived in the following
sections.

In this section, we started with mapping the classical
ground states of the model onto the classical three-color
model configurations, as in this way we respected the 75
symmetry of the classical ground state, which is broken by
the quantum perturbation. As mentioned before, we can also
view the low energy physics of this system as two compo-
nents of quantum dimer model, with repulsive interaction
between two flavors of dimers. From this approach, the same
low energy action as Eq. (23) can be derived. Single compo-
nent of quantum dimer model generates the kinetic terms and
the vertex operator cos(6m¢;) in Eq. (23) at low energy, as
discussed in Ref. 26; the repulsive interaction between the
two flavors of dimers will generate the term yV ¢,V ¢, and
the mixture vertex operators cos(2@(¢;—¢;)) and
cos(Rmo,+4m,).

From the next section to Sec. VII, we are going to study
the transition between the plaquette order to other phases in
the phase diagram (Fig. 5). We are going to apply the gauge
field theory formalism developed in this section throughout
and interpret all the phases in terms of the condensate of the
defects, i.e., the Higgs phase of the gauge fields.
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IV. TRANSITION TO THE FEATURELESS GAPPED
PHOTON PHASE

When D> J,, the classical ground state is $°=0 on every
site, and the low energy excitations are (+1,-1,+1,
—1,....) loops. This phase has a single ground state and
gapped photon excitations,” without any symmetry breaking.
In this section, we are going to study the phase transition
between the sixfold state derived in the last section and the
gapped photon phase.

If we start with the sixfold degenerate phase, and when D
is smaller than but close to J, JZ—D| <D, the lowest energy
excitation is (0,0,0), and we denote its density as p,. It car-

ries gauge charge of gauge field El,

[3 . -
\7(v 6 4V 8. (29)

-

V-E =\3py=-

Thus, the transition can be viewed as condensation of (0,0,0)
defects. The gap for (0,0,0) defect keeps decreasing as the
transition to the gapped photon phase is approached. How-
ever, the phase boundary between the plaquette phase and
the nondegenerate phase is not exactly at D=J, (Fig. 5); this
is due to the fact that at second-order perturbation of J,,/J,
an additional nearest-neighbor diagonal interaction is gener-
ated. (0,0,0) triangles are more favorable than (1,-1,0) tri-
angles to this diagonal term generated; therefore, the second-
order perturbation effectively increases D by ~J)2W/ J..

The defect (0,0,0) carries charges of both a;,, and a,,,, and
defects at different sublattices of the honeycomb lattice carry
opposite gauge charges. If we denote the (0,0,0) defect at
sublattice A as ¥, and the (0,0,0) defect at sublattice B as g,
the effective Lagrangian describing the system close to the
transition is
2= 1(3, +iay, +iay,) sl

(30)

Notice that the (0,0,0) defect carries zero global U(1) charge
[a (0,0,0) defect does not carry any S¢], and therefore one i,
particle and one ¢ particles can be annihilated together, so
the term g(¢ ipp+H.c.) is allowed in the interaction. After
the condensation of i, and ¢, the gauge field a,,=a;,
+a,, will be gapped out along with the phase mode 6, 63,
and the mode 6,+ 6z will be gapped out by the interaction
g(yyypp+Hc.) (6, and Oy are phase angles of ¢, and g,
respectively). Therefore, in the condensate, there is no gap-
less excitation, which is consistent with the gapped photon
phase.

To further justify this picture, let us first take a Landau-
Ginzburg (LG) tour to study this transition. Let us define
complex field @ to describe the coarse-grained mode of the
plaquette order parameter P(r), which was defined in Egq.
(24). The LG action for this transition is as follows:

L=|z9IuCD|2—r|(I>|2+u(|®|2)2+g(@6+H.c.). (31)

L=- t|(0')lu— ialﬂ— iazﬂ)lpA

Without the g term, the theory describes a three-dimensional
(3D) XY transition. The g term turns on a 7Zg anisotropy at
this critical point. In the ordered state of ®, this anisotropy is
a relevant perturbation and will lead to a sixfold degeneracy.
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FIG. 6. (Color online) The vortex and vortex core configuration
in the sixfold plaquette order. Every vortex is surrounded by six
phase domains and six domain walls; the vortex core is exactly a
(0,0,0) defect. In this figure, B+ denotes resonating (1,0,1,0,1,0)
plaquette on sublattice B. The six domains around this vortex core
are (count counterclockwise) A+ with ®~®, and ¢=¢,
+(1/3,2/3), C- with ®~exp(im/3)®y and ¢=g¢y+(1/3,0), B+
with ®~exp(i27/3)®, and @=¢y+(2/3,0), A- with @
~exp(im)®Py and ¢=¢y+(2/3,1/3), C+ with ®~exp(idm/3)D,
and ¢=¢y+(0,1/3), and B— with ®~exp(i57/3)®, and ¢=¢,
+(0,2/3). The arrows show the circulation of the phase of ®. Also,
this vortex is a bound state of one vortex of ¢; and one vortex of
¢,. The spins are defined on the links of the honeycomb lattice,
which are the sites of the kagome lattice. Links with + and — are
occupied by spin states $°=+1 and —1. The red dashed lines denote
the domain walls.

At the 3D XY critical point, Zg anisotropy is irrelevant; thus,
the Landau-Ginzburg theory predicts that the transition be-
tween the sixfold states and the featureless gapped photon
phase is a 3D XY transition.

The 3D XY transition is driven by the vortices of ®, and
after the condensation of the vortices, the vortex core state
grows and becomes the macroscopic order. It has been
shown before that the vortex core of the height field of the
quantum dimer model is an unpaired spin,?® which implies
that the condensate of vortices breaks the spin-SU(2) sym-
metry spontaneously (for instance, the Néel state). In our
case, the vortex configuration of ® (including the core) has
been depicted in Fig. 6. Around every vortex core, there are
six domains separated by domain walls; each domain is one
state out of the sixfold degenerate plaquette-ordered states.
In the ordered phase, the vortices are linearly confined due to
the pinning potential ®%+H.c., because the domain walls
would cost energy proportional to their length. At the critical
point, since the pinning potential is irrelevant, the vortices
are deconfined.

In Fig. 6, one can see that the vortex core is actually a
(0,0,0) triangle, which is the lowest energy defect when D
~J.. If the height field representation of ® [Eq. (28)] is
taken, one can see that the vortex of ® is a bound state of
one vortex of ¢, and one vortex of ¢,. Thus, a vortex of ®
carries one gauge charge of a;, and one gauge charge of a,,,
i.e., this vortex carries the same gauge charge as the (0,0,0)
defect. Therefore, indeed, the transition between the sixfold
plaquette state and the featureless photon phase is driven by
the (0,0,0) defects.

PHYSICAL REVIEW B 76, 104427 (2007)

The dual field theory of Eq. (31) would describe the vor-
tex condensation directly. After the standard superfluid-
gauge field duality in (2+1)D, the dual theory reads

L=—1|(9,—iA)yf*+ . (32)

Herein, ¢ is the vortex creation operator, and the Zg aniso-
tropy term in Eq. (31) becomes the monopole processes
which annihilate and create the fluxes of gauge field A,,. By
comparing Egs. (30) and (32), we can see that A, =a,,
+ay,, and ¢= ¢A=¢£. Please note that because ¢, and i
can annihilate together, there is actually only one flavor of
defect, and = lﬁl;. In the ordered phase, the gauge field A,
is gapped out by monopole proliferation, and ¢ is confined;
in the nondegenerate photon phase, the gauge field is gapped
out with ¢ through the Higgs mechanism. The gauge field is
only gapless at the critical point.

We now turn to the description of the phase transition in
the dual height language. If we plug the height field repre-
sentation of @, or equivalently P(r), in Eq. (28) into the LG
action (31), it reproduces the height field action in Eq. (23);
thus, the phase transition between the gapped photon phase
and the plaquette phase can also be studied in the dual height
model. We define new height fields ¢, =(¢,+¢,)/2, and they
satisfy the following relation:

(6 £6)2=( X Vo, (33)

Now, the height field Lagrangian reads

L=1(d,0,)*+p,(Ve,)* +1' (0,0.)* + p5(Ve_)?
—2v cos(6p,)cos(6m@_) —2v, cos(6me,)cos(2mp_)
—v, cos(dme_). (34)

One (0,0,0) defect carries one unit gauge charge of (e,
+e,)/2; thus, it is one unit vortex of ¢,, and the condensa-
tion of (0,0,0) drives ¢, into disordered phase. In the con-
densate, ¢, is disordered and the expectation value of
exp(i2me,) is zero. Thus, the plaquette order parameter

P~ ™2 _ 2™01 ~ j sin(2me_)exp(i2mwe,)  (35)

takes zero expectation value: the plaquette order disappears.
Since ¢_ does not transform under translation or rotation by
2/3 transformations, any crystalline pattern which breaks
these symmetries cannot exist.

When field ¢, is disordered, the ordered pattern and sym-
metry of the ground state can be studied from the effective
action for height field ¢_, which remains gapped and or-
dered. Thus, the order of the condensate is determined by the
series of vertex operators of ¢_, since the leading vertex
operator is —v, cos(4m_); for a large range of parameters,
the minima are at ¢_==+1/4. However, let us imagine writ-
ing down a physical order parameter which only involves
¢_=(¢;—¢,)/2, since any physical order parameter should
be invariant under transformation ¢,— ¢@,+ 1; this order pa-
rameter should be invariant under ¢_— ¢_+1/2. Thus, the
ground states ¢_==1/4 are physically equivalent to each
other, and the ground state is nondegenerate, which is again
consistent with the gapped photon phase.
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FIG. 7. (Color online) The vortex and vortex core configuration
of ¢;. Every vortex is surrounded by three phase domains and three
domain walls; the vortex core is exactly a (1,1,-1) defect. The
three domains around this vortex core are (count counterclockwise)
B+ with ¢=¢y+(2/3,0), B— with ¢=¢y+(0,2/3), and A+ with
¢=¢y+(1/3,0). The arrows show the circulation of ¢;.

At the transition, since only ¢_ is ordered, we can plug in
the minimum of ¢_ into Eq. (34) and obtain an effective
action for ¢,. Notice that both v and v; vertex operators
vanish after plugging in the minima ¢_=1/4. The leading
operator that survives is cos(12m¢,), which is a 74 aniso-
tropy. The height field theory which describes this transition
is

L= ((7#<p+)2 —ucos(12me,). (36)

This action describes an XY transition as the 7, anisotropy
term is irrelevant at the XY critical point. Thus, we conclude
that the transition between the sixfold state and the feature-
less photon phase is driven by the condensation of (0,0,0)
defect, and the critical point belongs to the 3D XY universal-
ity class.

V. TRANSITION TO THE SUPERFLUID STATE

When J,, is negative and large, the system is in the su-
perfluid phase (ferromagnetic phase in spin XY plane), with
nonzero expectation value of (S¥). In this section, we are
going to study the transition between the sixfold degenerate
plaquette phase and the superfluid phase. Let us first focus on
the region where D<|J,—D|; in this parameter regime, the
defects with the lowest gap are (1,1,-1) and (1,-1,-1)
triangles. It was shown in Sec. III that these two defects are
vortices of ¢; and ¢,, respectively. As an example, a vortex
of height field ¢, is shown in Fig. 7, and one can see that the
core of this vortex is a (1,1,—1) defect. When the vortices of
the height fields condense, which means the height fields are
disordered, the system enters a superfluid phase. When D
and J,, are small, the phase transition occurs when the hop-
ping energy of the defects is comparable with the gap, and
the phase boundary is roughly D~ J,,, as shown in the phase
diagram Fig. 5.

Defect (1,1,-1) can stay at two sublattices of the honey-
comb lattice; let us denote defect (1,1,—1) at sublattice A as
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14, defect (1,1,—1) at sublattice B as i,; defect (1,-1,
—1) at sublattice A as i, and defect (1,—1,—1) at sublattice
B as ¢,p. Herein four flavors of defects are defined because
these defects have independent conservation laws instead of
just one global U(1) conservation law in the original Hamil-
tonian. If we want to hop one (1,1,-1) defect from sublat-
tice A to sublattice B, global spin configurations within the
low energy subspace should be changed; this means that any
local operator cannot hop (1,1,-1) defect from sublattice A
to B, i.e., defects at sublattices A and B are separately con-
served. This situation is similar to the doped quantum dimer
model on square lattice;?9 in that case, the doped holes can
also only hop in one sublattice due to the gauge symmetry of
the dimer model. The gauge symmetry of the dimer model is
due to the dimer constraint imposed automatically.

According to Eq. (14), ¢4 (¢,p5) carries charge of +1
(=1) of gauge field a,,, and i, (4,p) carries charge of +1
(=1) of gauge field a,,. Now, the effective Lagrangian de-
scribing the system is

L=- f|(f7,;— ial,u)l//lA|2 - f|(f7u+ ialu)'//13|2
= 1(8,, = iar, ) nal* = 11(3, + iar) gl - . (37)

The ellipses include the monopoles of gauge fields as well
as the interaction terms between different matter fields. The
interaction has to be consistent with all the internal symme-
tries of the system, which is  U(1)gpu X U(1)guuge
X U(1) gguee- The U(1) gauge symmetries correspond to the
two flavors of gauge fields, and the U (1) global symmetry
corresponds to the conservation of S%. The regular terms such
as —r| i[>+ O0(|*) are all allowed; besides these terms, an-
other term should, in principle, exist, which is
—(ath goathp+H.c.). Four different flavors of particles
can be created and annihilated together without any global
reconfigurations.

The superfluid phase can be viewed as the condensate of
four flavors of matter fields. Let us denote #;, ~exp(6,,); the
action can be written as

L=- ;.(&;LHIA - al,u,)z _?((9;1,013 + al,u,)z - ?(‘9#0214 - a2/.1,)2
—T(&MQZB + aZ,u,)z +§COS(01A + 013 + 02/4 + 023). (38)

If there is no gauge field, the condensation of &’s would lead
to four gapless Goldstone modes. However, in the conden-
sate, mode 6,4+ 0,5+ 6,4+ 6,5 is gapped out by the g term in
Eq. (38); this implies that in the superfluid phase, 6;,+ 6,5
=—(6,4+ 6,5). Meanwhile, 6,,— 0,5 will gap out a;, through
the Higgs mechanism, and 6,,— 6,5 will also gap out a,
through the Higgs mechanism; therefore, the only gapless
mode in the condensate is 6,4+ 0,5=—(6,4+ 6,5).

Notice that S,T can create a pair of ¢, and ¥, particles
and also can annihilate a pair of ¢,, and ¢, particles. There-
fore, we can identify

ST~ expli(614 + 015)] = exp[— (624 + Op)].  (39)

Thus, the Goldstone mode 6,,+ 6,5 is exactly the global
U(1) phason mode of S*~exp(i6).

If one approaches the transition from the superfluid phase,
the transition can be viewed as condensation of vortices in
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the superfluid. There are four components of vortices, corre-
sponding to the four flavors of matter fields. The gapless
Goldstone mode becomes the noncompact U(1) gauge field
in the dual language. The vertex operators in the height field
language are the vortex tunneling terms. The vertex opera-
tors create or annihilate gauge flux of the original gauge
fields a,,, and a,,,. For instance, exp(27i¢;) creates one unit
flux of a,,. As pointed out in Refs. 30 and 31 when one
flavor of gauge field is coupled to two different matter fields,
the vortex of each matter field carries half flux quantum.
Since vortex v, and v, carry opposite gauge fluxes, the
vertex operator cos(67¢;) corresponds to tunneling process
vTiv?B+H.c. The dual Lagrangian can be effectively written
as

L==1/(3, = iA)v1aP = 11(3, = iA V15> = 113, +iA )0,
- t|(o"M + iA,u)UZB|2 + g(vﬁv?B +Hc)+ g(v;ivglg +H.c.)
+ 85V} ,0 1503024 + H.C) + 701401 g025V24 + Hoc)
+81(v] V15033V + Hee) + g1 (0250 3015+ Hoe)),
(40)

where A, is the dual form of the Goldstone “phason” mode
in the superfluid phase, and g, g, and g, are the tunneling
terms due to the vertex operators in Eq. (22). Tunneling term
7 is independent of monopoles, as this term conserves the
total vorticity [consistent with the U(1) gauge symmetry of
[Eq. (40)] and also conserves the total gauge flux of the
gauge fields a;, and a,,; therefore, it should exist in the field
theory.

Let us denote v,, ~exp(—ix;,). After the condensation of
vortices, modes x4 — X1z and x»4— X2p are gapped out by the
monopoles. Mode x4+ X15+X24+ X2 are gapped out by the
y term in Eq. (40), ie., xja+Xi1p=—(X2a+X28); also, Xi4
+x15 is gapped out by A, through the Higgs mechanism.
Therefore, in the condensate of vortices, there is no gapless
excitations, which is consistent with the crystalline phase.

If the monopole effect is turned off, the transition point is
described by two gapless noncompact gauge fields and four
flavors of matter fields. However, whether these gapless
gauge fields and matter fields can survive when the mono-
poles are turned on is an open question. If the monopoles gap
out the gauge field and confine the matter fields, at the tran-
sition, there is no gapless excitation. In this case, our theory
predicts a direct first-order transition.

The superfluid phase and the plaquette phase break differ-
ent symmetries, and according to the classic Landau phase
transition theory, the transition should be either first order or
split into two transitions, with a disordered phase (or a phase
with both orders) in between. There is no universal law that
guarantees one direct first-order transition.

In our theory, the intermediate phases can be understood
as the condensate of composites of defect ¢;,. A gapped dis-
ordered phase can be obtained if composites which only
carry local gauge charges but no global U(1) charge are con-
densed. For instance, if composites 1/;{ Ap and 1//§A1//23 are
condensed while all the other composites are disordered, the
gauge fields are gapped through the Higgs mechanism; there-
fore, the height fields are disordered, and the crystalline or-
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der disappears. Also, since the composites carry zero global
U(1) charge, there is no gapless Goldstone mode. Thus, we
can conclude that the condensate of tﬂ A and 1//5 Athp is a
spin disordered phase, i.e., a spin liquid phase. Notice that
@ g (W) carries two unit gauge charges of gauge
field ay, (a,,); therefore, the condensate of @ iy and
zﬁg AUhp is a spin liquid with Z, X Z, gauge symmetry, which
is the residual gauge symmetry after the condensation of the
composites of matter fields. On the other hand, if composites
carrying only global U(1) charge are condensed, the super-
fluid order should coexist with the crystalline order. For in-
stance, the composite c,//i 4 1/141r ghathrp does not carry any
gauge charge, the condensate of this composite is a super-
fluid order, and the crystalline order still exists. Thus, this
phase is a “supersolid” phase in current jargon: it combines
XY spin ordering with crystalline ordering of plaquette order
parameter defined in Eq. (24). Supersolid phase was also
proposed in s=1/2 system on the frustrated lattice,> while
there the term solid refers to the crystalline order of S%,
which after the spin-boson mapping becomes the boson den-
sity.

VI. TRANSITION TO THE NEMATIC PHASE

The existence of nematic phase can be derived easily at
the negative large D limit. When D is negative and becomes
the dominant term in the Hamiltonian (1), the system is ef-
fectively a spin-1/2 system, since S° on each site can only be
+1. We will use o°==1 to refer to the two states of the
effective spin 1/2. The classical ground state of this model is
that every unit triangle should have either (1,1,-1) or (1,
—1,-1) configuration. This classical ground state is the same
as the classical Ising model on the kagome lattice, with large
degeneracy. If the same Boltzmann weight is imposed for
each classical ground state, the kagome lattice Ising model is
disordered, and the correlation length is finite.>* By contrast,
a related classical system is the classical Ising model on the
triangular lattice, while if the same Boltzmann weight is im-
posed for each classical ground state, the triangular lattice
Ising model is critical, and an infinitesimal quantum pertur-
bation is relevant at this critical point and drives the system
into a crystalline phase. If infinitesimal transverse magnetig
field ho* is turned on, the system is driven to V3 X3
order; if ferromagnetic XY exchange —J,, (o]0} +0]07) is
turned on, the system is driven into a supersolid phase,
which breaks both U(1) symmetry ((c*)# 0) and transla-
tional symmetry.>* Unlike the Ising model on the triangular
lattice, the classical Ising model on the kagome lattice is
disordered, with finite correlation length. In the original
Hamiltonian (1), if |J,,|<D, the second-order perturbation
generates a term which flips $°=1 state to S?=—1 state and
vice versa. The effective Hamiltonian reads

H, = (2) - (o]0} + o)) + 0507, (41)

L]
where t~J)2W/D. As studied in Refs. 9 and 33-35, for the
spin-1/2 system on the kagome lattice, infinitesimal ferro-
magnetic XY exchange yields superfluid order, () # 0, and
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no crystalline order of ¢° is present. The spin-1/2 raising
operator is the nematic order parameter (S*)?; therefore, in-
finitesimal |J, | drives the system into a nematic phase.

Although the nematic phase and the plaquette phase do
not necessarily touch each other in the phase diagram, a di-
rect transition between these two phases is possible when
they are adjacent in the phase diagram. It is conceivable that
a certain type of spin Hamiltonian can realize the direct tran-
sition between the nematic phase and the sixfold plaquette
phase. This direct transition is more likely to occur when
Jy>0 than the case with J,,<0. In the case with J,,>0,
every hexagon is effectively penetrated by one 7 flux of a,,
and one 7 flux of a,,. The motion of defects is strongly
affected by the background magnetic fields, and several in-
teresting possibilities can happen. One of the possibilities is
that the defects condense in pairs, i.e., {(1;,)?) #0, as a pair
of defects does not see any background flux. After the pair
condensation, the Goldstone mode is 2(6,4+6,5), corre-
sponding to the phase of (S¥)?, so the system is in the nem-
atic phase discussed above.” One important difference be-
tween the nematic phase and the superfluid phase is that each
vortex in the nematic phase only carries one quarter flux of
the gauge fields; therefore, the vertex terms in Eq. (22) cor-
respond to even higher order of vortex tunneling processes.

A direct transition between the nematic phase and the
plaquette phase can be described by the following action of
paired matter field ¥, =(1;,)*:

L=-1(3,
-1(d,

= Zialﬂ)\P]AP - t|(¢9ﬂ + 2ia1,,,)\1’13|2
- 2ia2u)\I’2A|2 - t|((9,u + 2ia2M)\I’23|2 - H]+ e
(42)

Again, the ellipses include the monopole terms, and H; con-
tains all the possible interaction terms between matter fields.
Just like the four-defect creation term discussed in the previ-
ous section, gV, V,z¥,,V,z+H.c. should, in principle, ex-
ist in the interaction; thus, phason mode 37,32 4., is
gapped out in the condensate of ¥;,. Without the monopole
terms, this transition is a gapless second-order transition.
Now, the question boils down to if the monopole effect is
going to be relevant at the critical point described by action
(42). Since the nematic phase is a pair condensate, each
single vortex in the nematic phase carries only one quarter
flux of each flavor of gauge fields, so the vertex operator in
Eq. (22) corresponds to even higher order of tunneling pro-
cesses than the superfluid case. The dual action now reads

L=~1(3,—iA)vial* = 1|(3, = iA v 15> = 1](3,, + iAoy |

—1(d,+iA )023|2 +gWiSvS, +He) + gwibvs, + Hel)

2
+ gz(v 14U le;szA + HC) + 77(() 1AU1BU2pU24 T+ HC)
2.2
+21(v]3vipiav5g + Hee)) + g1 (vhivopuiavis + He),
(43)

where g, g1, and g, terms are vortex tunneling processes
corresponding to the vertex operators in Eq. (22); notice that
now v;4 and v, (Va4 and v,p) carry one quarter unit flux of
ay, (ay,). m term is a tunneling which does not rely on
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monopole, as it not only complies with the U(1) gauge sym-
metry of the dual action (43) but also conserves the flux
numbers of the original gauge fields a;, and a,,. Following
the similar argument as Refs. 1 and 2, the monopole terms
(vortex tunneling terms) are likely (but not rigorously
proven) irrelevant at the transition fixed point. It is known
that at the 3D XY fixed point, 7, anisotropy is irrelevant,
while the 75 anisotropy as in Eq. (22) could be relevant.
However, in our case, the vertex operators in Eq. (22) could
be irrelevant at the transition due to the pairing of gauge
charges [Eq. (42)]. Although the vertex operators are always
relevant at the Gaussian fixed point of Eq. (23), it could be
irrelevant at the order-disorder transition of height fields. It is
expected, as in the calculation that follows, that the scaling
dimension of the vertex operators is approximately propor-
tional to the number of flavors of matter fields and propor-
tional to the square of the product of electric charge and
magnetic charge.

We can roughly estimate the scaling dimension of the
monopole operators from a random phase approximation
(RPA) calculation. After integrating out the Gaussian part of
the matter fields in Eq. (42), an effective action for gauge
fields a;, and a,, is generated,

[ Pk
> f VMl e )
=1 T

N is the number of flavors of bosons coupled to each gauge
field, and n is the number of gauge charge carried by each
boson. In our case, N=n=2. In the dual theory, the kinetic
term for the height field is softened to be ~k3, and the mono-
pole energy diverges logarithmically instead of converging in
the infrared limit.’’® The dual height fields now have the

action
kK

From this calculation, one can see that the scaling dimension
of vertex operators is proportional to Nn>.

H, in Eq. (22) contains three types of terms. The scaling
dimensions for cos(67¢,) and cos(2me, +4me,) calculated
from the RPA approximation is higher than the 7, anisotropy
studied before."? The third vertex operator is cos(2m(¢p,
—¢,)), the scaling dimension calculated from RPA is higher
than the Z; anisotropy of 3D XY fixed point; also, on the
RPA level, the scaling dimension is equal to the case with 7,
anisotropy and N=1 discussed in Ref. 2, which has been
shown to be irrelevant at the transition between the Higgs
phase and the confined phase. Recently, a Monte Carlo simu-
lation has shown that the transition between the crystalline
phase and the superfluid phase in a bosonic model with 1/3
filling on the kagome lattice is a very weak first-order
transition;3° on the RPA level, the scaling dimension of the
monopole in that case is smaller than the dimension of all the
triple vertices and very close to the scaling dimension of
cos(27(@;— @,)) in our case. Therefore, it is possible that the
vertex operators in our problem are irrelevant at the transi-
tion between the nematic phase and the plaquette order.
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FIG. 8. (Color online) Defects which violate the three-color
constraint hop on one of the two triangular sublattices (red and
green) of the honeycomb lattice.

When the vertex operators are irrelevant, the critical point is
a direct gapless second-order transition, with four flavors of
deconfined matter fields, as well as two flavors of noncom-
pact gauge fields.

VIL. TRANSITION TO THE 43X \3 PHASE

When J,,>0 and much larger than othgr coefficients, the
state is most likely to be either the y3 X y3 order in Fig. 2 or
the ¢g=0 state in Fig. 1. From the 1/S expansion, this v3
X 3 order is supposed to be the global minimum of all the
classical degenerate ground states of the Heisenberg model
on the kagome lattice at the isotropic point,?* although the
q=0 state has also been proven to be one of the local
minima. Also, since both states are coplanar, they are ex-
pected to be even better candidates in the large J,, case.
Although it has also been conjectured that the spin tunneling
effect will potentially competes with the order by disorder
selection,* both \3 X 13 and ¢=0 states are still very favor-
able configurations for spins on kagome, since they can be
easily stabilized by the second- or third-nearest-neighbor in-
teractions.

Since now the defect hopping is frustrated by the back-
ground magnetic flux of gauge fields a;, and a,, through
each hexagon, the phase angle of the defects cannot be uni-
formly distributed on the whole lattice. We will see that the
V3X1\3 phase can be interpreted as the condensate of the
four flavors of charge fields in the background gauge fluxes.

Because of the interaction between different matter fields
g(athiphathp+H.c.), we have the following relation be-
tween the phase angles:

0= 014+ 015=— (04 + brp), (46)

where 6 is the phase angle of S™. The distribution of phase 6
can be deduced from the distribution of #,, and 6,. Notice
that ¢, and ¢, both live on the sites of the honeycomb
lattice and hop on two different triangular sublattices (Fig.
8). With a background magnetic field a;,, the effective
Hamiltonian for the motion of ¢4 is

H=Etcos(91A,i_01A,j)+ (47)

(i)
This is an antiferromagnetic XY model on the triangular lat-
tice, and after the condensation of 6, ,, the ground state is the
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FIG. 9. (Color online) The 3 X V3 order of 6 obtained from the
ordered pattern of 6, and 6,5 The black arrow corresponds to
angle 6, and the pattern of # can be obtained from its adjacent red
arrow (6;4) and green arrow (6,p).

V33 order. This phase can be viewed as the staggered
vortex density phase on the triangular lattice.

If both ¢, and ¢, condense (due to the time-reversal
symmetry, if 1, and ¢ condense, i, and i,p will also
condense), the phase angle 6 can be determined from the
distribution of #,, and 6,5. By adding the two ordered pat-
terns of both 6,, and 6,5 together, the ordered pattern for 6 is
automatically obtained, and the order can only be either g
=0 state or the y3 X3 state (Figs. 9 and 10). In these or-
dered phases, the Goldstone mode is still =64+ 6, .

VIII. LONGITUDINAL MAGNETIC FIELD

The system considered in all the previous sections has
zero external field, and in this section, the case with a small
longitudinal magnetic field will be studied. A longitudinal
magnetic field turns on coupling AS® to the Hamiltonian (1)
and breaks the time-reversal symmetry; thus, much of the
physics is significantly changed. Let us assume that the mag-
netic field is small, i.e., AS® is much smaller than J, and D in
the model. Note that this precludes accessing strong-field
phenomena such as magnetization plateaus in this theory.

/A\
J \

AN

\ /
\Y/

FIG. 10. (Color online) ¢=0 order of # obtained from ordered
pattern of 6, and 6.
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The sixfold degenerate plaquette phase is expected to sur-
vive in a small longitudinal magnetic field. Since in a small
magnetic field the classical ground states without J,, are still
configurations with (1,—1,0) triangles only, therefore, the
ring-exchange term generated by J,, is still going to select
the plaquette-ordered state as the ground state.

However, the excitation energies of defects are changed
by the longitudinal field: (1,1,-1) defects have lower gap
than the (1,-1,-1) defects. Therefore, when |/, | is turned
on, (1,1,-1) defects should condense before (1,-1,—1). As
we will see in this section, the condensate of (1,1,-1) defect
is actually a supersolid phase, with both global U(1) symme-
try breaking and the space symmetry breaking.

Let us take the case with J,, <0 as an example. As long as
(1,-1,-1) defects remain confined and gapped, the total
number of (1,1,—1) defects is conserved before its condens-
ing, because (1,1,-1) defects cannot be excited without
(1,-1,-1) defects due to the conservation of total S°. There-
fore, when (1,1,-1) defects condense and (1,-1,-1) de-
fects remain confined and gapped, the system still has a gap-
less Goldstone mode due to the spontaneous breaking of the
global conservation of (1,1,—1) defects. The gapless Gold-
stone mode manifests the superfluid phase.

Secondly, the spatial symmetry breaking can still be stud-
ied in terms of the dual height fields. Because (1,1,-1) is
the vortex of height field ¢, the condensate of (1,1,-1)
charge is the disordered phase of ¢, and exp(i27¢p;) no
longer has nonzero expectation values. However, because ¢,
is still ordered, the vertex operator —a cos(67¢,) in Eq. (44)
has three minima, corresponding to threefold degenerate
states. These three minima are the plaquette orders of
(-1,0,-1,0,-1,0) hexagon on three different sublattices.

The height fields ¢; and ¢, are coupled through the vertex
operators as shown in Eq. (22). This coupling is not going to
lift the threefold degeneracy of ¢, when ¢, is disordered.
The reason is as follows: The whole action (23) is invariant
under transformation ¢; — ¢+ 1/3, ¢;— @,+1/3. Since ¢,
is disordered, after integrating over ¢y, the effective action
H,;(,) for ¢, does not break this symmetry, and the leading
vertex term generated from integrating out ¢; is cos(67¢,).
This can be clearly seen from the following equations:

exp(= H,¢,))

=fD<p1 exp(- H(ey, ¢,))
= f Do, exp(— H(p; + 1/3,¢, + 1/3))
= f D(¢; + 1/3)exp(— H(¢p; + 1/3,¢, + 1/3))

=fD<P1 exp(= H(ey, @, + 1/3))

=exp(= H, (@, +1/3)). (48)

Notice that the above proof is only valid if ¢; does not take
any nonzero expectation value, i.e., ¢, is in disordered phase.
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+1 +1

FIG. 11. (Color online) The distribution of $°=1 and S°=-1
sites on the kagome lattice is equivalent to the distribution of
dimers of dimer model on the dual honeycomb lattice. The ring-
exchange term (49) plays the same role as the dimer resonating
term in the quantum dimer model.

Alternatively, one can understand this argument from the
conservation of the gauge fluxes. Vertex operator cos(27¢,)
can annihilate or create one unit flux of gauge field a,,. The
total flux of both gauge fields is conserved mod 3 in vertex
operator Hamiltonian (22), and as the disordered phase of ¢,
[the condensate of (1,1,-1) defect] does not tend to violate
this conservation, the resultant effective Hamiltonian after
integrating out ¢, fields does not break the 75 conservation
of total gauge flux, i.e., the lowest order vertex operator of
the resultant effective Hamiltonian of ¢, is cos(67e,).
Therefore, the threefold degenerate plaquette order is not
lifted. A similar result is obtained for J,,>0 too. Thus, the
phase with defect (1,1,-1) condensed, while defect (1,-1,
—1) confined breaks both spatial symmetry and the global
U(1) symmetry and, hence, must be the supersolid phase.

When D <0 and large, a small longitudinal magnetic field
changes the physics severely. In this regime, the classical
ground state has Ising configuration (1,1,—1) on each tri-
angle. In the previous sections, we mentioned that the clas-
sical Ising ground state on the kagome lattice is disordered
with finite correlation length. However, once the longitudinal
magnetic field is turned on, every triangle has (1,1,-1) con-
figuration. Since the sites of the kagome lattice are the links
of the dual honeycomb lattice, the ground state configura-
tions with small magnetic field can be mapped onto the
dimer configurations on the honeycomb lattice, with S*=-1
mapped onto dimer, and S°=1 mapped onto empty link. If
the same Boltzmann weight is imposed on every dimer con-
figuration, the system is again critical, with power law de-
caying spin-spin correlation function.

Since the classical ground state is critical, it is again very
unstable against quantum perturbations. If a small J,, is
turned on, the system is driven into a gapped crystalline
phase. At the sixth-order perturbation, a ring exchange-term
is generated,

H,po= 2 —1(S]8,)%(S5S,)%(S5Se)> + Hee. ], (49)
O

where t~J)6W/(J§D3). This ring-exchange term plays the
same role as the dimer flipping term in the honeycomb lattice
quantum dimer model, which will generally lead to a crys-
talline phase (Fig. 11). Notice that, besides the off-diagonal
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supersolid 3 fold PL
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Superfluid NE) X 3 .
1
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FIG. 12. (Color online) The phase diagram in small longitudinal
magnetic field /; PL stands for the plaquette phase. The difference
between this phase diagram and the one without magnetic field in
Fig. 5 is that between the plaquette phase and the superfluid phase,
there is a supersolid phase. In the negative and large D case, small
J.y is going to generate a gapped crystalline order.

flipping term in Eq. (49), diagonal terms are also generated.
According to several previous works,*"*#? the diagonal terms
generated by perturbation theory favor flippable hexagons;
therefore, it is expected that the crystalline order is either
plaquette order or columnar order.*?

In the current situation, the low energy configuration can
be mapped to the quantum dimer model on honeycomb lat-
tice, and the crystallization is due to the confinement of the
gauge field structure of the quantum dimer model. The crys-
talline pattern should disappear once the charge defects of
the gauge field condense. The energy gap of the defects in
this crystalline pattern is about 4, and the kinetic energy of
the defects is about J_fV/D; thus, the defects will condense
and the crystalline pattern disappears when Jiy/ D~ h. Since
the sign of 7 in Eq. (49) is always positive (independent of
the sign of J,,), the crystalline phase should extend sym-
metrically on the two sides of the classical line with J,,=0,
until the system enters the nematic phase. The sketchy phase
diagram in a small magnetic field is shown in Fig. 12; note
that this phase diagram involves a lot of phases. The detailed
topology of the phase diagram would depend on the details
of the microscopic model.

IX. SU(2) POINT

At the isotropic point J,,=J, and D=0, the V3 X3 state
is just one possibility. This state is obtained from quantum
perturbation on the classical limit. If we start with the quan-
tum limit, another possible state can be obtained: the g=0
dimer plaquette state.

This state can be understood quite easily from the quan-
tum dimer model on the kagome lattice. For a spin-1 system,
each site can form two spin singlets, which means each site
connects to two dimers. Since every site on the kagome lat-
tice is shared by four links, this dimer model is half filled.
The dimer resonance term on the kagome lattice is shown in
Fig. 13, which can flip the dimer covering C; to C, and vice
versa. The dimer model Hamiltonian is now written as
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JAN

FIG. 13. The dimer model on the kagome lattice. Since this is a
spin-1 system, every site connects to two dimers. The dimer flip-
ping term flips configuration C; to C, and vice versa.

H=—1(|C;){Cy| + Hec.) + V(ICCy| + |C)(C,)).  (50)

As long as V<t, the exact ground state wave function of
this Hamiltonian can be written as a direct product,

=TT e+ lea. (51
o

Equation (51) is a wave function on the Hilbert space formed
by dimers. This dimer state is supposed to correspond to
certain type of spin state in the sense of having the same
symmetry. This nondegenerate ground state does not break
any space symmetry, and it minimizes the energy of each
hexagon individually. The dimer correlation length of model
(50) is zero, and the energy gap to the first excited state is
2t-2V. The state in Eq. (51) belongs to the same phase as
the hexagon singlet solid state proposed by Hida,?* which is
also a gapped state with uniform dimer (singlet) density on
the entire lattice, and it should be the ground state of a cer-
tain type of SU(2) invariant spin Hamiltonian.

Now, the question is whether this dimer plaquette phase is
another phase or it can be continuously connected with one
of the other states discussed early in this paper without any
physical singularity. Notice that the gapped photon phase
with (0,0,0) on every triangle breaks no space symmetry ei-
ther; thus, one can imagine adding D(S%)? on the isotropic
Hamiltonian, and the ground state wave function can be con-
tinuously deformed to the gapped photon phase.

One has to be careful about the naive argument above. Let
us consider the one-dimensional analogs of the dimer
plaquette phase and the (0,0,0) phase as a check of our nave
argument. The one-dimensional Haldane phase** for spin-1
Heisenberg chain is gapped and breaks no symmetry. One
can imagine that by adding D(S%)? on the Heisenberg Hamil-
tonian, the Haldane phase will be continuously connected to
the state with $°=0 everywhere. However, the spin-1 Heisen-
berg chain is characterized by two special properties: the first
is the existence of gapless edge states, and the second is the
hidden diluted antiferromagnetic order. The existence of the
gapless edge states can be understood as follows: All the
sites in the bulk are shared by two dimers, while the site at
the edge only connects to one dimer; hence, there is a re-
sidual spin-1/2 degree of freedom at each edge (Fig. 14).
The hidden diluted antiferromagnetic order can be viewed
from expanding the AKLT state® (the explicit wave function
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FIG. 14. (Color online) A typical state in the Haldane phase. In
the bulk, every site is shared by two dimers. However, at each edge,
there is one residual unpaired spin-1/2 variable.

of one particular state in the Haldane phase) of the spin-1
chain in the basis of S$*. In this expansion, one typical state is
as follows:

+—-00000+000—- +00—- +000---. (52)

Every $°=1 site is always followed by one S=-1 site, al-
though there could be a number of $*=0 sites in between. A
special nonlocal string operator could be introduced to de-
scribe this hidden order in the Haldane phase.*®*’ Thus, the
Haldane phase and the $°=0 states are qualitatively different,
although so far the nature of the transition between these two
states is not clear.

The nice features of the Haldane phase also exist in the
AKLT state of spin-2 systems on the square lattice. Let us
take a cylinder geometry as an example. There is one un-
paired spin-1/2 degree of freedom on each site of the edge;
therefore, the edge state is effectively a spin-1/2 chain,
which is either gapless or gapped but breaks translational
symmetry. The AKLT state is qualitatively different from the
state with S°=0 everywhere as well (Fig. 15).

The dimer plaquette phase we found has the same sym-
metry as the gapped photon phase. However, we should
show whether this dimer plaquette phase is more similar to a
2D Haldane gap and/or AKLT state or a 2D §°=0 state. To
check whether there is a gapless edge state is the easiest way
to answer this question. If we take a cylinder with edges, on
each site of the edge, there is also a residual spin-1/2 degree
of freedom. However, due to the geometry of the kagome
lattice, in every unit cell of the edge, there are even number
of spins; therefore, effectively, the edge state is a chain with
integer spin (Fig. 16). The resultant edge state is generally
gapped and featureless at the edge, which is the Haldane
phase on a closed circle. The above facts suggest that the
dimer plaquette state is more like the S*=0 state rather than
the Haldane gap state and does not have any hidden order
that may exist in the latter. Thus, we conclude that the dimer

Z Z Z

FIG. 15. (Color online) The edge of AKLT state on the square
lattice. There is one extra spin-1/2 degree of freedom on each site
of the edge; therefore, the edge state is effectively a spin-1/2 spin
chain, which is either gapless or breaks translational symmetry. The
AKLT state is qualitatively different from the state with $°=0
everywhere.
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FIG. 16. (Color online) The edge of the kagome lattice. Every

unit cell at the edge has even number of spin-1/2 quantities. Pre-
sumably, the edge state is gapped and featureless.

plaquette phase can be continuously connected with the
gapped photon phase, with (0,0,0) spin configuration on ev-
ery triangle. However, at the present time, knowledge of
two-dimensional spin liquids is much less advanced. In par-
ticular, we cannot rule out that the absence of an edge state in
the dimer plaquette phase still allows for some other type of
spin liquid than the Haldane-gap type, in which case this
phase would not be continuously connected to the S$°=0
phase.

X. OTHER TRANSITIONS

In the phase diagrams Figs. 5 and 12, there are several
other transitions which are interesting. First of all, in Fig. 5,
the transition between the nematic phase and the superfluid
phase is probably an Ising transition, as this transition breaks
the Z, symmetry in the nematic state. The transition between
the nematic phase and the y3 X \3 phase is supposed to be a
first-order transition.

In the case with magnetic field, since another crystalline
order is opened up (Fig. 12), there is a transition between the
crystalline phase and the nematic phase. However, now that,
in the case of large and negative D, the system can be de-
scribed by an effective spin-1/2 model (41), the transition
can be understood as the transition between the crystalline
order and the superfluid order of hard core bosons on the
kagome lattice. This transition has been studied in Refs. 39
and 48 and the transition is a weak first-order transition.

XI. CONCLUSIONS AND EXTENSIONS

In the current work we studied the global phase diagram
of the spin-1 XXZ antiferromagnet on the kagome lattice.
Various phases which have been studied before can be ob-
tained from condensation of the defects in one single phase.
The phase diagram was also obtained for the case of a mag-
netic field along the z direction. One route to test this phase
diagram experimentally is by neutron scattering or other
measurements on the spin-1 kagome materials, for instance,
Ni3V,04 and m-MPYNN'- BF, salts.

In all the previous sections, the model under consideration
only contains quadratic interactions. However, in some cir-
cumstances, for instance, a spin-1 bosonic system trapped in

an optical lattice, the biquadratic interactions —J,(S;-S,)*
have been shown to be important.'" This biquadratic term
can help to stabilize the nematic phase when it becomes the
dominant term in the Hamiltonian. In closing, we briefly
explain one interesting consequence of this biquadratic inter-
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action, in case a cold-atom realization of this Hamiltonian is
constructed.

Suppose that the system is in the sixfold degenerate
plaquette-ordered state, and let us gradually turn on the bi-
quadratic term in the XY plane,

Hyi=—J,(SS}+ S)S))2. (53)

This biquadratic term is consistent with the XXZ symmetry
of our model. At the third order in perturbation theory, this
biquadratic term can generate resonance between (+1,-1,
+1,-1,+1,-1) hexagon with (-1,+1,-1,+1,-1,+1). No-
tice that, although spins $S°=+1, —1, and O are treated as
three colors, the Z; symmetry is missing in Hamiltonian (9),
since the resonances were only between (+1,0,+1,0,
+1,0) hexagons and between the (-=1,0,-1,0,—1,0) hexa-
gons. Therefore, the full 7Z; symmetry can be restored by
turning on the biquadratic term (53). At this Z; point, the
ground state is probably a ninefold degenerate plaquette or-
der. Once the biquadratic XY exchange dominates the qua-
dratic XY exchange, the phase becomes a threefold degener-
ate plaquette-ordered state with resonating (+1,-1)
hexagons.

One can also consider possible generalization of this work
to higher spin systems. If the same classical Hamiltonian (2)
is considered for higher integer spins on the kagome lattice,
the classical ground states contain S%=(+s,—s,0) or S§°
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=(0,0,0) on each triangle depending on the sign of J*—D.
Thus, the higher integer spin system is effectively reduced to
spin-1 system, and the U(1)XU(1) compact gauge field
theory developed in this work is still applicable. The phase
diagrams presented in this work can also be generalized to
higher integer spin systems, but the effect of ring-exchange
term induced is weaker than s=1 case studied in this work,
because one needs higher order of perturbation of J,, to in-
duce a nontrivial ring-exchange term in the degenerate clas-
sical ground states. For instance, for spin s, one needs 3s
order of perturbation to resonate between (+s5,0,+s,0,
+5,0) plaquette and (0, +s,0,+s5,0, +s).

For general integer spin s, if D is negative and large,
under small perturbation of J,,, a phase analogous to the
nematic phase is also opened up in higher spin systems. In
this “nematic” phase, the effective spin-1/2 model derived in
Sec. VI is also applicable, while in the higher spin case, o°
=+1 corresponds to §?=+s, and o*~ (S*)%. Thus, in this
nematic phase, the expectation value of (SY)* is nonzero,
and no crystalline order is expected.

ACKNOWLEDGMENTS

The authors thank L. Balents, D. Huse, and A. Vish-
wanath for useful conversations and NSF Grant No. DMR-
0238760 for support.

I'T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Science 303, 1409 (2004).

2T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.
Fisher, Phys. Rev. B 70, 144407 (2004).

3Y. Ran and X.-G. Wen, Phys. Rev. Lett. 96, 026802 (2006).

4N. Wada er al., J. Phys. Soc. Jpn. 66, 961 (1997).

SK. Awaga, T. Okuno, A. Yamaguchi, M. Hasegawa, T. Inabe, Y.
Maruyama, and N. Wada, Phys. Rev. B 49, 3975 (1994).

6G. Lawes et al., Phys. Rev. Lett. 93, 247201 (2004).

7X. G. Wen, Phys. Rev. B 68, 115413 (2003).

8C. Xu and J. E. Moore, Phys. Rev. B 72, 064455 (2005).

°K. Damle and T. Senthil, Phys. Rev. Lett. 97, 067202 (2006).

107, Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann,
and M. Lewenstein, Phys. Rev. Lett. 93, 030601 (2004).

A, Imambekov, M. Lukin, and E. Demler, Phys. Rev. A 68,
063602 (2003).

12A. Isacsson and S. M. Girvin, Phys. Rev. A 72, 053604 (2005).

137, Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Gio-
vanazzi, P. Pedri, and L. Santos, Phys. Rev. Lett. 95, 150406
(2005).

14 A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

ISM. Levin and X.-G. Wen, Phys. Rev. B 75, 075116 (2007).

15D, A. Huse and A. D. Rutenberg, Phys. Rev. B 45, 7536 (1992).

I7R. J. Baxter, J. Math. Phys. 11, 784 (1970).

18C. L. Henley (unpublished).

19N. Read, Kagomé workshop (unpublished).

20J. Kondev and C. L. Henley, Nucl. Phys. B 464, 540 (1996).

21A. B. Harris, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 45,
2899 (1992).

22 A. Chubukov, Phys. Rev. Lett. 69, 832 (1992).

23C. L. Henley and E. P. Chan, J. Magn. Magn. Mater. 140, 1693
(1995).

24K. Hida, J. Phys. Soc. Jpn. 69, 4003 (2000).

25H. Asakawa and M. Suzuki, Physica A 198, 210 (1993).

20E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L.
Sondhi, Phys. Rev. B 69, 224415 (2004).

2’D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376
(1988).

2E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B B4, 225
(1990).

M. Levin and T. Senthil, Phys. Rev. B 70, 220403(R) (2004).

301, Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta,
Phys. Rev. B 71, 144509 (2005).

3L, Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta,
Phys. Rev. B 71, 144508 (2005).

2aG. Murthy, D. Arovas, and A. Auerbach, Phys. Rev. B 55, 3104
(1997).

3R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).

3R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D.
N. Sheng, and L. Balents, Phys. Rev. Lett. 95, 127207 (2005).

358, V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and Y. B.
Kim, Phys. Rev. Lett. 97, 147202 (2006).

36G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990).

37H. Kleinert, F. S. Nogueira, and A. Sudbg, Phys. Rev. Lett. 88,
232001 (2002).

104427-16



GLOBAL PHASE DIAGRAM FOR THE SPIN-1...

3. F. Herbut and B. H. Seradjeh, Phys. Rev. Lett. 91, 171601
(2003).

¥S. V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and Y. B.
Kim, Phys. Rev. Lett. 97, 147202 (2006).

403, von Delft and C. L. Henley, Phys. Rev. B 48, 965 (1993).

4p. L. Bergman, G. A. Fiete, and L. Balents, Phys. Rev. B 73,
134402 (2006).

“D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents,
arXiv:cond-mat/0608131 (unpublished).

PHYSICAL REVIEW B 76, 104427 (2007)

43R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. B 64,
144416 (2001).

4F D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

431, Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.
59, 799 (1987).

46K. Rommelse and M. den Nijs, Phys. Rev. Lett. 59, 2578 (1987).

4TM. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).

48K. Sengupta, S. V. Isakov, and Y. B. Kim, Phys. Rev. B 73,
245103 (2006).

104427-17



