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The interplay between the Kondo effect and disorder is studied. This is done by applying a matrix coherent
potential approximation and treating the Kondo interaction on a mean-field level. The resulting equations are
shown to agree with those derived by the dynamical mean-field theory. By applying the formalism to a Bethe
tree structure with infinite coordination, the effects of diagonal and off-diagonal disorder are studied. Special
attention is paid to the behavior of the Kondo and the Fermi-liquid temperature as function of disorder and
concentration of the Kondo ions. The nonmonotonous dependence of these quantities is discussed.
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I. INTRODUCTION

The Kondo effect is one of the most investigated phenom-
ena in solid-state physics. Part of the reason is that it cannot
be treated perturbationally since it is a strong coupling effect.
Therefore, it requires special theoretical tools to deal with it.
Kondo physics occurs when strongly correlated electrons
such as 4f electrons in Ce3+ or holes in Yb3+ are weakly
hybridizing with the conduction electrons of their surround-
ings. This results in low-energy excitations which in the case
of concentrated systems may result in heavy quasiparticles.
For recent reviews of the field, we refer to Refs. 1–3. A
realistic starting point for Kondo systems is the Anderson
impurity or Anderson lattice model. Due to the hybridization
mentioned above it involves spin as well as charge degrees
of freedom. Often the charge degrees of freedom are less
interesting and are therefore eliminated by a Schrieffer-Wolf
transformation.4 The result is an antiferromagnetic interac-
tion between the spins of the conduction electrons and the
strongly correlated localized, e.g., 4f electrons. This leads to
the Kondo Hamiltonian.

Competing with the Kondo effect is the Ruderman-Kittel-
Kasuya-Yosida �RKKY� interaction. While the Kondo effect
leads to the formation of a singlet between the spins of the 4f
and conduction electrons, the RKKY interaction lowers the
energy of a system of local spins interacting with each other
via conduction electrons. Therefore, if the latter is more im-
portant than the former, the local spins will remain uncom-
pensated and eventually order and do not participate in the
singlet formation.

The aim of the present investigation is to study the effect
of randomness on Kondo physics. It has been suggested in
several works that randomness and disorder lead to non-
Fermi-liquid �NFL� behavior at low temperatures.5–12 For ex-
ample, it has been shown in Refs. 5–7 that a distribution of
Kondo temperatures TK can result from local disorder, the
NFL features being related to the presence of very-low-TK
spins which remain unquenched at any finite temperature. In
Refs. 5–8, the systems are modeled by introducing a continu-
ous distribution of local energy levels or electronic ex-
change. Here, we consider a discrete distribution of disorder,
and assume that the system is characterized by two different
kinds of sites only.

Another possible scenario attributes the NFL behavior to
the proximity to a quantum critical point resulting from dis-

ordered RKKY interactions.9–11 More recently, it has been
suggested that a NFL behavior can occur between the local
Fermi-liquid �FL� and coherent heavy FL phases character-
izing, respectively, a dilute and a dense Kondo alloy.12

We assume that we are in a regime where the Kondo
effect is more important than the RKKY interaction so that
the latter may be neglected. Instead we concentrate on the
singlet formation energy and on how it can be expressed in
terms of the Kondo temperature TK and of the temperature
TFL which determines the low temperature thermodynamic
properties. More precisely we compute the behavior of a
temperature T0 defined by the inverse local susceptibility at
zero temperature �loc

−1�T=0� which is often identified with
TFL. In particular, we study how TK and T0 behave as func-
tions of conduction electron band filling nc, local spin con-
centration x, and disorder.

II. MODEL HAMILTONIAN AND METHODS OF
SOLUTIONS

We consider the Kondo-alloy model �KAM� with the
Hamiltonian

H = �
ij�

tijci�
† cj� +

JK

2 �
i�A

�
���

Si · �i, �1�

where the first term describes nearest-neighbor hopping of
conduction electrons on a lattice with sites occupied ran-
domly by atoms of kind A and B. The corresponding concen-
trations are cA=x and cB=1−x. The hopping matrix elements
have three different values, i.e.,

tij = �ij�tA if i, j � A

tB if i, j � B

tAB otherwise.
� �2�

Here �ij is the structure factor of the underlying periodic
lattice with Fourier transform �k��ij�ij exp ik · �R j −Ri�.
The second term in Eq. �1� describes the Kondo interaction
between the conduction electron spin and local spin opera-
tors Si, the latter being attached to atoms of type A only.

We shall treat the Kondo-alloy model defined by Eq. �1�
by applying a number of approximations. A rather simple
one is that we assume a random distribution of sites A and B.
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As regards the Kondo interaction we shall consider two dif-
ferent ways of treating the randomness. They are similar to
each other but based on different physical pictures.

One approach is a generalization of a coherent potential
approximation �CPA� matrix approach originally introduced
in Refs. 13 and 14. The Kondo interaction is treated here
within a mean-field approximation. The second approach is a
matrix generalization of the dynamical mean-field theory
�DMFT� which is exact in the limit of infinite
dimensions.15,16 Averaging over the randomness is done here
without simplifying the Kondo interaction. A mean-field ap-
proximation can be introduced before or after the DMFT
approximation and leads to the same set of self-consistent
equations as obtained in the first, i.e., the generalized CPA
approach.

The analytical expressions obtained from these two ap-
proaches are applicable to any lattice structure. The numeri-
cal results presented below apply the DMFT to a Bethe lat-
tice instead of a regular one. The Kondo interaction is treated
in this case within the mean-field approximation.

III. MATRIX COHERENT POTENTIAL APPROXIMATION
METHOD

A. Mean-field treatment of the Kondo interaction

We begin with a mean-field approximation for the Kondo
interaction. Following the standard theory,17–21 the spin op-

erators are written in fermionic representation Si
���= f i�

† f i��
−���� /2, with the constraint ��f i�

† f i�=1. The Hamiltonian
equation �1� becomes therefore

H = �
ij�

tijci�
† cj� +

JK

2 �
i�A

�
���

f i�
† f i��ci��

† ci�. �3�

The systems we want to describe here involve physical spins
1/2 with a SU�2� symmetry. The mean-field approach as
introduced in Refs. 17 and 18 is in this case an approxima-
tion which becomes exact in the limit of SU�N→��
symmetry.19–21 The Hamiltonian is

H = �
ij�

tijci�
† cj� − r�

�
�
i�A

�ci�
† f i� + f i�

† ci��

− ��
�

�
i
�ci�

† ci� −
nc

2
� − ��

�
�
i�A

� f i�
† f i� −

1

2
� , �4�

where nc is the average number of conduction electrons per
site i, while � denotes the chemical potential. In the follow-
ing, we discard the spin index � since in mean-field approxi-
mation the contributions to H of the different spin compo-
nents decouple.17–21 The Kondo interaction is approximated
by an effective hybridization r=−JK	
f ici

†�� between the con-
duction electrons and the fermionic operators, where the 
¯�
denotes the thermal average with respect to the Hamiltonian
�4� for random configurations of sites A and B, and 	¯�
denotes the average with respect to these configurations.
Note that the same form of the Hamiltonian is obtained by
starting from an Anderson lattice instead of a Kondo lattice,
and treating it within the mean-field slave boson

approximation.19–21 We have started here from the Kondo
Hamiltonian because we are interested in the case of near
integer valency of the impurity, i.e., the f electron count is
supposed to be very close to one. The above mean-field ap-
proximation leads to an f-like band. It models the low-
energy excitations which result from the Kondo interaction
or alternatively Anderson Hamiltonian. The conditions
��f i�

† f i�=1 are taken into account by Lagrange parameters
�i. We set all of them equal to � which implies that the above
conditions are satisfied on average only. Thus small local
fluctuations in the f electron count are possible here like in
the Anderson model.

The quantities �, �, and r are determined by self-
consistency conditions. For that purpose local Green’s func-
tions are introduced. They are different for magnetic sites A,
nonmagnetic sites B, and for f as well as conduction elec-
trons. The Gij

f f�	−	���−
T	f i�	�f j
†�	���, Gij

fc�	−	���
−
T	f i�	�cj

†�	���, and Gij
cc�	−	���−
T	ci�	�cj

†�	��� are finite
temperature Green’s functions defined for imaginary time 	,
where T	 denotes the imaginary-time chronological ordering.
We also define the averaged local Green’s functions

GA
f f �

1

x
�
i�A

Gii
f f, GA

fc �
1

x
�
i�A

Gii
fc, �5�

GA
cc �

1

x
�
i�A

Gii
cc, GB

cc �
1

1 − x
�
i�B

Gii
cc. �6�

The chemical potential �, the Lagrange multiplier �, and
the effective hybridization r are determined by the self-
consistent saddle point equations as follows:

− r/JK =
1

x
�
i�A


f ici
†� = GA

fc�	 = 0−� , �7�

1/2 =
1

x
�
i�A


f i
†f i� = GA

f f�	 = 0−� , �8�

nc/2 = �
i


ci
†ci� = Gcc�	 = 0−� , �9�

with Gcc��iGii
cc=xGA

cc+ �1−x�GB
cc.

B. Configuration averages

For the determination of the Green’s function of the con-
duction electrons, we choose a generalization of the CPA to a
matrix form as introduced in Refs. 13 and 14. Within that
approximation, the system can be viewed as a medium with
three interacting fermionic bands: two bands corresponding
to conduction electrons on sites A or B, and a third one
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representing the excitations of the strongly correlated f elec-
trons. Therefore the dynamics related to the spins of the A
sites is described in a simplified form, i.e., in the form of f
electrons with a dispersive band. The 3
3 Green’s function
matrix is of the following form:

G̃ij = 
 x̂ix̂ jGij
f f x̂ix̂ jGij

fc x̂iŷ jGij
fc

x̂ix̂jGij
cf x̂ix̂jGij

cc x̂iŷ jGij
cc

ŷix̂jGij
cf ŷix̂jGij

cc ŷiŷ jGij
cc� , �10�

where x̂i=1− ŷi are projection operators, which are unity
�zero� if site i is occupied by an A �B� atom. Averaging the
local Green’s function matrix with respect to different con-
figurations of randomly distributed types of atoms we find

	G̃ii� = 
xGA
f f xGA

fc 0

xGA
cf xGA

cc 0

0 0 �1 − x�GB
cc� . �11�

In this expression, the vanishing of the mixed A-B matrix
elements follows directly from x̂iŷi=0, which ensures that a
given site is either of kind A or B. Averaging over the differ-
ent configurations of A and B sites restores lattice translation
symmetry. Therefore we define

G̃k � �
ij

e−ik·�Ri−Rj�	G̃ij� . �12�

Within the single component CPA, the system is approxi-
mated by an effective medium, characterized by a local, i.e.,
k-independent, but frequency dependent self-energy.22–26

The latter is determined self-consistently by requiring that
the scattering matrix of the atoms A and B within this effec-
tive medium vanishes on average. The matrix form of the
CPA introduced in Refs. 13 and 14 generalizes the scalar
procedure to an effective medium with two bands of conduc-
tion electrons. Here we generalize the 2
2 matrix form of
the CPA to a 3
3 one. The averaged Green’s function ma-
trix characterizing the effective medium is given by the re-
lation

�	G̃�i�n��−1�ij = i�nĨ�ij − ��i�n��ij − W̃�ij , �13�

where i�n� i�T�2n+1� denotes the fermionic Matsubara
frequencies. In the following we leave out the n index. In-

voking the reciprocal space Green’s function matrix defined
by Eq. �12�, the relation �13� becomes

G̃k
−1�i�� = i�Ĩ − �̃�i�� − W̃�k. �14�

Here Ĩ is a 3
3 unit matrix, W̃ is the transfer matrix,

W̃ = 
0 0 0

0 tA tAB

0 tAB tB
� , �15�

and �̃ is a local self-energy matrix,

�̃�i�� � 
 �A�i��
�1�i��
�2�i��

�1�i�� �2�i�� 
B�i��
� , �16�

which is determined by the set of self-consistent equations
�see the Appendix� as follows:

	G̃ii�i��� = 
xGA
f f�i�� xGA

fc�i�� 0

xGA
cf�i�� xGA

cc�i�� 0

0 0 �1 − x�GB
cc�i��

�
= �

k
G̃k�i�� , �17�

�A�i�� = − �� r

r �
� −

�1 − x�
x

�GA
f f�i�� GA

fc�i��
GA

cf�i�� GA
cc�i��

�−1

,

�18�

�B�i�� = − � −
x

�1 − x�GB
cc�i��

. �19�

The self-energies �1 and �2 are determined by requiring that
the mixed A-B elements of the local Green’s function matrix
in Eq. �17� vanish for the same reason as in Eq. �10�. We find
that

�1�i�� = 0, �20�

which reflects the fact that there is no direct interaction be-
tween f fermions and the B-electronic band, describing the
electrons on nonmagnetic sites. We find also an explicit ex-
pression for �2, i.e.,

�2�i�� = − tAB

1 − 2x + x	i� + � − r2/�i� + ���GA
cc�i�� − �1 − x��i� + ��GB

cc�i��
xtAGA

cc�i�� − �1 − x�tBGB
cc�i��

, �21�

which results from the direct hopping of conduction elec-
trons between A and B sites.

A complete solution of the initial Kondo-alloy system is
obtained by solving simultaneously the mean-field equations
�7�–�9� together with the matrix equation �17�. Thereby the

k-dependent average Green’s function matrix is determined
by the relation Eq. �14�, with the lattice structure factor �k

and the local self-energy matrix �̃. The latter is determined
by the self-consistent CPA equations �16�, �18�, and �19�.
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C. Kondo temperature

We define the Kondo temperature TK as the temperature at
which the effective hybridization r 	obtained from Eqs.
�7�–�9�� vanishes. We find

2/JK =� d��A
0�� + �0�tanh��/2TK�/� , �22�

where �A
0 and �0 are, respectively, the local electronic den-

sity of states �DOS� on a magnetic site, and the chemical
potential of a random A-B alloy without Kondo interaction.
An explicit expression for TK has been derived in Ref. 27 in
the weak-coupling regime JK� tA, tB, tAB as follows:

TK = De−1/„JK�A
0 ��0�…�1 − ��0/D�2FK�nc� , �23�

FK�nc� = exp��
−�D+�0�

D−�0 d�

���
�A

0��0 + �� − �A
0��0�

2�A
0��0� � , �24�

where D is the half-bandwidth of the noninteracting local
DOS �A

0���.

IV. DYNAMICAL MEAN-FIELD THEORY EQUATIONS

The matrix form of the CPA introduced in Refs. 13 and 14
was generalized to the KAM �1� after an appropriate mean-
field approximation was made for the Kondo interaction. It
allowed for keeping the dynamical aspects of the A sites with
their attached spins by means of introducing an additional
f-like band of excitations. It supplemented the two bands
resulting from the conduction electrons of the A and B sites.
In the following we develop for the KAM a matrix-DMFT
computational scheme which can be formulated without a
mean-field approximation for the Kondo interaction. Note
that our approach is different from the dynamical cluster ap-
proximation introduced in Ref. 28 since the latter concerns
diagonal disorder only.

In the z→� limit for which the following DMFT proce-
dure becomes exact, the system is characterized by only two
types of nonequivalent sites �A or B�. This is a consequence
of the discrete distribution of disorder. Note that the distri-
bution of Kondo temperature or Anderson localization ef-
fects discussed in Refs. 5–8 concern models with a continu-
ous distribution of disorder.

A. Dynamical mean-field theory matrix formalism for a
binary alloy

The Kondo-alloy Hamiltonian equation �1� can be written
as

H = �
ij�

�ijPi
†WP jci�

† cj� +
JK

2 �
i

x̂i�
���

Si
���ci��

† ci�, �25�

where we introduced the transfer matrix

W = � tA tAB

tAB tB
� , �26�

and the projection operators

Pi = �x̂i

ŷi
� , �27�

with their conjugates

Pi
† = �x̂i, ŷi� , �28�

where x̂i�1− ŷi is unity if i is an A site and zero otherwise.
Here, we have implicitly mapped the initial KAM �1�, char-
acterized by a single disordered conduction band, into a two-
band effective model. Thereby each site of the underlying
periodic lattice acts like being occupied simultaneously by
atoms of A and B type. As before, the initial physical Hilbert
space corresponding to a single kind of atom per site is re-
covered by introducing projection operators. They guarantee
that a site acts either as an A or B atom. Here, we follow the
DMFT formalism,15,16 which is exact in the limit of a large
coordination number z. Considering that the energy of the
system is an extensive quantity, this limit requires a rescaling
of the hopping energies tij =�ijPi

†WP j = t̃i j /�z, where t̃i j re-
mains finite �i.e., independent of z� when z→�. From the
lattice Hamiltonian equation �25� we obtain a local effective
action for site 0

S�x̂0� = − �
�
�

0

�

d	�
0

�

d	�c0�
† �	�P0

†K�	 − 	��P0c0��	��

− x̂0
JK

2 �
���
�

0

�

d	S����	�c0�
† �	�c0���	� . �29�

Here, the kernel K is a 2
2 matrix, which is a dynamical
generalization of the Weiss field usually introduced for a
static mean-field approximation. The projection operators P0
and P0

† select the diagonal matrix element KA �KB� of K
depending on whether site 0 is occupied by an A or B atom.
The resulting local effective action S�x̂0� remains a scalar
quantity, which can have two values, i.e., S�x̂0=1�=SA and
S�x̂0=0�=SB. This is a key quantity in the DMFT procedure.
It provides a relevant simplification since the local electronic
and magnetic Green’s functions characterizing the lattice
Hamiltonian �25� can now be computed from S�x̂0�, which
invokes local degrees of freedom only. Next, we determine
the self-consistent relations allowing us to express the kernel
K as a function of the local Green’s functions. Following the
standard DMFT formalism, we find

K�i�� = �i� + ��I − �
ij

�0i� j0W	PiP j
†Gij

�0��i���W .

�30�

Here Gij
�0� is the cavity Green’s function, corresponding to the

lattice Hamiltonian �25�, but with site 0 excluded. In order to
establish a self-consistent relation for the kernel, we perform
an infinite order perturbation expansion of Green’s functions
in terms of the hopping elements �ijPi

†WP j. Following the
DMFT scheme,15,16 the Green’s function Gij for a given dis-
tribution of sites A and B is expressed as a sum of all pos-
sible paths i→ i1→ i2¯ ip→ j connecting site i to site j
through the sequence of structure factors �i1i2

. In the limit of
large z we may exclude returning paths since their contribu-
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tion is of order 1 /zn+1 when n is the number of returns. Thus,
each path is factorized in terms of local dressed irreducible
scalar propagators �ii which contain information about the
local interactions as follows:

Gij = �
paths

�ii�ii1
Pi

†WPi1
�i1i1

�i1i2
Pi1

† WPi2
�i2i2

¯ �ipip
�ipjPip

† WP j� j j . �31�

For the sake of simplicity we have dropped the explicit time
dependencies. We will show below that, after averaging over
the randomness, these local propagators can be related to a
local self-energy. The large-z expansion equation �31� is a
scalar relation, similar to the one obtained in the usual
DMFT approach. The only difference arises from the scalar
hopping elements tij =Pi

†WP j�ij, which here are random. In
the following we cast this relation into a 2
2 matrix form,
with a periodic effective hopping matrix W�ij between near-
est neighbors. We define

Gij � PiGijP j
† = �x̂ix̂ jGij x̂iŷ jGij

ŷix̂jGij ŷiŷ jGij
� �32�

and

�ii � Pi�iiPi
† = � x̂i

2�ii x̂iŷi�ii

ŷix̂i�ii ŷi
2�ii

� . �33�

Like in Ref. 14, we set x̂i=� �site A� or 1−� �site B� and later
take the limit �→0. The large-z expansion for the Green’s
function matrix Gij is obtained by multiplying Eq. �31� with
the projection operators Pi �from the left� and P j

† �from the
right�. After averaging with respect to the different configu-
rations of A and B sites, we find

	Gij� = �
paths

	�ii�ii1
W�i1i1

�i1i2
W�i2i2

¯ �ipip
�ipjW� j j� .

�34�

In the large-z limit, we consider only direct paths connecting
sites i and j. We assume that a given site i is occupied sta-
tistically by an A or a B atom, i.e., is independent of its
environment. Therefore, in Eq. �34�, each irreducible propa-
gator matrix �ii can thus be averaged separately, and we find

	Gij� = �
paths

�0�ii1
W�0�i1i2

W�0 ¯ �0�ipjW�0, �35�

where �0�	�ii�. The matrix relation Eq. �35� between the
average Green’s functions, the averaged local dressed propa-
gator, and the hopping elements are formally identical to a
scalar expansion obtained for a regular periodic system
within the standard DMFT formalism.15,16 We introduce the
local Green’s function matrix

Gloc � 	Gii� = �xGA 0

0 �1 − x�GB
� . �36�

Here GA and GB are the local Green’s functions of an A and
a B site, after an average over all the atomic configurations
of the surroundings has been taken. Using Eq. �35�, the re-
lation between the cavity and full Green’s function reads

	PiP j
†Gij

�0�� = 	Gij� − 	Gi0�Gloc
−1	G0j� . �37�

Averaging over a random distribution of sites A and B re-
stores the translation symmetry of the underlying lattice. The
averaged Green’s function matrices are thus periodic in
space, and we can define their Fourier transforms as

Gk � �
ij

e−ik·�Ri−Rj�	Gij� . �38�

From Eq. �35�, we find that the Green’s functions are char-
acterized by a local 2
2 self-energy matrix �

Gk
−1�i�� = �i� + ��I − ��i�� − W�k, �39�

where � is related to the averaged local propagator by the
matrix identity �0

−1�i��= �i�+��I−��i��. The matrix ele-
ments of � can be expressed in terms of the local average
Green’s function matrix Gloc by taking the inverse of

Gloc�i�� = �
k

Gk�i�� . �40�

Finally, using the relation �37� for the cavity Green’s func-
tion, together with the expression �30� for the kernel, we find

K�i�� = ��i�� + Gloc
−1�i�� . �41�

Equations �39�–�41� provide a self-consistent relation be-
tween the matrix kernel K and the averaged local Green’s
function matrix Gloc as follows:

Gloc�i�� = �
k

	�i� + ��I − K�i�� + Gloc
−1�i�� − W�k�−1.

�42�

In turn, the local Green’s functions GA and GB invoked in the
definition �36� of Gloc can be computed for a given kernel K,
by considering the cases x̂0=0 and x̂0=1 in the local effective
action equation �29�. Since the effective action SB on sites B
is quadratic in terms of electronic operators, we obtain an
explicit expression for GB as follows:

GB�i�� = KB
−1�i�� . �43�

The local Green’s functions GA is obtained from the local
effective action on an A atom as follows:

SA = − �
�
�

0

�

d	�
0

�

d	�c0�
† �	�KA�	 − 	��c0��	��

−
JK

2 �
���
�

0

�

d	S����	�c0�
† �	�c0���	� . �44�

Apart from the self-consistent relation �42�, which can be
treated using analytic �and eventually numerical� simple cal-
culations, the main difficulty consists in computing GA from
the local effective action �44�. Even if the initial difficulty of
studying a lattice model has been consequently reduced into
a single site effective model, this issue remains a many body
problem. The Kondo interaction part has to be considered
using a numerical scheme or appropriate analytical approxi-
mations.

Once a self-consistent solution is obtained for K and Gloc,
the k-dependent correlation functions for the conduction
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electrons can be obtained using Eqs. �39� and �41�. Here, we
describe the system with two bands of conduction electrons
A and B, whose correlations are characterized by the 2
2
matrix Gk. Invoking the identity x̂ix̂ j + x̂iŷ j + ŷix̂ j + ŷiŷ j =1̂, the
physical single band average Green’s functions 	Gij� can be
obtained by adding the four matrix elements of 	Gij�. As a
consequence, the k-dependent average correlation function
for the physical single band of conduction electrons is also
obtained by adding the four matrix elements of Gk.

B. Equivalence of the coherent potential approximation and
the dynamical mean-field theory

The equivalence of the dynamical CPA and the DMFT
was previously proven by Kakehashi on general grounds.29

As discussed before by applying a 3
3 matrix-CPA ap-
proach we were able to describe the important dynamical
aspects of the spins of the A sites. Therefore it is reassuring
that we can demonstrate the equivalence of the 3
3 matrix-
CPA approach with corresponding DMFT equations, when
we integrate over the f-electron degrees of freedom in the
CPA approach and make a mean-field approximation within
the DMFT approach.

1. Expression of the coherent potential approximation equations
using a 2Ã2 matrix formalism

For a demonstration of the equivalence of the two meth-
ods we start from a modified version of Eqs. �16�–�19�. It is

easy to show that after some algebraic modifications the fol-
lowing relations can be derived from these equations:

GA
f f�i�� =

1

i� + �
+

r2

�i� + ��2GA
cc�i�� , �45�

GA
fc�i�� =

− r

i� + �
GA

cc�i�� . �46�

The self-consistent CPA equations �16�–�19� can be cast into
the form

xGA
cc�i�� = �

k

1

�k�i��
	i� + � − 
B

CPA�i�� − tB�k� , �47�

�1 − x�GB
cc�i�� = �

k

1

�k�i��
	i� + � − 
K�i��

− 
A
CPA�i�� − tA�k� , �48�

where

�k�i�� = 	i� + � − 
K�i�� − 
A
CPA�i�� − tA�k�	i� + �

− 
B
CPA�i�� − tB�k� − 	− �2�i�� − tAB�k�2, �49�

�2�i�� = − tAB
1 − 2x + x	i� + � − 
K�i���GA�i�� − �1 − x��i� + ��GB�i��

xtAGA�i�� − �1 − x�tBGB�i��
. �50�

Here we have set


A
CPA�i�� = −

1 − x

x

1

GA
cc�i��

, �51�


B
CPA�i�� = −

x

1 − x

1

GB
cc�i��

. �52�

We have also introduced the definition


K�i�� �
r2

i� + �
. �53�

A complete resolution of the model is obtained by the fol-
lowing self-consistent scheme:

�i� Calculate GA
cc and GB

cc from Eqs. �47�–�53�, as function
of the mean-field parameters r, �, and �.

�ii� Calculate GA
fc and GA

f f by using Eqs. �45� and �46�.
�iii� Optimize the parameters r, �, and � so as to satisfy

the mean-field equations �7�–�9�.

2. Dynamical mean-field theory and mean-field approximation
for the Kondo term

A complete resolution of the matrix-DMFT self-consistent
relations requires an impurity solver, in order to compute the
local electronic Green’s functions GA related to the local ef-
fective action SA given by Eq. �44�. In order to demonstrate
the formal equivalence between the matrix-DMFT and the
matrix-CPA approaches, we use the mean-field approxima-
tion for the impurity solver. Before, we define the local self-
energy due to the Kondo interaction on sites A as follows:


K�i�� � KA�i�� − GA
−1�i�� . �54�

Since there is no local interaction on sites B, we have
GB�i��=KB

−1�i��. The relation �41� can be expressed as

��i�� = �
K�i�� + 
A
CPA�i�� KAB�i��

KAB�i�� 
B
CPA�i��

� , �55�

with


A
CPA�i�� = 	�1 − x�/x�GA

−1�i�� , �56�
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B
CPA�i�� = 	x/�1 − x��GB

−1�i�� . �57�

These expressions are identical to Eqs. �51� and �52� ob-
tained within the matrix-CPA approach. Here, as within the

CPA approach, the off-diagonal self-energy KAB �denoted be-
fore �2� is determined by requiring the vanishing of the off-
diagonal elements of Gloc in Eq. �36�. In analogy to Eq. �21�,
we find

KAB�i�� = �2�i�� = − tAB
1 − 2x + x	i� + � − 
K�i���GA�i�� − �1 − x��i� + ��GB�i��

xtAGA�i�� − �1 − x�tBGB�i��
. �58�

Combining Eq. �55� with the self-consistent relations Eqs.
�36�, �39�, and �40� we find

xGA�i�� = �
k

1

�k�i��
	i� + � − 
B

CPA�i�� − tB�k� , �59�

�1 − x�GB�i�� = �
k

1

�k�i��
	i� + � − 
K�i��

− 
A
CPA�i�� − tA�k� , �60�

with

�k�i�� = 	i� + � − 
K�i�� − 
A
CPA�i�� − tA�k�	i� + �

− 
B
CPA�i�� − tB�k� − 	− �2�i�� − tAB�k�2, �61�

which are formally equivalent to the relations Eqs. �47�–�49�
obtained from the matrix form of the CPA approach.

The matrix-DMFT approach developed here is performed
without any approximation concerning the local Kondo in-
teraction. An impurity solver is required in order to calculate
the local Green’s functions from the local effective action SA
defined in Eq. �44�, and then to compute the Kondo self-
energy 
K. For example, the mean-field approximation can
be performed as described in the previous section �CPA�,
leading to the same set of saddle point relations as Eqs.
�7�–�9�. This method, developed in the framework of a
Kondo-alloy model, can be generalized to other alloy models
with strong local correlations.

C. Bethe lattice with infinite coordination

The DMFT formalism described in the previous section is
exact in the limit of an infinite coordination number z. It can
be applied to any underlying periodic lattice, which is de-
fined by its structure factor �k. In order to study the Kondo-
alloy model defined by the Hamiltonian equation �1� numeri-
cally, it is convenient to consider a Bethe lattice. For a
similar approach applied to ferromagnetic semiconductors,
see Ref. 30. In this specific case, the self-consistent equations
are much simpler, and the general physical properties of the
system are preserved. The main argument is that the density
of states �DOS� for a Bethe lattice without disorder and with-
out Kondo impurities is of a semielliptic form. Since most of
the electronic properties depend on the DOS they should be
robust with respect to a Bethe lattice.

Applying the DMFT formalism described in the previous
section to a Bethe lattice, we obtain a local effective action
for the two kinds of sites

SA = − �
�
�

0

�

d	�
0

�

d	�cA�
† �	�KA�	 − 	��cA��	��

−
JK

2 �
���
�

0

�

d	S����	�cA�
† �	�cA���	� , �62�

SB = − �
�
�

0

�

d	�
0

�

d	�cB�
† �	�KB�	 − 	��cB��	�� . �63�

They are formally equivalent to the compact expression
equation �29�. The main simplification obtained by consider-
ing a Bethe lattice rests on the fact that the cavity Green’s
functions involved in Eq. �30� can now be replaced by local
full Green’s functions. This procedure is exact in the limit of
a large coordination number z. The Bethe lattice self-
consistent relations for the kernels KA and KB are thus

KA�i�� = i� + � − xt̃A
2GA

cc�i�� − �1 − x�t̃AB
2 GB

cc�i�� , �64�

KB�i�� = i� + � − xt̃AB
2 GA

cc�i�� − �1 − x�t̃B
2GB

cc�i�� , �65�

where, in the large-z limit, the nearest-neighbor hoppings
have been rescaled: tA� t̃A /�z, with similar definitions for t̃B

and t̃AB. We then apply the mean-field approximation, de-
scribed in the first section, as an impurity solver for the local
effective action SA of an A site. Within the mean-field ap-
proximation, the effective action equations �62� and �63� are
quadratic and the local Green’s functions can in turn be ex-
pressed explicitly as functions of the kernels KA and KB

�GA
f f�i�� GA

fc�i��
GA

cf�i�� GA
cc�i��

� = �i� + � r

r KA�i�� �
−1

, �66�

GB
cc�i�� = KB

−1�i�� . �67�

Together with Eqs. �64� and �65� and with the mean-field
equations �7�–�9� we have a complete set of self-consistent
relations for the local Green’s functions and the effective
parameters r, �, and �.

For a given set of parameters x, nc, JK, tA, tB, and tAB and
the temperature T=1/�, we compute the effective param-
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eters r, �, and �. The latter are determined by solving the
mean-field equations �7�–�9�, after they have been rewritten
in term of Matsubara frequencies. These three equations for
r, �, and � are solved numerically using the Newton-
Raphson method.

1. Calculation of the Green’s functions

Here, we consider an estimate of r, �, and �, and we
determine numerically the Green’s functions for a given
Matsubara frequency i�n. We exclude the trivial cases x=0
and x=1 for which the Green’s functions can be expressed
analytically. Invoking Eqs. �64�–�67�, we find self-consistent
relations for GA

cc�i�n� and GB
cc�i�n� as follow:

GA
cc�i�n� =

1

t̃A
�x

G0��A�i�n�

t̃A
�x

� , �68�

GB
cc�i�n� =

1

t̃B
�1 − x

G0��B�i�n�

t̃B
�1 − x

� , �69�

where �A�i�n�� i�n+�−r2 / �i�n+��− �1−x�t̃AB
2 GB

cc�i�n�
and �B�i�n�� i�n+�−xt̃AB

2 GA
cc�i�n�. The dimensionless

function G0	��� �
2 	1−�1−4/�2� is characteristic of a Be-

the lattice structure. Equations �68� and �69� are solved nu-
merically using a standard iterative algorithm. Once GA

cc�i�n�
and GB

cc�i�n� are computed, GA
fc�i�n� and GA

f f�i�n� are ob-
tained using Eqs. �64� and �66�.

2. Numerical determination of the Kondo temperature

We define the Kondo temperature TK as the temperature at
which the effective hybridization r vanishes. An analytical
relation between TK and the local electronic DOS without
Kondo interaction is provided by Eq. �22�. Here, we deter-
mine TK numerically for a given set of parameters x, nc, JK,
tA, tB, and tAB. First, we compute the parameter r using the
Newton-Raphson method and for different temperatures.
Then, we identify TK as the temperature for which r continu-
ously vanishes. The numerical error can be controlled by the
temperature steps, which we took to be approximately of the
order of 1%.

3. Numerical determination of the local static magnetic
susceptibility

The local static magnetic susceptibility on a magnetic site
is defined as

�loc�T� �
1

3
�

0

1/T

d	
S�	� · S�0�� , �70�

where the dynamical spin-spin correlation function is com-
puted from the local effective action on a magnetic site 	i.e.,
from the action defined by Eq. �62��. In the mean-field ap-
proximation, the dynamical spin-spin correlation function
can be expressed as

1

3

S�	� · S�0�� = GA

f f�	�GA
f f�− 	� . �71�

Using Eqs. �70� and �71�, �loc�T�=T
n=−�
+� 	GA

f f�i�n��2 is com-
puted numerically. The low temperature behavior is charac-
terized by the energy scale

T0 � 1/4�loc�T = 0� . �72�

We estimate T0 by computing �loc�T� for T much lower than
the Kondo temperature obtained with the same set of param-
eters.

4. Numerical determination of the local density of states

We define the local density of electronic states �DOS�
associated with GA

cc and GB
cc

�A/B��� � − �1/��Im GA/B
cc �� + i0+� , �73�

and the averaged local DOS

���� = x�A��� + �1 − x��B��� . �74�

Here, within CPA or DMFT, all the local DOS’s of A sites
are the same while a more accurate treatment would show a
spread. This can be obtained by randomizing the distribution
of the hopping matrix elements tA, tB, and tAB. This could be
done within the present DMFT formalism. By construction
�A, �B, and � have each a total spectral weight of unity, and
A �B� atoms contribute with a weight x �1−x� to the aver-
aged DOS �. We determine �A��� and �B��� numerically for
a given set of parameters x, nc, JK, tA, tB, and tAB and a
temperature T. First, we compute the parameters r, �, and �
using the Newton-Raphson method. Then we compute
GA/B

cc ��+ i��, where � is a real number and � is a small posi-
tive constant number. This computation is done by solving
Eqs. �68� and �69� numerically, after having replaced i�n by
�+ i�.

V. APPLICATIONS OF THE FORMALISM

A. Off-diagonal randomness: Nonmagnetic random alloy

1. Formalism

In this section we consider off-diagonal randomness, i.e.,
hopping matrix elements. The model is defined by the
Hamiltonian equation �1� without the Kondo interaction.
This is a standard situation for the CPA and we discuss this
case here only because we want to combine it later with the
Kondo problem. We know that the CPA misses certain local-
ization effects. Their importance in connection with Kondo
effect has been discussed in Ref. 12. Since the spin compo-
nents are decoupled, the system corresponds to a random
tight-binding model of conduction electrons, identical to the
one considered in Refs. 13 and 14. Thus Gij�	−	���
−
T	ci�	�cj

†�	��� is the electron Green’s function defined for
imaginary time. Since here we do not consider the Kondo
interaction, the self-consistent equation for the averaged
Green’s function can equivalently be obtained either from
the matrix form of the CPA approach 	Eqs. �47�–�49�, �51�,
and �52�� or from the matrix-DMFT approach 	Eqs. �56�,
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�57�, �59�, and �61��. In both cases the Kondo self-energy

K=0. We find

xGA�i�� = �
k

1

�k�i��
	i� − 
B

CPA�i�� − tB�k� , �75�

�1 − x�GB�i�� = �
k

1

�k�i��
	i� − 
A

CPA�i�� − tA�k� ,

�76�

�k�i�� = 	i� − 
A
CPA�i�� − tA�k�	i� − 
B

CPA�i�� − tB�k�

− 	− �2�i�� − tAB�k�2, �77�


A
CPA�i�� = 	�1 − x�/x�GA

−1�i�� , �78�


B
CPA�i�� = 	x/�1 − x��GB

−1�i�� , �79�

�2�i�� = − tAB
1 − 2x + i�	xGA�i�� − �1 − x�GB�i���

xtAGA�i�� − �1 − x�tBGB�i��
.

�80�

Here GA and GB are the local Green’s functions Gii on a site
i of kind A �or B�, obtained by averaging over all the other
site configurations A or B. For the sake of simplicity, we
drop the chemical potential �. This convention implies that
the Fermi level energy is zero when the electron band is
half-filled.

We did not find a general analytic solution for this set of
equations, so that a numerical evaluation is required. Never-
theless, a dimensionless ratio emerges from these expres-
sions

� = tAB/�tAtB, �81�

which compares the energy characterizing the hopping of
electrons between sites A and B with the hopping energies
within an A and a B sublattice. Intuitively, if ��1, the elec-
tronic levels of lowest energy will be dominated by hopping
between A-B neighboring sites. In the opposite case of �
�1, hopping within pure A or pure B sublattices dominates.

2. Numerical results: Local density of states

Choosing a Bethe tree structure as underlying lattice �this
corresponds to a semielliptic DOS for the pure A or pure B
system�, we have computed �A��� and �B��� numerically for
different values of the hopping elements. For the purpose of
simplification, we present here some numerical results ob-
tained for tA= tB� t only. In the following, all energies are
expressed in units of t̃� t�z, where z is the coordination
number of the lattice, and different values of �= tAB / t are
considered.

Figure 1 depicts the effect of off-diagonal randomness on
the local DOS’s �A, �B, and �. The plots presented here are
obtained for a concentration x=20% of atoms of kind A.
Qualitatively similar behavior is found for different concen-
trations. For �=1 �tAB= tA= tB�, our numerical results recover
the semielliptic DOS corresponding to a regular tight-

binding model. In the regime ��1, the DOS remains
semielliptic-like, with a rescaled bandwidth 	see also Fig.
3�b��. In the regime ��1, the DOS �A corresponding to the
minority atoms splits into two satellite peaks, centered
around the energy ±tAB, while the DOS �B corresponding to
the majority atoms shows both a two satellite peak structure
and a coherent peak around �=0. The latter is reminiscent of
the semielliptic one obtained in the absence of disorder ��
=1�. As a consequence, the averaged local DOS � is also
characterized by a central peak and two satellites.

Regime ��1. Integrating the local DOS, we define the
average densities of electrons on sites A and B in the Fermi
sea, as function of the Fermi energy EF
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α= 0.1

α= 1
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α= 3
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α= 5

Local DOS ρ
A

(a)

5 0 5 ω

0
1

DOS
α= 0.1

α= 1

α= 2

α= 3

α= 4

α= 5

Local DOS ρ
B
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0
1

DOS
α= 0.1

α= 1

α= 2

α= 3

α= 4

α= 5

Local DOS ρ=xρ
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+(1-x)ρ
B

(b)

(c)

FIG. 1. �a� Local DOS �A��� on a site A. �b� Local DOS �B���
on a site B. �c� Average local DOS ����=x�A���+ �1−x��B���. The
curves correspond to a concentration x=20%. Each plot corre-
sponds to a fixed value of �= tAB / t, which varies from 0.1 �top� to
5 �down� in steps of 0.1. The curves have been shifted both verti-
cally and horizontally, with numerical scales written explicitly only
for �=0.1 �vertical direction� and �=5 �horizontal axis�. The en-
ergy is in units of t̃= tA

�z= tB
�z.
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nA/B � cA/B�
−�

EF

d��A/B��� , �82�

where cA=x and cB=1−x. We analyze in Fig. 2 the micro-
scopical origin of the satellites and central peak in the aver-
aged DOS for large values of �. It appears that the two
satellite peaks correspond to electronic excitations which are
equally distributed over A and B sites, while the central peak
is due to excitations of electrons on the majority B sites. Our
interpretation is the following: when ��1, the electronic
states with the lowest energy are obtained by forming A-B
bonds. The deepest levels of the Fermi sea thus correspond
to electronic wave functions localized on clusters formed by
alternating A and B atoms. In the following, we call the latter
“AB clusters.” We interpret the two satellite peaks as bonding
and antibonding electronic states formed in these AB clus-
ters. In the large-z limit, each A atom can be associated with
a neighboring atom B. Choosing the latter to point into the
same �arbitrary� “direction” guarantees that the so formed
AB clusters contain exactly the same number of A and B
atoms. As a consequence, the statistical weight of the AB
clusters is 2x, which is twice the concentration of the minor-
ity atoms A. Whether a given B site belongs to an AB cluster
or to the embedding surface is left open. Nevertheless, the
satellite peaks characterizing the DOS for ��1 have pre-
cisely the statistical weight 2x, which is equally distributed
over A and B atoms 	see Figs. 2 and 3�a��. The remaining B
atoms constitute hypersurfaces embedding the AB clusters.
Considering that the dimension of the system is proportional
to z, the embedding surfaces provide in the large-z limit a
contribution to the DOS �central peak� which is qualitatively
similar to the one obtained for �=1 �i.e., semielliptic here�.
The spectral weight of the latter is 1−2x. Gaps in the local

DOS, with two satellites and a central peak, appear only
above a critical value of �. This is seen in Fig. 1.

Regime ��1. In the limit �→0, the two subsystems A
and B decouple, and the averaged local DOS’s �A and �B can
be deduced from the DOS of a pure system by rescaling the
energy as tA

�x and tB
�1−x, respectively 	see Fig. 3�b��. As a

consequence, when tA= tB, electrons with the lowest energy
occupy predominantly majority atoms. When the density of
conduction electrons is sufficiently large, the Fermi level
moves into a region where electrons occupy both A and B
sites. For that reason, the regime ��1 is qualitatively not
very different from the regime �=1, except in the limit of a
low density of conduction electrons.

B. Diagonal randomness: Kondo alloy

We consider next the transition between a dilute and a
dense Kondo system. The model is defined by the KAM
equation �1�, with a periodic hopping element for the con-
duction electrons t� tA= tB= tAB. The limit x→0 corresponds
to a single impurity Kondo model �SIKM�, while x=1 de-
scribes a Kondo lattice model �KLM�. These models have
been extensively studied3 by using various approximations.
When we consider a paramagnetic ground state, two energy
scales are required31–33 in order to describe the low tempera-
ture physical properties: TK characterizes the onset of the
Kondo effect, and TFL characterizes the low temperature
thermodynamics.

On one side, the exact solution of the SIKM, based on the
Bethe ansatz,34,35 proves that these two scales are identical in
the dilute limit x→0. The low temperature physical proper-
ties of the SIKM are thus universal �i.e., independent from
the lattice structure, electronic filling, and Kondo coupling�
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FIG. 2. 	�a�–�c�� Average local DOS ����=x�A���+ �1
−x��B��� �top�. 	�d�–�f�� Filling of states on A sites �dotted line�, B
sites �dashed line�, and both A and B sites �solid line�, as a function
of the Fermi level energy. Numerical results for �=10. The energy
is in units of t̃= tA

�z= tB
�z. The concentration x of A atoms is equal

to 0.01 	�a� and �d��, 0.2 	�b� and �e��, and 0.4 	�c� and �f��. The
curves corresponding to x=0.6;0.8;0.99 can be deduced by invert-
ing A and B.
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FIG. 3. Schematic plot of �a� the average local density of states
of the conduction electrons �=x�A+ �1−x��B in the limit �
= tAB /�tAtB�1; �b� the local densities of states of the conduction
electrons �A �on a site A� and �B �on a site B� in the limit �
= tAB /�tAtB�1. The concentration of atoms A is assumed to be x
�1/2.
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as soon as all the energy scales are rescaled by TK.
On the other side, for the KLM these two energy scales

are different. In earlier works it had been suggested that for
small conduction electron densities TFL is strongly reduced,
i.e., to TFL→TK

2 / t because of conduction electron “exhaus-
tion” when singlet states form.36–38 However, this has turned
out not to be the case and TFL is of the same order as TK.27–38

The KAM which is studied here allows for describing the
crossover between the dilute regime �with TFL/TK=1�
and the dense regime �with TFL/TK depending on
the electronic filling�. The zero temperature static local
magnetic susceptibility of the A sites is �loc�T=0�
� 1

3 limT→0 �0
1/Td	
S�	� ·S�0��. We define an energy scale T0

�1/4�loc�T=0�, which is closely related to TFL.27

Figure 4 depicts the evolution of the ratio T0 /TK for dif-
ferent values of the electronic filling nc. It starts from
T0 /TK=1 in the dilute limit x→0, as expected for the SIKM.
With decreasing filling nc this ratio is lower in the dense
limit x=1 corresponding to the KLM. This shows clearly that
the crossover between the dense and the dilute regimes oc-
curs when the concentration x of Kondo impurities is equal
to the electronic filling nc. Note that similar results have been
obtained recently by Kaul and Vojta for a 20
20 site square
lattice �compare Fig. 4 with Fig. 2 of Ref. 12�.

The above feature can also be observed from the spectral
function �A, i.e., the local electronic DOS of a Kondo impu-
rity. This is illustrated in Fig. 5 for an electronic filling of
nc=0.6. Above the Kondo temperature, �A has the same
semielliptic shape as in the absence of a localized spin.
When T�TK a Kondo resonance develops at the Fermi level.
Neither the quantitative value of TK nor the shape of the
resonance depend on the concentration x. This suggests that
the onset of the Kondo effect at TK is not a collective coher-
ent effect, but results from incoherent scattering of conduc-
tion electrons by the magnetic impurities. When the tempera-
ture is decreased far below the Kondo temperature, collective
coherent screening takes place, which is accompanied by the
onset of the Fermi-liquid regime. For T�TK the local DOS
of A sites depends on the concentration and shows in the
dilute regime x→0 the standard Kondo resonance, while a

gap occurs in the dense regime x�1. We are aware that the
presence of a Kondo gap is an artifact of the mean-field
approximation which we have introduced. Numerical studies
of the KLM without this approximation show, however, that
a pseudogap will form.39 Similarly to what we obtained for
the ratio T0 /TK, we find that the crossover between the dilute
regime �without gap� and the dense regime �with a gap� oc-
curs for x=nc. Figure 5 depicts this behavior for an electronic
filling nc=0.6. Similar results are obtained for nc
=0.2;0.4;0.8.

It appears that the crossover between a dilute and a dense
Kondo system occurs when the concentration x of Kondo
impurities is equal to the electronic filling nc. We expect this
result to apply also to the Anderson model, which still con-
tains the charge degrees of freedom associated with the spins
Si of the A sites. This explains why the single impurity mod-
els, characterized by a unique low temperature scale T0=TK,
are still able to describe the low temperature properties of
alloys with a significant concentration of magnetic impuri-
ties, here A sites. As a consequence, in the experimental lit-
erature, the Kondo temperature of Kondo-like alloys is fre-
quently estimated from different physical quantities, with no
distinction being made between the quantities characterizing
the Fermi-liquid regime and those characterizing the onset of
the Kondo effect. Nevertheless, two different energy scales,
TFL and TK, have been measured experimentally and ana-
lyzed for several rare earth alloys. For example, some very
promising experimental results dedicated to an analysis of
the crossover between diluted and dense impurity systems
can be found in Ref. 40 �alloy Yb1−xLuxAl3�, in Ref. 41
�Ce1−xLaxIr2Ge2�, in Ref. 42 �CeNiSi2�, or in Ref. 43
�CexLa1−xPb3�. For instance, in Ref. 43, the resistivity, mag-
netic susceptibility, and specific heat of the alloy
CexLa1−xPb3 are compared to the prediction of a single-ion
Kondo model. It appears that the latter, characterized by a
single energy scale T0=TK, reproduces very well the experi-
mental measurements when x�0.8. The onset of interfer-
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ence effects between Ce ions is observed only at high con-
centrations x�0.8. Our results predict that the crossover
between the dense and diluted regimes corresponds to x=nc.
We suggest a more systematic experimental study of such a
crossover for Ce-La and Yb-Lu Kondo alloys.

C. Combined effects of randomness

In this section we consider the KAM equation �1� with
randomness of the electronic hopping matrix elements tij and
of Kondo alloying effects. We study the effect of alloying
described, respectively, by the parameters x and nc, and of
randomness, characterized by the parameter � defined by Eq.
�81�. For the sake of clarity we discuss here only the behav-
ior of the two low temperature energy scales introduced in
the previous section: the Kondo temperature TK, characteriz-
ing the onset of incoherent singlet formation, and TFL, char-
acterizing the onset of a coherent Fermi-liquid state. A good
estimate of the latter can be obtained from the static local
magnetic susceptibility at T=0 if we approximate TFL by
T0=1/4�loc�T=0�.

1. Kondo temperature

Next we study the effect of the concentration x on the
Kondo temperature by considering various values of ran-
domness � and electronic filling nc. The main variations we
observe for TK result from the effects of randomness on the
noninteracting local DOS �A, which are analyzed in Sec.
V A.

Figure 6 shows the dependence of the Kondo temperature
with respect to x. Without randomness �i.e., for �=1�, the
Kondo temperature does not depend on x 	see Fig. 6�b��.
This reflects the fact that TK characterizes incoherent scatter-
ing of the conduction electrons on the spins Si. Due to the
exponential dependence of TK on �A�EF� 	see Eq. �23��, with
possible gap opening �in the regime ��1� or bandwidth
renormalization �in the regime ��1�, TK can be strongly
reduced in certain regimes of concentrations x as soon as �
�1.

Regime ��1. A decrease of � does not really change the
value of TK, except in the dilute regime x�1, where TK is
strongly reduced 	see Fig. 6�a��. The reason is that when x
and � are small, the effective bandwidth of the local elec-
tronic DOS on A sites is strongly reduced 	see Fig. 3�b��.
Therefore the conduction electrons will fill the states at the
nonmagnetic B sites and �A�EF� is reduced.

Regime ��1. When � increases, two critical concentra-
tions xc1 and xc2 occur. They define three regimes 	see Figs.
6�c�, 6�d�, and 7�. This is a consequence of the complex
structure of the local DOS discussed in Sec. V A, with a
central and two satellite peaks 	see Fig. 3�a��.

For x�xc2, the Kondo or A sites are in the majority. The
Fermi level is in the central peak of the DOS, which pre-
cisely corresponds to electronic excitations on A sites.

When x decreases from 1 to xc2, the DOS is modified such
that the Fermi level approaches the band edge of the central
peak. As a consequence, TK decreases and can even vanish
for x=xc2 if � is large enough.

For xc1�x�xc2, the Fermi level is positioned in a satel-
lite peak, corresponding to electronic excitations on both
magnetic and nonmagnetic sites. TK is finite but reduced
compared to its value at x=1. For x�xc1, the Fermi level is
in the central peak, but now the latter corresponds to excita-
tions on the nonmagnetic B sites which here are in the ma-
jority. As a consequence, �A and TK are strongly reduced in
this regime and can even vanish if � is large enough. Note
that at low x and large �, the numerical accuracy is limited
because of the required summation over Matsubara frequen-
cies.

Relations between xc1, xc2 and the electronic filling nc can
be obtained in the large � limit from the observation that the
spectral weight of the satellite peaks is proportional to the
concentration of the minority A or B sites. Figure 3�a� de-
picts the average local DOS for ��1 and without Kondo
interaction. The Fermi level is in the central peak if and only
if the electronic occupation per spin component nc /2 satisfies
the criteria x�nc /2�1−x. We thus find

xc1 = nc/2, �83�

xc2 = 1 − nc/2. �84�

These relations corresponds to the critical values xc1=0.2
and xc2=0.8 obtained numerically for nc=0.4 	see Figs. 6�c�
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and 6�d��. They are also verified by numerical results for
other electronic fillings.

2. Kondo versus Fermi-liquid temperature

In the following we discuss the ratio between TFL and TK.
The effect of varying the electronic filling was discussed in
Sec. V B for �=1. Figure 8�b� reproduces for convenience
the plot of T0 /TK as a function of x corresponding to �=1
and nc=0.4 shown in Fig. 4. The other plots of Fig. 8 depict
the effect of varying � with the electronic filling kept fixed.
We obtained similar results with other values of nc. For the
sake of clarity, we show here only the numerical results
which we obtained for nc=0.4.

Regime ��1. The crossover separating the dense and di-
lute regime is well localized at x=nc and �=1, and smoothed
when � decreases 	compare Figs. 8�a� and 8�b��. At low
concentrations, numerical calculations are less accurate. This
is related to the strong decrease of TK when x→0 	see Fig.
6�a��. For this reason, we are not able to provide reasonable
results concerning T0 /TK for x�0.1.

Regime ��1. When � increases, two different effects
occur: the crossover between the dense and dilute regime
becomes more pronounced around x=nc 	see Figs. 8�c� and
8�d�� and some “anomalies” occur at the critical concentra-
tions xc1 and xc2 	see Eq. �84��. When x is approaching any
of these critical values, the ratio T0 /TK becomes small 	see
x=xc1=0.2 and x=xc2=0.8 on Fig. 8�d��. Similar results were
obtained for other values of nc �0.2; 0.4; 0.6; 0.8�. The gen-
eral shape of the curve T0 /TK in the regime ��1 is depicted
in Fig. 9.

When T0 /TK�1, the physical properties of the system are
characterized by two universal temperature regimes: for T
�TK, the thermodynamic and transport properties are those
of a light Fermi liquid �due to the conduction electrons�, and
the magnetic properties are characteristic of free moments
�for example, the magnetic susceptibility follows a Curie
law�. For T�T0, the physical properties correspond to a
heavy Fermi liquid.

When T0 /TK�1, an intermediate regime occurs, corre-
sponding to T0�T�TK, for which the temperature depen-
dence of the physical properties might have non-Fermi-liquid
or spin-liquid behavior.

Note that the peak at x=0.8 in Fig. 8�d� �and more gen-
erally at x=xc2 on Fig. 9� has been explained in Ref. 44 to
which we refer.

VI. SUMMARY AND CONCLUSIONS

The aim of this investigation has been to develop a de-
scription of Kondo alloys, i.e., of systems with randomly
placed Kondo ions of concentration x. The values of x were
ranging from close to x=0 �dilute Kondo impurities� to x
=1 �Kondo lattice�. Different hopping matrix elements were
assumed depending on whether the initial and final sites are
Kondo or nonmagnetic sites. By expressing the spin of a
Kondo site in terms of fermionic operators and by making a
mean-field approximation we derived a Hamiltonian which
has in addition to the conduction band a narrow f band de-
scribing the low-energy excitations of the system. The disor-
der of the system was treated by a �dynamical� coherent po-
tential approximation �CPA� and by a dynamical mean-field
theory �DMFT� approach. It was reconfirmed for the special
system considered here that both approaches yield identical
equations. For a practical application of the formalism a Be-
the tree structure was chosen for convenience. It corresponds
to working with a semielliptic density of states. Various
quantities were calculated as function of the ratio �
= tAB /�tAtB, i.e., of different degrees of off-diagonal disorder
and of Kondo ion concentration x. Among them were the
local density of states for the Kondo sites �A atoms� and for
the nonmagnetic sites �B atoms�. They depend strongly on
the degree of disorder and on concentration x. Of special
interest was the case of diagonal randomness only. In that
case tA= tB= tAB and �=1. The ratio between the two low
temperature scales T0 and TK was investigated as function of
x, i.e., ranging from the impurity to the Kondo lattice limit.
This ratio was shown to be of relevance for a number of
experiments. Finally, a detailed study was presented for the
case of a combined diagonal and off-diagonal disorder. In
particular, the behavior of the Kondo temperature as function
of x was studied in detail. The same holds true for the ratio
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T0 /TK. The latter can have a strong monotonic behavior as
function of x with peaks at different values of x, and depends
on the particular filling of the conduction band as well as on
the parameter �. Depending on the ratio T0 /TK we have ob-
tained universal temperature regimes where the system has
either properties of a liquid with light fermions and quasifree
local moments or of a liquid with heavy quasiparticles. There
is also a temperature regime possible with non-Fermi-liquid
behavior. A still open question is under which conditions
Luttinger’s theorem is inapplicable and how one can calcu-
late in that case the volume enclosed by the Fermi surface.
As is well known that volume does not include the electrons
which form localized moments when we are in the regime of
a light Fermi liquid. But they must be included when we are
in the regime of heavy quasiparticles. Another open issue is
the possibility for the system to reach a magnetic unstability
at intermediate concentration of Kondo impurities, due to the
RKKY interaction. Under which conditions this unstability
might occur, and whereas it would be associated with a long
range or to a spin glass ordering are still unanswered ques-
tions of experimental and theoretical relevance. Although the
present investigation sheds some light on Kondo alloys and
their properties there are important issues remaining for the
future. For example, as pointed out before, a more systematic
experimental study of the crossover for Ce-La and Yb-Lu
Kondo alloys is highly desirable.
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APPENDIX: COHERENT POTENTIAL APPROXIMATION
EQUATIONS

1. Starting definitions

Considering the mean-field Kondo-alloy model defined by
the effective Hamiltonian equation �4�, we define the Green’s
function, transfer integral, and local propagator matrices, as

G̃ij = 
 x̂ix̂ jGij
f f x̂ix̂ jGij

fc x̂iŷ jGij
fc

x̂ix̂jGij
cf x̂ix̂jGij

cc x̂iŷ jGij
cc

ŷix̂jGij
cf ŷix̂jGij

cc ŷiŷ jGij
cc�, W̃ = 
0 0 0

0 tA tAB

0 tAB tB
� ,

�A1�

�̃i�i�� = 
x̂i�A�i��
0

0

0 0 ŷi/�i� + ��
�

with �A�i�� = �i� + � r

r i� + �
�−1

. �A2�

The projection operator x̂i=1− ŷi is unity if i refers to site A,
and zero otherwise.

2. Equation of motion

The equations of motion derived from the Hamiltonian
equation �4� for the scalar Green’s functions Gij

f f, Gij
fc, and

Gij
cc can be cast into the following matrix form:

G̃ij�i�� = �̃i�i���ij + �̃i�i��W̃�ij�̃ j�i��

+ �
l

�̃i�i��W̃�il�̃l�i��W̃�lj�̃ j�i�� + ¯ .

�A3�

We assume that the Green’s function and local propagator
matrices can be inverted. This hypothesis can be satisfied by
introducing a nonzero parameter � such that x̂i=1−� �or xi
=�� if i is a site A �a site B�. The limit �=0 is taken at the
end of the calculations. Equation �A3� can then be expressed
as

�G̃−1�ij�i�� = �̃i
−1�i���ij − W̃�ij . �A4�

3. Local self-energy approximation

Generalizing the CPA procedure of Refs. 13 and 14, we
assume that the averaged Green’s function matrix is charac-

terized by a local 3
3 self-energy matrix �̃,

�	G̃�i���−1�ij = i�Ĩ�ij − �̃�i���ij − W̃�ij , �A5�

where Ĩ is the 3
3 identity matrix. Averaging over a random
distribution of sites A and B restores the translation symme-
try of the underlying lattice. The averaged matrix Green’s
function is periodic in space, and its Fourier transform is

G̃k � �
ij

e−ik·�Ri−Rj�	G̃ij� . �A6�

Equation �A4� can then be expressed as

G̃k
−1�i�� = i�Ĩ − �̃�i�� − W̃�k. �A7�

Next we establish a complete set of self-consistent equations
for the Green’s function and the self-energy, whose matrix-
elements are parametrized as follows:

�̃�i�� � 
 �A�i��
�1�i��
�2�i��

�1�i�� �2�i�� 
B�i��
�

� 

A
f f�i�� 
A

fc�i�� �1�i��

A

cf�i�� 
A
cc�i�� �2�i��

�1�i�� �2�i�� 
B
cc�i��

� . �A8�

4. Off-diagonal blocks of �̃: No double A-B occupancy

A first set of relations is obtained by expressing the local
averaged Green’s function in terms of their k-dependent
counterparts.
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	G̃00�i��� � 
xGA
f f�i�� xGA

fc�i�� 0

xGA
cf�i�� xGA

cc�i�� 0

0 0 �1 − x�GB
cc�i��

�
= �

k
G̃k�i�� . �A9�

Here G̃k is of the form of Eq. �A7�. Even if our approach
artificially introduces two conducting bands A and B, the
vanishing of the off-diagonal mixed A-B matrix elements in


G̃00�r prevents a double association of A and B atoms with
the same site. The two corresponding equations determine

the self-energy off-diagonal blocks �1 and �2.

5. Diagonal blocks of �̃: Scattering of the effective medium

Self-consistent relations for �A and 
B are obtained by
requiring that the scattering of electrons of the effective me-
dium by a given site vanishes on average. For a given ran-
dom configuration of the alloy, and using Eqs. �A4� and

�A5�, the Green’s function G̃, is related to its average by

�G̃−1�ij = �	G̃�−1�ij − ṽi�ij , �A10�

where

ṽi�i�� = i�Ĩ − �̃i
−1�i�� − �̃�i�� = 
i� − 
A

f f�i�� − �i� + ��/x̂i − 
A
fc�i�� − r/x̂i − �1�i��

− 
A
cf�i�� − r/x̂i i� − 
A

cc�i�� − �i� + ��/x̂i − �2�i��
− �1�i�� − �2�i�� i� − 
B

cc�i�� − �i� + ��/ŷi
� .

�A11�

The single-site scattering T matrix on site i is given by

�̃i = �Ĩ − ṽi	G̃ii��−1ṽi �A12�

=�ṽi
−1 − 	G̃ii��−1. �A13�

As mentioned above, the required matrix inversions can be
performed by introducing a nonzero parameter � such that x̂i
is equal to 1−� �site A� or � �site B�. We now consider the
limit �=0 and we express the scattering matrices �̃A and �̃B
on a site A �B�. We find

�̃A = 
�vA
−1 − xGA�−1 0

0

0 0 − 	�1 − x�GB
cc�−1� , �A14�

and

�̃B = 
− �xGA�−1 0

0

0 0 	vB
−1 − �1 − x�GB

cc�−1� , �A15�

with

vA�i�� = − �� r

r �
� − �A�i�� , �A16�

GA�i�� = �GA
f f�i�� GA

fc�i��
GA

cf�i�� GA
cc�i��

� , �A17�

vB�i�� = − � − 
B�i�� . �A18�

We obtain the CPA equations for �A and 
B by setting 	�̃i�
=x�̃A+ �1−x��̃B=0. The result is

�A�i�� = − �� r

r �
� −

�1 − x�
x

GA
−1�i�� ,


B�i�� = − � −
x

�1 − x�GB
cc�i��

. �A19�
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