
Magnetoelastic ground state and waves in ferromagnet-nonmagnetic
dielectric multilayer structures

V. A. Ignatchenko and O. N. Laletin
L.V. Kirensky Institute of Physics, SB RAS, 660036 Krasnoyarsk, Russia

�Received 18 April 2007; revised manuscript received 6 August 2007; published 19 September 2007�

The periodic magnetoelastic ground state that spontaneously arises due to the magnetoelastic and ther-
moelastic interactions between layers of a multilayer structure is studied. Properties of this state, such as the
equilibrium static elastic strains of the layers of the multilayer structure, the orientation of the static part of the
magnetization of these layers depending on the value and orientation of the magnetic field and the temperature,
are calculated. It is shown that the magnetoelastic ground state gives rise to three new terms in the energy,
which describe different types of the effective magnetic anisotropy. Effects of the initial periodic inhomoge-
neities of the magnetic and elastic parameters as well as effects of the static periodic elastic stresses resulting
from the spontaneous ground state on the spectrum of magnetoelastic waves and on the ferromagnetic reso-
nance frequency of the multilayer structure are investigated.
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I. INTRODUCTION

In recent years, multilayer structures �MSs� with the peri-
odic variation of some material parameter along the axis of
this structure perpendicular to the plane of the layers are
intensively investigated. Interaction of waves propagating
along the MS axis with the periodic structure gives rise to the
band structure of the wave spectrum analogous to that in
crystals. Therefore, these MSs are often referred to as one-
dimensional crystals—photonic, phononic, or magnonic
crystals—depending on the physical nature of the periodi-
cally inhomogeneous parameter and, respectively, physical
nature of waves interacting with that parameter.

In the last years, the magnonic crystals, in which the cou-
pling between the spin and elastic waves is taken into
account—the magnon-phononic crystals—have attracted the
attention. The idea that spin and elastic waves in a ferromag-
net should be considered in the framework of the united
magnetoelastic �ME� continuum was suggested in the basic
papers,1–3 in which the ME wave theory was developed and
ME resonance phenomena that arose in the region of the
crossing of unperturbed spin and elastic wave dispersion
curves were studied. Stimulated by these papers, the inten-
sive theoretical and experimental investigations of the effects
of interactions of spin and elastic waves in ferro-, ferri-, and
antiferromagnets began, which are presented in numerous
original papers as well as in reviews and books.4–9 The main
obstacle for the wide use of the ME resonance in applied
devices is the smallness of the ME coupling parameter of
microwave magnetic materials. One possible way to over-
come this obstacle was suggested for the surface ME waves.
The essence of this way is to consider such surface waves
near the orientational phase transition point: the orientation
of the magnetization vector becomes unstable and the trans-
verse magnetic susceptibility increases rapidly in this region
that results in increasing the effective ME coupling. By now,
this effect has been extensively investigated both theoreti-
cally and experimentally �see the review in Ref. 10 and ref-
erences therein�. Originally, these waves were considered at
the boundary of the surfaces of bilayer or three-layer mate-

rials. Due to development of the MS technology in recent
years, the theory of surface ME waves was developed for
multilayer materials11–13 �see also the review in Ref. 14�. In
the present paper, we are not concern with this attractive
effect because it arises for the surface ME waves propagating
perpendicular to the MS axis along the surface contact of
magnetic and nonmagnetic layers, that is, in the situation
when the MS does not exhibit properties of the one-
dimensional magnon-phononic crystal.

There is another way to gain the effective ME coupling
for the body waves propagating along the MS axis different
from that for the surface waves. It is based on the resonance
interaction of these waves with the periodic structure of the
MS. The development of the theory of the resonance inter-
action of spin and elastic waves with each other as well as
with the periodic structure of the material is required for the
purposeful preparation and investigation of these MSs. The
theory of propagation of the body ME waves perpendicular
to MS layers only begins to develop.15–17 The theory of the
ME wave spectrum for the case of alternating ferromagnetic
and nonmagnetic layers was developed in Ref. 15. The ME
wave spectrum for the general case of alternating two ferro-
magnetic layers with different magnetic and elastic proper-
ties was considered in Refs. 16 and 17. The propagation of
ME waves against a background of the only initially created
periodic inhomogeneous structure of the magnetic and elastic
parameters was considered in all these papers. Here, we
show that the spontaneous periodically inhomogeneous ME
ground state arises, which results from the ME and ther-
moelastic interactions between the layers in the MS. We de-
termine the properties of this ground state and study effects
of both the initial periodic inhomogeneities of the magnetic
and elastic parameters of the MS and the static periodic elas-
tic stresses, which are due to the spontaneous ME ground
state, on the ME wave spectrum.

II. MODEL AND EQUATIONS OF EQUILIBRIUM
AND MOTION

Let us consider the infinite MS consisting of alternating
ME ferromagnetic and nonmagnetic elastic layers with the
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thicknesses l1 and l2, respectively �l= l1+ l2 is the MS pe-
riod�. We assume that the z axis is perpendicular to the
planes of the layers. We write the energy densities of the
ferromagnetic �H1� and nonmagnetic �H2� layers in the form

H1 = ���M/�x�2/2 − MH − MHm/2 + �1Uii
2/2 + �1Uij

2

+ �MiMjUij − K1�1�TUii,

H2 = �2Vii
2/2 + �2Vij

2 − K2�2�TVii, �1�

where M is the magnetization vector, � is the exchange con-
stant, Hm is the demagnetizing field, H is the external con-
stant magnetic field, Uij = ��Ui /�xj +�Uj /�xi� /2 and Vij

= ��Vi /�xj +�Vj /�xi� /2 are the strain tensors, U and V are the
elastic displacement vectors of the ferromagnetic and non-
magnetic layers, respectively, �n and �n are Lamé’s con-
stants, Kn=�n+2�n /3 are the coefficients of the bulk con-
traction, �n are the coefficients of the linear thermal
expansion of the ferromagnetic �n=1� and nonmagnetic �n
=2� layers, and � is the constant of the ME coupling. Here
and in the following, the summation over repeated subscripts
is assumed. We assume that the MS is studied at the tem-
perature T=T0+�T and in the magnetic field H different
from the temperature T0 and the field H0 at the MS prepara-
tion. Namely, this situation usually corresponds to the con-
ditions of experimental investigations or applications of the
MS.

It is evident that MS properties �the ME ground state and
spectrum� depend on the method of the MS preparation. We
assume that this method corresponds to the situation of the
absence of elastic stresses resulting from the interaction be-
tween the MS layers at the temperature T=T0 and the homo-
geneous orientation of the magnetization vectors M in the
plane of the magnetic layers. The principal features of the
MS preparation are shown in Fig. 1�a� in more detail, where
the layers are conventionally shown before their joining into
the MS. Dotted lines represent the form of the ferromagnetic
layers without the magnetization �or without the ME cou-
pling�. We assume that each ferromagnetic layer has passed
through the state with the spontaneous magnetization and

spontaneous magnetostriction strains before the joining of
the layers. These spontaneous magnetostriction strains corre-
spond to the orientation M=M00 of the magnetization vector
�black arrows� in the layer plane along some direction the
same for all ferromagnetic layers. This situation is shown in
Fig. 1�a� by dashed lines. Such spontaneously strained ferro-
magnetic layers are joined to nonmagnetic layers, shown in
Fig. 1�a� by dotted-dashed lines, creating a continuous MS
without elastic stresses between the layers. To take into ac-
count spontaneous strains of the ferromagnetic layers, the
displacements U in the energy density H1 are reckoned from
the state corresponding to the absence of the spontaneous
strains �dotted lines� and the displacements V in the energy
density H2 are reckoned from the elastic state corresponding
to the moment of joining of the layers �dotted-dashed line�.
The investigation or application of the MS is carried out in
the external magnetic field H at the temperature T different
from the preparation field and temperature T0 �Fig. 1�b��.
Solid lines here correspond to the equilibrium strains of the
MS layers in the field H at the temperature T, whereas ar-
rows show the equilibrium orientation M0 of the magnetiza-
tion vector of the ferromagnetic layers in these field and
temperature.

Let us consider the equations of motion in each type of
the layer. They are the Landau-Lifshitz equation for the mag-
netization vector M and the equation of motion of the elas-
ticity theory for the displacement vector U in the ferromag-
netic layer,

Ṁ = − g�M � H�e��, 	1Üi = �
ij
�U�/�xj , �2�

where g is the gyromagnetic ratio, and the equation of mo-
tion of the elasticity theory for the displacement vector V in
the nonmagnetic layer,

	2V̈i = �
ij
�V�/�xj , �3�

where 	1 and 	2 are the densities of the ferromagnetic and
nonmagnetic layers, respectively. Expressions for the effec-
tive magnetic field H�e�, stress tensor 
ij

�U� of the ferromag-
netic layer, and stress tensor 
ij

�V� of the nonmagnetic layer
have the form

H�e� = −
�H1

�M
+

�

�x

�H1

���M/�x�

= ��M + H + Hm

− 2��MiUixi + MiUiyj + MiUizl� ,


ij
�U� = �H1/�Uij = �1Ukk�ij + 2�1Uij + �MiMj ,


ij
�V� = �H2/�Vij = �2Vkk�ij + 2�2Vij . �4�

Here, i, j, and l are the unit vectors of the x, y, and z axes; �ij
is Kronecker’s delta symbol. We represent M, U, and V in
the form

M = M0 + m�t�, U = u�0� + u�t�, V = v�0� + v�t� , �5�

where M0, u�0�, and v�0� are the static equilibrium orientation
of the magnetization vector and the static equilibrium elastic

FIG. 1. Scheme of the �a� preparation and �b� investigation of
the MS.

V. A. IGNATCHENKO AND O. N. LALETIN PHYSICAL REVIEW B 76, 104419 �2007�

104419-2



displacements of the ferromagnetic and nonmagnetic layers,
respectively, in the applied external magnetic field H; m�t�,
u�t�, and v�t� are the dynamic components of the same val-
ues. By using the set of equations �5�, we represent H�e�,

ij

�U�, and 
ij
�V� as the sum of the static and dynamic parts:

H�e� = H0
�e��M0,u�0�� + h�e��M0,u�0�,m,u� ,


ij
�U� = 
ij

�0u��M0,u�0�� + 
ij
�u��M0,u�0�,m,u� ,


ij
�V� = 
ij

�0v��v�0�� + 
ij
�v��v�0�,v� . �6�

Substituting Eqs. �5� and �6� into Eqs. �2� and �3� and sepa-
rating the static and dynamic parts, we obtain the set of static
equations for the calculation of the MS ground state,

�M0 � H0
�e�� = 0,

�
ij
�0u�/�xj = 0,

�
ij
�0v�/�xj = 0, �7�

and the set of equations of motion,

ṁ = − g��m � H0
�e�� + �M0 � h�e�� + �m � h�e��� ,

	1üi = �
ij
�u�/�xj ,

	2v̈i = �
ij
�v�/�xj . �8�

Both of the obtained sets of equations should be supple-
mented with appropriate boundary conditions for the magne-
tization and elastic displacements of the adjacent layers. We
take the magnetic boundary conditions in the form

��M/�n�z0
= 0, �9�

that corresponds to the absence of any pinning of the mag-
netization vector M at the boundary z0 between the ferro-
magnetic and nonmagnetic layers, and n is the normal to the
surface of the ferromagnetic layer. The elastic boundary con-
ditions have the form

��U − u�00���z0
= �V�z0

,

�nj
ij
�U��z0

= �nj
ij
�V��z0

. �10�

The former condition corresponds to the continuity of elastic
displacements at the boundary of the adjacent layers,
whereas the latter condition corresponds to the equality to
zero of the sum of the forces at the same boundary. We take
into account in the first equation of the set of equations �10�
that the nonmagnetic layers are joined to the ferromagnetic
layers, which have the spontaneous magnetostriction dis-
placements u�00� corresponding to the orientation M00 of the
magnetization vector �the general expression for the sponta-
neous magnetostriction strains uij

�00� will be given below�.
Substituting Eqs. �5� into Eqs. �9� and �10� and taking into
account that n is parallel to the z axis and M0 is homoge-
neous in the volume of the ferromagnetic layer, we obtain
boundary conditions for the static components in the form

��u�0� − u�00���z0
= �v�0��z0

,

�
iz
�0u��z0

= �
iz
�0v��z0

, �11�

and boundary conditions for the dynamic components in the
form

��m/�z�z0
= 0,

�u�z0
= �v�z0

,

�
iz
�u��z0

= �
iz
�v��z0

. �12�

First, we will derive the MS ground state, that is, we will
solve the equilibrium equations, Eqs. �7�, taking into account
the boundary conditions, Eqs. �11�. Then, we will derive the
spectrum of plane ME waves propagating along the z axis
against a background of the obtained ground state using the
equations of motion, Eqs. �8�, and the boundary conditions,
Eqs. �12�.

III. GROUND STATE

Let us consider the problem of the ME ground state of the
MS. Explicit expressions of variables in Eqs. �7� have the
form

H0
�e� = H + H0m − 2��M0iuix

�0�i + M0iuiy
�0�j + M0iuiz

�0�l� ,


ij
�0u� = �1ukk

�0��ij + 2�1uij
�0� + �M0iM0j ,


ij
�0v� = �2vkk

�0��ij + 2�2vij
�0�. �13�

We start with solving the elastic equilibrium equations. The
substitution of Eqs. �13� for 
ij

�0u� and 
ij
�0v� into Eqs. �7�

results in the set of three equations

�1�ukk
�0�/�xi + 2�1�uij

�0�/�xj = 0, i = x,y,z , �14�

for the ferromagnetic layer and the analogous set with re-
placing �1 and �1 by �2 and �2 for the nonmagnetic layer. It
is enough to consider only one of the obtained sets. The
strains uij

�0� do not depend on x and y because of the transla-
tional invariance in the xOy plane �but the displacements u�0�

do depend on x and y�. Therefore, we obtain the set of equa-
tions

�uiz
�0�/�z = 0, i = x,y ,

�1�ujj
�0�/�z + 2�1�uzz

�0�/�z = 0. �15�

As uij
�0�= ��ui

�0� /�xj +�uj
�0� /�xi�, these equations are the set of

three equations in three components of the displacement vec-
tor u�0�. Instead of solving the set of equations in three com-
ponents of the vector u�0�, we consider it as the set of equa-
tions in six components of the strain tensor uij

�0�. For that, this
set should be supplemented with three more equations,
which are the compatibility relationships18
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�2uik
�0�

�xl�xm
+

�2ulm
�0�

�xi�xk
=

�2uil
�0�

�xk�xm
+

�2ukm
�0�

�xi�xl
. �16�

These compatibility relationships result from the fact that the
six components uij

�0� are not independent because they can be
expressed in terms of three components of u�0� �it is easy to
show that the relationships described by Eqs. �16� are iden-
tities if they are expressed in terms of u�0��. In our case, the
only three relationships corresponding to second derivatives
with respect to z remain from the six relationships described
by Eqs. �16�. Finally, we obtain the set of six equations for
the six components of the strain tensor uij

�0�

�2uij
�0�/�z2 = 0, i, j = x,y ,

�1�ujj
�0�/�z + 2�1�uzz

�0�/�z = 0,

�uiz
�0�/�z = 0, i = x,y . �17�

The components uxx
�0�, uyy

�0�, and uxy
�0� of the strain tensor are the

relative elongations along the x and y axes and the shearing
strains between the xOz and yOz planes, respectively. In
view of symmetry of the problem, these components should
be the symmetric functions in z relative to the medium plane
of the layer. Because of this, it follows from the three first
equations of the set of equations �17� that these components
do not depend on z. Subject to it, the other three equations of
the set of equations �17� give us that the strain components
uzz

�0�, uyz
�0�, and uzx

�0� are also homogeneous. The analogous con-
sideration results in homogeneity of all components of the
strain tensor vij

�0� for the nonmagnetic layer.
The boundary conditions for the components of the strains

follow from the first boundary condition of the set of equa-
tions �11� for the displacement vectors. They have the form

��uij
�0� − uij

�00���z0
= �vij

�0��z0
, i, j = x,y . �18�

At i= j=x and i= j=y, this condition states the continuity of
the relative elongations along the x and y axes, respectively,
whereas at i=x and j=y, it states the continuity of the shear-
ing strains between the xOz and yOz planes at the boundary
of the adjacent layers. In view of the homogeneity of the
strains, the boundary conditions in Eqs. �18� as well as the
boundary conditions for the components of the stresses, the
latter conditions of the set of equations �11�, transform to the
relationships between uij

�0� and vij
�0� and between 
iz

�0u� and

iz

�0v� in the bulk of the corresponding layers:

uij
�0� − uij

�00� = vij
�0�, i, j = x,y ,


iz
�0u� = 
iz

�0v�, i = x,y,z . �19�

Here, the spontaneous magnetostriction strains uij
�00� corre-

sponding to the orientation of the magnetization vector in the
process of the MS preparation M00 have the form

uij
�00� = − ��3K1M00iM00j − �1M00

2 �ij�/6�1K1. �20�

Note that there are no constraints on the orientation of the
vector M00 here yet. Using all six equations of the set of
equations �19�, we express vij

�0� in terms of uij
�0�:

vij
�0� = uij

�0� − uij
�00�, i, j = x,y ,

vzz
�0� = ��M0z

2 + ��1 + 2�1�uzz
�0� − ��2 − �1��uxx

�0� + uyy
�0��

+ ��2K2 − �1K1��T + �2�uxx
�00� + uyy

�00���/��2 + 2�2� ,

viz
�0� = �1uiz

�0�/�2 + �M0iM0z/2�2, i = x,y . �21�

We derive the components uij
�0� by the minimization of the

ground state energy of the MS with respect to uij
�0�. It is

enough to consider the energy accounting for the sum of the
ferromagnetic layer volume V1 and nonmagnetic layer vol-
ume V2:

U�0� = �
V1

H1�M0,uij
�0��dV + �

V2

H2�vij
�0��dV . �22�

Because the variables M0, uij
�0�, and vij

�0� are homogeneous
and the layers are plane parallel to each other, the problem
reduces to the minimization of the expression

H�0� = �H1�M0,uij
�0��l1 + H2�vij

�0��l2�/l �23�

with respect to uij
�0� using the relationships between vij

�0� and
uij

�0� described by Eqs. �21�. Solving the set of the six equa-
tions �H�0� /�uij

�0�=0, we obtain

uii
�0� = −

�l1

2�̄l
�M0i

2 −
�1M0

2

3K1
� +

�L�2l2l1

S0�̄l
�M0z

2

−
�L��1 + 2�1��2l2l1

3S0K1�̄l
�M0

2 +
�̄�T

3
+

�2l2

�̄l
uii

�00�

−
2�L�2l2�1l1

S0�̄l
�uxx

�00� + uyy
�00��, i = x,y ,

uzz
�0� = −

�l1

2�̄l
�M0z

2 −
�1M0

2

3K1
� −

�S0 + 2�L�1l1��2l2

S0��1 + 2�1��̄l
�M0z

2

+
2�L�2l2�1l1

3S0K1�̄l
�M0

2 +
�̄�T

3
−

3K1K2���T�2l2

S0

−
3K2�1�2l2

S0
�uxx

�00� + uyy
�00�� ,

uxy
�0� = −

�M0xM0yl1

2�̄l
+

�2l2

�̄l
uxy

�00�,

uiz
�0� = −

�M0iM0z

2�1
, i = x,y , �24�

where

�L = �1�2 − �2�1, �� = �2 − �1, �̄ = ��1l1 + �2l2�/l ,

�̄ = 3��1K1��2 + 2�2��1l1 + �2K2��1 + 2�1��2l2�/S0,

S0 = 3K1��2 + 2�2��1l1 + 3K2��1 + 2�1��2l2. �25�

Substituting the equilibrium strains uij
�0� determined by Eqs.

�24� into Eqs. �21�, we can get explicit expressions for the
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equilibrium strains vij
�0� of the nonmagnetic layer in terms of

the MS parameters.
Let us consider several limiting cases. If the investigation

of the MS is carried out at the temperature and orientation of
the magnetization the same as those during the preparation of
the MS, the equilibrium strains of the layers have also to be
the same. Indeed, at M0=M00 and �T=0, we obtain from
Eqs. �24� and �21� uij

�0�=uij
�00� and vij

�0�=0 �in Fig. 1�a�, these
strains correspond to dashed lines for the ferromagnetic layer
and dotted-dashed lines for the nonmagnetic layers�. At the
limiting case l2=0, the MS becomes a homogeneous ME
ferromagnet, for which the equilibrium strains have the form

uij
�0� = − ��3K1M0iM0j − �1M0

2�ij�/6�1K1 + �1�T�ij/3.

�26�

In this expression, the former term corresponds to the spon-
taneous magnetostriction strains of the ME ferromagnet,

whereas the latter term corresponds to its thermal expansion.
We also consider the specific limiting case corresponding to
the absence of the magnetization �M=0� or ME coupling
��=0� in the MS. In this case, the strains result only from the
thermal expansion and Eqs. �24� reduce to the corresponding
equations obtained in Ref. 19 for a layered capacitor consist-
ing of alternating conductive and dielectric layers with dif-
ferent elastic parameters.

Formulas of Eqs. �24� and �21� are the solution of the
equations of the elasticity theory from the common set of
equations �7� of the ME ground state. These formulas repre-
sent the dependence of the equilibrium strains of the ferro-
magnetic and nonmagnetic layers on the magnetization vec-
tor M0 and temperature T. It remains to solve the first
equation of the set of equations �7� and to derive the depen-
dence of the equilibrium orientation of M0 on the magnetic
field H. Substituting uij

�0� and vij
�0� into H0

�e�, we obtain

H0
�e� = H + H0m + 	2S2l1

S0�̄l
�2M0

2 +
�S0 − 2�L�1l1��2l2

S0�1�̄l
�2M0z

2 −
2��̄�T

3

M0 + ��S0 − 2�L�1l1��2M0

2M0z − 2S1�2M0z
3

+ 6K1K2�1�̄l���T�M0z�
�2l2l

S0�1�̄l
− ��S0uxx

�00� − 2�L�1l1�uxx
�00� + uyy

�00���M0xi + �S0uyy
�00� − 2�L�1l1�uxx

�00� + uyy
�00���M0yj

+ S0uxy
�00��M0yi + M0xj� − 3K2�1�̄l�uxx

�00� + uyy
�00��M0zl�

2��2l2

S0�̄l
, �27�

where

S1 = 3K1��2 + �2��1l1 + 3K2��1 + �1��2l2,

S2 = ��1 + �1���2 + 2�2��1l1 + ��2 + �2���1 + 2�1��2l2.

�28�

By substituting this expression for the effective field H0
�e�

into the first equation of the set of equations �7�, we obtain
the explicit form of the equation for the equilibrium orienta-
tion of the magnetization M0. It is difficult to solve the ob-
tained equation in the general case in view of the cumber-
some expression for H0

�e�. Let us consider the MS in which
the magnetization vector M00 in the process of the MS prepa-
ration lies in the plane of the layers parallel to the x axis. In
this case, the spontaneous magnetostriction strains uij

�00� have
the form

uxx
�00� = − ��1 + �1��M0

2/3K1�1,

uyy
�00� = uzz

�00� = − �1�M0
2/6K1�1,

uij
�00� = 0, i � j , �29�

and the effective magnetic field H0
�e� has the form

H0
�e� = H + H0m + 	2��1 + �1�

3K1�1
�2M0

2

+
�S0 − 2�L�1l1��2l2

S0�1�̄l
�2M0z

2 −
2��̄�T

3

M0

−
�2l2

�1�̄l
�2M0

2M0yj −
2S1�2l2

S0�1�̄l
�2M0z

3 l

+
6K1K2���T�2l2

S0
�M0zl . �30�

The term within the square brackets is proportional to M0

and vanishes after substituting H0
�e� in the first equation of the

set of equations �7�. However, we should need it below when
we consider the equations of motion. Three terms following
this term describe three types of the effective magnetic an-
isotropy resulting from the ME �first and second terms� and
thermoelastic �third term� interaction between the MS layers.
The first term describes the xOz easy-plane anisotropy, the
second one describes the xOy easy-plane anisotropy, and the
third term describes the anisotropy along the z axis.

In the process of remagnetization of the MS in the plane
of the layers xOy along the easy direction �H Ox�, the equi-
librium equation has the form
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M0y�H +
�2l2

�1�̄l
�2M0

2M0x� = 0. �31�

The dependence of the projection M0x on the value of the
external magnetic field H is shown in Fig. 2 by solid lines,
and the coercivity Hc is given by

Hc =
�2l2

�1�̄l
�2M0

3. �32�

In the process of remagnetization of the MS in the plane of
the layers xOy along the hard direction �H Oy�, the equilib-
rium equation has the form

M0x�H −
�2l2

�1�̄l
�2M0

2M0y� = 0. �33�

The dependence of the projection M0y on the value of the
external magnetic field H corresponding to this equation is
shown in Fig. 2 by the dashed line. The field H=Hm

�y� corre-
sponding to the magnetic saturation coincides in magnitude
with the field Hc for the previous case. In the process of
remagnetization of the MS perpendicular to the plane of the
layers �H Oz�, the rotation of the vector M0 in the xOz plane
takes place, which is described by the equation

M0x�H − 4�M0z −
2S1�2l2

S0�1�̄l
�2M0z

3 +
6K1K2���T�2l2

S0
�M0z�

= 0. �34�

In contrast to the two previous cases, this is the nonlinear
equation in the projection of the magnetization M0z. How-
ever, due to the smallness of the nonlinear term as compared
with 4�M0z, the dependence of M0z on H differs little in
shape from the inclined line similar to the dashed line in Fig.
2. The magnetic saturation field Hm

�z� in this case differs
greatly from the field Hm

�y� and it is determined by the formula

Hm
�z� = 4�M0 +

2S1�2l2

S0�1�̄l
�2M0

3 −
6K1K2���T�2l2

S0
�M0.

�35�

It is seen from this formula that the thermoelastic magnetic
anisotropy may result in decreasing or increasing magnetic

saturation field Hm
�z� depending on the sign of the product of

����T.
Let us estimate the order of magnitude of the effects re-

sulting from the ME coupling and thermal expansion of the
layers. If we assume that the elastic moduli of both types of
the layers are much the same, then, as one can see from Eqs.
�30� or �24�, the magnitudes �M0

2 /� and ���T should be
compared with each other. Let us choose nickel and palla-
dium as materials of the layers �their real elastic moduli dif-
fer by a factor of 2, but we need the order of magnitude�. The
nickel parameters are �M0

2=7.65�107 erg/cm3 at M0
=500 Gs and �=7.5�1011 dyn/cm2. The difference be-
tween their coefficients of thermal expansion is ��
10−6 K−1. At the temperature change �T=50 K, we obtain

�M0
2/�  ���T  10−5, �36�

that is, the effects resulting from the ME and thermoelastic
interaction between the MS layers can be of the same order
of magnitude.

IV. SPECTRUM OF MAGNETOELASTIC WAVES

We investigate the spectrum of plane ME waves propa-
gating against a background of periodic inhomogeneities of
the MS resulting from its initial structure as well as from its
periodically inhomogeneous ME ground state considered in
the previous section of this paper. We assume that the mag-
netic field H is applied along the MS axis z and sufficiently
large so that the equilibrium magnetization M0 is directed
along the MS axis too �H�Hm

�z�, where Hm
�z� is given by Eq.

�35��. We restrict our consideration to the waves propagating
along the z axis. Using usual linearization of the Landau-
Lifshitz equation, we obtain from Eqs. �8� the set of coupled
ME equations of motion for the ferromagnetic layer,

ṁx = − �0ymy + g�M0�
2my/�z2 − g�M0

2�uy/�z ,

ṁy = �0xmx − g�M0�
2mx/�z2 + g�M0

2�ux/�z ,

	1üi = �1�
2ui/�z2 + �M0�mi/�z, i = x,y , �37�

where

�0i = g�H − 4�M0� + 2g�M0�uii
�0� − uzz

�0��, i = x,y ,

�38�

and the equations of motion for the nonmagnetic layer,

	2v̈i = �2�
2vi/�z2, i = x,y . �39�

As one can see from Eqs. �38�, the partial frequencies �0i,
where i=x ,y, depend on the equilibrium ME strains uij

�0� of
the ferromagnetic layer. The expressions for uij

�0� have the
form of Eqs. �24� in the general case. The equilibrium strains
depend not only on the equilibrium orientation of the vector
M0 in the external field but also on the orientation of the
magnetization vector M00 during the MS preparation. We
choose M00Ox as in Sec. III. In this case, the partial fre-
quencies �0x and �0y have the form

FIG. 2. Magnetization curves of the MS at the orientation of the
magnetic field H in the plane of the layers along the x �solid lines�
and y �dashed lines� axes.
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�0x = g	H − 4�M0 +
�2M0

3

�1
−

2S1�2l2

S0�1�̄l
�2M0

3

+
6K1K2���T�2l2

S0
�M0
 ,

�0y = g	H − 4�M0 +
�2M0

3

�1
−

�2S1 − S0��2l2

S0�1�̄l
�2M0

3

+
6K1K2���T�2l2

S0
�M0
 , �40�

where S0 and S1 are given by Eqs. �25� and �28�, respec-
tively. The first and second terms in each expressions of Eqs.
�40� take into account the influence of the external and mag-
netodipole fields, respectively. The third term is the ME con-
tribution, which is characteristic to the continuum ferromag-
net too.20,21 The fourth and fifth terms describe the
contribution of the inhomogeneous ME ground state to the
dynamic features of the system.

For the calculation of the spectrum of ME waves, we use
the method based on Floquet’s theorem �see, for example,
Refs. 22 and 23�. By assuming that m�z , t� ,u�z , t�
exp�i�kz−�t��, we obtain the dispersive equation of ME
waves corresponding to the set of equations �37� in the fer-
romagnetic layer in the form

���0x + Dk2���2 − v1
2k2� + Bv1

2k2����0y + Dk2���2 − v1
2k2�

+ Bv1
2k2� − �2��2 − v1

2k2�2 = 0, �41�

where D=g�M0 is the exchange stiffness, B=g�2M0
3 /�1 is

the ME parameter, and v1
2=�1 /	1 is the velocity of elastic

waves in the ferromagnetic layer. The equation is of fourth
degree in k2 and we denote its four solutions by kn

2, n
=1, . . . ,4. Thus, the eigenfunctions of the ferromagnetic
layer can be written as

mi�z� = �
n=1

4

�ain+eiknz + ain−e−iknz�, i = x,y ,

ui�z� = �
n=1

4

�Ain+eiknz + Ain−e−iknz�, i = x,y , �42�

where ain± and Ain±, n=1, . . . ,4, are the unknown amplitudes
of the spin and elastic components of the ME wave in the
ferromagnetic layer, respectively. The substitution of Eqs.
�42� into Eqs. �37� gives the following relationships between
the elastic and magnetic amplitudes and between different

projections of the magnetic amplitudes of the ME wave in
the ferromagnetic layer:

Ain± =
�ikn�M0ain±

	1��2 − v1
2kn

2�
, i = x,y, n = 1, . . . ,4,

ayn± =
− i���2 − v1

2kn
2�axn±

��0y + Dkn
2���2 − v1

2kn
2� + Bv1

2kn
2 , n = 1, . . . ,4.

�43�

By assuming that v�z , t�exp�i�kz−�t��, we obtain the dis-
persive equation of the elastic wave corresponding to the set
of equations �39� in the form

�2 − v2
2k2 = 0, v2

2 = �2/	2. �44�

Denoting the solutions of this equation by k5±= ±� /v2, we
write the eigenfunctions of the nonmagnetic layer in the form

vi�z� = Ai5+eik5z + Ai5−e−ik5z, i = x,y , �45�

where Ai5± are the unknown amplitudes of the elastic wave
in the nonmagnetic layer.

The boundary conditions for the magnetic and elastic
components on the surfaces of the layers have the form of
Eqs. �12�. Setting down these conditions for the x and y
components of m, u, and v, we obtain

dmi/�dz�z0
= 0,

�ui�z0
= �vi�z0

,

���1dui/dz + �M0mi��z0
= �2dvi/�dz�z0

, i = x,y , �46�

where z0 is the coordinate of the boundary between the fer-
romagnetic and nonmagnetic layers. By substituting Eqs.
�42� and �45� into Eqs. �46� at z0=0 and l1 and taking into
account the periodicity condition

m�z + l� = exp�iKl�m�z�, u�z + l� = exp�iKl�u�z� ,

�47�

where K is the wave number of waves propagating in the
MS, we obtain a set of 12 homogeneous linear equations �for
example, in terms of Axn±, n=1, . . . ,4, and Ax5±, Ay5±�. The
condition of consistency of this linear set is the equality to
zero of its determinant. By computing this determinant with
the MAPLE program, we obtain the equation for the disper-
sion law K��� in the form

P2 cos2 Kl + P1 cos Kl + P0 = 0, �48�

where

P2 = �
i,j=1

i�j

4

Pij
�2�SiSj

= P12
�2�S1S2 + P13

�2�S1S3 + P14
�2�S1S4 + P23

�2�S2S3 + P24
�2�S2S4 + P34

�2�S3S4,
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P1 = �
i,j,k=1

i�j,k

j�k

4

�Pijk
�11�C5CiSjSk + Pijk

�12�S5SiCjCk� + �
i,j,k=1

i�j�k

4

Pijk
�13�S5SiSjSk + �

i=1

4

Pi
�14�S5Si,

P0 = � �
i,j,k,l=1

i,j,k�l

i�j�k

4

�Pijkl
�01�CiCjCkSl + Pijkl

�02�SiSjSkCl� + �
i,j=1

i�j

4

Pij
�03�CiSj�C5S5 + � �

i,j,k,l=1

i,j�k,l

i�j,k�l

4

Pijkl
�04�CiCjSkSl + �

i,j=1

i�j

4

�Pij
�05�CiCj + Pij

�06�SiSj��S5
2

+ �
i,j,k,l=1

i,j�k,l

i�j,k�l

4

Pijkl
�07�CiCjSkSl + �P1234

�08� C1C2C3C4 + P1234
�09� S1S2S3S4 + 1�S5

2. �49�

Here, Cn=cos knl1 ,Sn=sin knl1 ,n=1, . . . ,4, C5=cos k5l2, and

S5=sin k5l2. The coefficients Pij
�2�, Pi�jk�

�1n� , and Pij�kl�
�0n� are poly-

nomials that depend on all parameters of the MS and the
frequency �, but do not contain the trigonometric functions
and the wave number K. In general, Eq. �48� contains several
thousand terms and one can dissect it with numerical meth-
ods only. In the case of the absence of the ME coupling ��
=0�, Eq. �48� breaks into two independent equations corre-
sponding to elastic waves in the elastic MS,

cos Kl − cos kul1 cos kvl2 +
1

2
��1ku

�2kv
+

�2kv

�1ku
�sin kul1 sin kvl2

= 0, �50�

where ku=� /v1 and kv=� /v2, and to the localized spin-wave
modes in the ferromagnetic layers,

�n = �0 + g�M0kn
2, �51�

where kn=�n / l1, n=0,1 ,2 , . . ., and �0=g�H−4�M0� is the
ferromagnetic resonance �FMR� frequency.

The result of the numerical calculation of the general dis-
persion law ��K� following from Eq. �48� is shown in Fig. 3
in the extended zone scheme. We assume that the MS con-
sists of the alternating nickel and palladium layers and use
the following values of the parameters:24,25 H0=10 kOe, �
=5�10−12 cm2, M0=500 Gs, E1=9K1�1 / �3K1+�1�=2
�1012 dyn/cm2, �1=7.5�1011 dyn/cm2, 	1=8.9 g/cm3,
E2=9K2�2 / �3K2+�2�=1.2�1012 dyn/cm2, �2=5
�1011 dyn/cm2, 	2=12 g/cm3, �1=1.3�10−5 K−1, �2=1.2
�10−5 K−1, l1=150 Å, l2=100 Å, and �T=−50 K. To make
the graph more descriptive, we assumed that the dimension-
less parameter of the ME coupling �=�2M0

2 /�1 is equal to
0.5, the value that is one order greater than the real �for Ni,
for example, ��0.027�.

In Fig. 3, the dispersion law is shown only for the reso-
nance polarizations of the ME waves. Usual gaps �forbidden
zones� in the spectrum at the Brillouin zone boundaries of
the MS appear at K=�m / l, where m=1,2 , . . . . They are due

to the interaction of the elastic component of ME waves with
the periodic MS. One of these gaps corresponding to the
boundary of the first Brillouin zone Kl=� is shown in Fig. 3.
The virtual dispersion law of spin waves in the ferromagnetic
layers in the absence of the ME coupling is shown by the
dashed curve; the localized frequencies �n and their wave
numbers kn corresponding to Eq. �51� are situated on this
virtual curve. ME resonances exist in the vicinity of cross-
ings of the elastic wave dispersion law with the localized
frequencies of spin waves �n �n=0,1 ,2 , . . . �. There are two
such ME resonances in Fig. 3 that correspond to the fre-
quency of magnetostatic oscillations �n=0� and the fre-
quency of the first spin-wave mode �n=1�. The ME reso-
nances in the MS were investigated theoretically for the first
time in Ref. 15. Note that the wave numbers corresponding
to the Brillouin zone boundaries are multiplied by 1/ l and
the corresponding frequencies increase linearly with increas-
ing the number m. The wave numbers of spin-wave oscilla-
tions are multiplied by 1/ l1 and the corresponding frequen-
cies increase quadratically with increasing the number n.
Therefore, the sequence of gaps corresponding to the Bril-

FIG. 3. The dispersion law of the ME waves in the MS �solid
curve� in the extended zone scheme �the value of the dimensionless
parameter of the ME coupling � at this graph is taken one order
greater than the real one�. The dispersion law of spin waves in the
ferromagnetic layers �dashed curve� and the frequencies of the spin-
wave oscillations �dotted-dashed lines� are also shown.
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louin zones and to the ME resonances may be situated on the
dispersive curve arbitrarily relative to each other depending
on the parameters of the system. For example, at other pa-
rameters of the MS or values of the magnetic field, the first
spin-wave mode may be not in the first Brillouin zone but in
the second or third zones.

The special interest represents the coincidence of some
ME resonance with the gap at the Brillouin zone boundary of
the MS. We consider this situation here. In Fig. 4, the modi-
fication of the dispersion law at the coincidence of the fre-
quency of the first spin-wave mode �1 with the gap corre-
sponding to the first Brillouin zone boundary is shown.
When calculating this graph, in contrast to Fig. 3, we use the
value of the ME coupling close to the real ��=0.03� with the
aim of representing the real relationship of scales of the Bril-
louin and ME gaps in the spectrum. The coincidence of the
ME resonance with the Brillouin gap was obtained by in-
creasing the thickness of the nonmagnetic layer: l2=140 Å
instead of 100 Å in Fig. 3; other parameters of the MS are
the same �in the experiment, this coincidence may be ob-

tained by changing the magnitude of the magnetic field�. The
frequencies of elastic and spin waves in the absence of the
ME coupling are shown in Fig. 4 by dashed and dotted-
dashed curves, respectively. The modification of the disper-
sion law in the presence of the ME coupling is shown by
solid curves. One can see that the presence of the ME cou-
pling results in both the modification of the initial dispersion
curve and the broadening of the localized level �=�1 into
the permitted zone placed inside the forbidden zone.

For the long waves, when Kl ,knl1 ,k5l2�1, n=1, . . . ,4,
the dispersion equation �48� takes the simple form

���0x − B + P���2 − v2K2� + Pv2K2����0y − B + P�

���2 − v2K2� + Pv2K2� − �2��2 − v2K2�2 = 0,

�52�

where

P =
g�2M0

3

�1

�2l1

�2l1 + �1l2
.

Velocity of elastic waves is described by some effective pa-
rameter v depending on the elastic parameters of both layers:

v2 =
�1�2v1

2v2
2l2

��2l1 + �1l2��v2
2�1l1 + v1

2�2l2�
. �53�

Equation �52� is analogous in its form to the equation for the
dispersion law of coupled magnetostatic spin and elastic
waves in a homogeneous ME ferromagnet and transforms to
it in the limiting case l1= l, l2=0. Indeed, in this limiting
case, Eq. �52� coincides with Eq. �41� if the exchange stiff-
ness D in the latter equation is equal to zero.

Thus, the ME waves in the MS do not have the dispersion
resulting from the exchange coupling. Far from the fre-
quency of the ME resonance, their dispersion is determined
by the elastic parameters of both layers of the MS and in the
vicinity of the frequency of the ME resonances the disper-
sion is determined by both the elastic and ME parameters.

The formula for the FMR frequency follows from Eq.
�52� at K=0:

� = g	H − 4�M0 +
�2M0

3

�1

�2l1

�2l1 + �1l2
−

�2M0
3

�1

2S1�2l2

S0�̄l
+

6K1K2���T�2l2

S0
�M0
1/2	H − 4�M0 +

�2M0
3

�1

�2l1

�2l1 + �1l2

−
�2M0

3

�1

�2S1 − S0��2l2

S0�̄l
+

6K1K2���T�2l2

S0
�M0
1/2

. �54�

The comparison of the expressions in the brackets of Eq.
�54� with the corresponding partial frequencies, Eqs. �40�,
shows that the fourth and fifth terms in each of these expres-
sions are wholly determined by the ME ground state calcu-
lated in Sec. III. Thus, these terms are absent in the formula
for the FMR frequency in Refs. 16 and 17, where effects of
the ME ground state were not taken into account. The third
term in each bracket of Eq. �54� has a different origin. It is

seen from the formulas for the partial frequencies, Eqs. �40�,
that its base is the isotropic ME term B=�2M0

3 /�1 being also
in a homogeneous ferromagnet and leading to the ME gap in
the spin-wave spectrum at the intrinsic magnetic field equal
to zero20,21 �in our case, this situation corresponds to H
=Hm

�z�, where H=Hm
�z� is determined by Eq. �35��. Because of

the dynamic interaction of waves with the initial periodic
structure, the difference of the terms P−B=−�2M0

3l2 / ��2l1

FIG. 4. The modification of the dispersion law of the ME waves
�solid curve� at the coincidence of the spin-wave mode frequency
�dotted-dashed line� with the gap �forbidden zone� corresponding to
the first Brillouin zone boundary. The dispersion law of elastic
waves in the MS at the absence of the ME interaction is shown by
the dashed curve.
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+�1l2� adds to this term �see the coefficients of Eq. �52�� and
the term P appears in each bracket of Eq. �54� describing the
FMR frequency. Namely, this term determines the gap in the
spin-wave spectrum in the MS at the intrinsic magnetic field
equal to zero. This term returns to its initial form �P→B� in
the limiting case of a homogeneous ferromagnet �l1→ l , l2

→0�. Note that neither the ME ground state nor the initial
spontaneous strains uij

�00� were taken into account in Refs. 16
and 17. That is why the formula for the FMR frequency of
the MS in these papers contains only the term corresponding
to the difference B− P.

V. CONCLUSION

The ME ground state that comes from the elastic interac-
tion between the layers of the MS consisting of alternating
layers of a ferromagnet and a nonmagnetic dielectric as well
as coupled ME waves propagating in this MS against a back-
ground of the obtained ground state are studied. The MS is
assumed to be infinite both in the plane of the layers xOy and
along the MS axis. We assume that the method of the MS
preparation corresponds to the absence of the elastic stresses
resulting from the interaction between the MS layers at the
preparation temperature T=T0 and the orientation of the
magnetization vectors M=M00 in the plane of the magnetic
layers. We also assume that each ferromagnetic layer has
passed into the state with the spontaneous magnetostriction
strains corresponding to the initial orientation of the magne-
tization vector M00 before the joining of the layers. As the
accidental deviations from the initial equilibrium state are
possible during the real process of the MS preparation, the
MSs annealed at the temperature T0, apparently, correspond
more to this initial ideal state.

The general equations of motion for the magnetization
and displacements break into sets of the static and dynamic
equations. The static equations describe the ME ground state
in the external field H at the temperature T which are differ-
ent from the initial field H=0 and temperature T0. The dy-
namic equations describe ME waves propagating against a
background of both the initial periodically inhomogeneous
parameters of the MS and the periodically inhomogeneous
ME ground state corresponding to the solution of the set of
the static equations.

As the result of the solution of the static problem, the
three new terms of the effective magnetic anisotropy arise
spontaneously in the magnetic part of the effective MS en-
ergy. Two of them result from the ME interaction between
the MS layers and represent the xOz easy-plane anisotropy
and the xOy easy-plane anisotropy. Their magnitudes are
proportional to the square of the ME coupling parameter �.
The third term results from the thermomagnetic interaction
between the MS layers and represents the anisotropy with the
axis along the z coordinate. The magnitude of this anisotropy
is proportional to the first degree of the ME coupling param-
eter �, the difference of the thermal expansion coefficients of
the ferromagnetic and nonmagnetic layers ��, and the dif-
ference of the investigation and preparation temperatures �T.
Depending on the sign of these values, this anisotropy may
have both positive and negative signs, with which it adds to

the shape anisotropy resulting from the demagnetizing field
of the ferromagnetic layer −4�M0z. All three terms of the
anisotropy depend on the relationship between thicknesses of
the magnetic and nonmagnetic layers. The obtained ME
ground state exhibits the following properties. At H=0 and
T=T0, the vector M is oriented in the plane of the layers
along the x axis and the elastic stresses resulting from the
interaction between the MS layers vanish. The elastic strains
in the nonmagnetic layer vij

�0� also vanish and the elastic
strains in the ferromagnetic layer take the form of uij

�0�

=uij
�00�, where uij

�00� are the spontaneous strains due to the
initial orientation of the magnetization M00. At remagnetiz-
ing of the MS by the homogeneous rotation of the magnetic
moment in the magnetic field H directed in the plane of the
layers along the x axis, the projection M0x�H� exhibits a rect-
angular hysteresis loop with the coercivity Hc proportional to
�2 and l2 / l. At application of H in the plane of the layers
along the y axis, the projection M0y�H� follows the anhyster-
etic magnetization curve M0y /M0=H /Hm

�y�, where the mag-
netic saturation field Hm

�y� coincides in magnitude with Hc for
the previous case. At application of the field along the MS
axis z, the projection M0z follows the nonlinear anhysteretic
magnetization curve determined by Eq. �34�. The magnetic
saturation field Hm

�z� differs in this case from 4�M0 by the
value of the sum of fields of the ME and thermoelastic ef-
fective anisotropies. Estimations show that both of these ef-
fective anisotropies may have the same order of magnitude
for temperature changing by 50 °C.

The spectrum of ME waves propagating against a back-
ground of the periodically inhomogeneous ME state of the
MS is studied for the particular case when the magnetic field
H, static part of the magnetization M0, and wave vector are
directed along the normal to the surface of the layers. The
method based on Floquet’s theorem is used to obtain the ME
wave spectrum. The analytical form of the dispersion law
containing several thousand terms is computed with the
MAPLE program. Numerical investigation shows that the ob-
tained spectrum corresponds qualitatively to the spectrum
that was obtained first in Ref. 15 and then in Refs. 16 and 17:
besides usual gaps �forbidden zones� situated at the Brillouin
zone boundaries of the MS at K=�m / l, m=1,2 , . . . , the ME
gaps appear in the vicinities of crossings of the elastic wave
dispersion law with the localized frequencies of spin waves
�n=�0+g�M0kn

2 at kn=�n / l1, n=0,1 ,2 , . . . . However, tak-
ing into account the ME ground state arising from the elastic
interaction between the layers that was calculated in the first
part of our paper leads to the essentially different depen-
dences of the coefficients in the dispersion law on all param-
eters of the MS, external magnetic field, and temperature.
The coincidence of the ME gap with the gap at the Brillouin
zone boundary of the MS also was not considered earlier. In
this case, the ME coupling leads to the modification of the
dispersion law of elastic waves at the Brillouin zone bound-
aries as well as to the broadening of the localized spin-wave
level into the permitted zone placed inside the forbidden
zone. For the long waves �at K�� / l� near the vicinity of the
first ME resonance corresponding to n=0, the equation for
the dispersion law is analogous to the equation for the dis-
persion law of coupled magnetostatic and elastic waves in
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the homogeneous ferromagnet: the dispersion that is due to
the exchange interaction is absent in the ME waves in the
MS. The FMR frequency that came from the general disper-
sion law at K=0 is modified in the general case by all three
terms of the effective magnetic anisotropies resulting from
the ME ground state as well as by the isotropic ME term.
The latter term leads to the gap in the spin-wave spectrum at
H corresponding to the equal to zero magnitude of the intrin-
sic magnetic field. In contrast to the ME gap in the homoge-

neous ferromagnet, this gap in the MS is proportional to the
relation of the ferromagnetic layer thickness l1 to the MS
period l.
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