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We present a first-principles theory of the spin-mixing conductance for a thin ferromagnetic film embedded
epitaxially between two nonmagnetic metallic electrodes. The complex spin-mixing conductance is formulated
as a linear response of the spin torque experienced by the film due to the spin accumulation in one of the
electrodes. The derivation is based on nonequilibrium Green’s functions; the obtained result for the torque
response is in agreement with the response of spin fluxes on both sides of the ferromagnet as well as with
expressions derived within the Landauer-Büttiker scattering theory. Numerical implementation of the devel-
oped formalism employs the tight-binding linear muffin-tin orbital method and calculations are performed for
selected metallic and half-metallic ferromagnetic films relevant for spintronics applications. The spin-mixing
conductance of the Cu/Ni/Cu�100� system is found to exhibit pronounced oscillations as a function of Ni
thickness; their period is explained by spin-resolved Fermi-surface properties of nickel. Investigated half-
metallic films include the full-Heusler Co2MnSi compound and the diluted �Ga,Mn�As magnetic semiconduc-
tors attached to nonmagnetic Cr�100� leads; the imaginary part of their spin-mixing conductance has a mag-
nitude comparable to the real part. This unusual feature has been qualitatively explained in terms of a free-
electron model.
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I. INTRODUCTION

Artificially prepared metallic magnetic multilayers and
spin valves attract ongoing interest due to a unique interplay
between their magnetic structure and transport properties,1,2

especially in the current perpendicular to the planes �CPP�
geometry. This can be documented by the well-known giant
magnetoresistance �GMR� effect3 and by a more recent
prediction4,5 and realization6 of the current-induced magne-
tization switching �CIMS�. Subsequent research activities re-
sulted, e.g., in a full control of the sign of both GMR and
CIMS in spin valves containing two ferromagnetic layers
separated by a nonmagnetic metal7 or in a significant reduc-
tion of the critical current density necessary for CIMS as
achieved in tunnel junctions containing a diluted ferromag-
netic semiconductor.8

The most successful phenomenological framework for
quantitative understanding of both phenomena is the Valet-
Fert model9 based on the linearized Boltzmann equation with
a collision term accounting for the spin-flip scattering. The
latter mechanism provides an extension of the widely used
two-current series-resistor model3 and it has important con-
sequences for layer thicknesses comparable to the so-called
spin-diffusion length. The description of the CPP transport in
collinear spin structures within this scheme leads to a semi-
classical concept of the spin accumulation in nonmagnetic
layers, i.e., to a difference of effective chemical potentials
�Fermi levels� for electrons in the two spin channels.

A recent generalization of the Valet-Fert model to noncol-
linear spin structures10–12 rests heavily on two additional
properties of spin currents. First, the transverse �perpendicu-
lar to local exchange field� component of the spin current
inside a ferromagnet becomes rapidly damped over a typical
distance of a few interatomic spacings.13,14 This very short

magnetic coherence length is a result of a large exchange
splitting which leads to mostly destructive interference ef-
fects due to all contributions of wave vectors on the two
Fermi surfaces of the ferromagnetic metal. Consequently, the
spin torque experienced by a ferromagnetic �FM� layer can
be identified with the transverse spin current at its interface
with a neighboring nonmagnetic �NM� layer. Second, the
proper boundary conditions inevitable for a full solution of
the diffusion equations must be formulated in terms of spin-
mixing conductances of individual interfaces.15 The latter
�complex� quantities together with the spin-resolved inter-
face conductances provide a complete information on a lin-
ear response of the currents and spin currents at an interface
due to the bias and spin accumulation deep inside the neigh-
boring materials.

The magnetoelectronic circuit theory15–17 represents an-
other flexible approach to the transport properties of noncol-
linear magnetic systems consisting of FM and NM elements
�nodes�. This scheme is highly efficient especially when di-
mensions of individual nodes are smaller than the spin-
diffusion lengths but bigger than the electron mean-free
paths of the corresponding materials. Within the developed
formalism, the chemical potentials and spin accumulations of
the nodes are contained in 2�2 distribution matrices in the
spin space while junctions among the nodes are featured by
the spin-resolved and spin-mixing conductances. The steady-
state currents, spin currents, and spin torques in a device can
be obtained from applied voltages by solving a set of linear
equations quite similar to Kirchhoff’s laws for usual elec-
tronic circuits, see Ref. 17 for a review.

A truly microscopic �quantum mechanical� approach to all
aspects of the GMR and CIMS seems to be prohibitively
complicated having in mind the large layer thicknesses and
the quality of interfaces in presently used multilayers and
spin valves. A reasonable compromise between the accuracy
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and the complexity has been adopted by several authors in
addressing the spin-polarized electronic and transport prop-
erties of a single FM/NM interface13,18 with emphasis put on
the conductances and their sensitivity, e.g., to interface alloy-
ing. Since the traditional scheme for the transport, namely,
the Landauer-Büttiker scattering theory,17,19 has been used in
majority of papers, the effect of disorder was included by a
supercell technique.17,20

The spin-mixing conductances of FM films of a finite
thickness attached to two NM leads have been studied very
recently for Co/Cu, Fe/Au, and Fe/Cr systems.17,21 It has
been found that the thickness dependence of the real part of
the spin-mixing conductance saturates very rapidly for
thicker films and that its value can be well approximated by
the Sharvin conductance of the NM electrode. This behavior
is equivalent to the very short magnetic coherence length and
it proves that the spin-mixing conductance is predominantly
an interface property. However, as suggested by several au-
thors, this may not hold for other ferromagnets such as Ni
�Ref. 13� or the diluted magnetic semiconductors
�Ga,Mn�As,11 where the average exchange splitting is much
smaller than in the 3d transition metals and the size of the
Fermi surface is small which could enhance the coherence
length.17

For systems investigated so far, the imaginary part of the
spin-mixing conductance was found to be much smaller than
the real part.18,21 This feature is closely linked to properties
of the current-induced steady-state torques in noncollinear
spin valves and it results in a very small torque component
perpendicular to the plane spanned by magnetization direc-
tions of the two FM layers.12 The assumption of a negligible
imaginary part of the spin-mixing conductance has also been
employed in theoretical studies of angular magnetoresistance
of spin valves22 as well as of magnetization dynamics of thin
FM films;21 its validity, however, has to be checked in each
particular case. As indicated by several authors, this becomes
especially important for nonmetallic systems, such as sys-
tems containing tunneling barriers18 or insulating FM parts.23

The purpose of the present paper is threefold. First, we
consider a FM film embedded between two NM metallic
leads with epitaxial interfaces and give a general theoretical
formulation of the spin torque and the spin fluxes due to the
spin accumulation in one of the electrodes �Sec. II�. We use
the language of nonequilibrium Green’s functions19,24 �NGF�
which in the present context is equivalent to the Landauer-
Büttiker theory but it yields formulas that can be more easily
evaluated by means of standard Green’s-function techniques.
Second, we describe briefly a numerical implementation
within the first-principles tight-binding linear muffin-tin or-
bital �TB-LMTO� method25,26 �Sec. III�. The method has re-
cently been combined with the coherent potential
approximation26–29 �CPA� for charge CPP transport in disor-
dered multilayers30 and we employ the CPA here as well.
Finally, we perform calculations and discuss the results for a
model Cu/Ni/Cu�100� system followed by a study of more
complex magnetic films with potential applicability in spin-
tronics: a binary random alloy Ni0.84Fe0.16 �Permalloy, Py�,
the half-metallic ferromagnet Co2MnSi, and the diluted mag-
netic semiconductor �Ga,Mn�As �Sec. IV�.

II. THEORY

A. Response of the spin torque

We consider a NM/FM/NM system with noninteracting
electrons. Its effective one-electron Hamiltonian H can be
written as

H = H0 + ��� · n� , �1�

where H0 represents a spin-independent part, � is the ex-
change splitting which is nonzero only inside an intermediate
region containing the FM film and narrow parts of the two
adjacent semi-infinite NM leads, the vector �= ��x ,�y ,�z�
denotes a vector of the Pauli matrices, and the unit vector n
defines the direction of the exchange field of the FM film.
The spin dependence of the Hamiltonian H in Eq. �1� implies
that electrons with spin parallel and antiparallel to n experi-
ence Hamiltonians H↑=H0+� and H↓=H0−�, respectively.

We define the spin torque � as the time derivative of the
total spin magnetic moment. The latter operator is repre-
sented by the Pauli matrices �, so that

� = − i��,H� , �2�

where atomic units ��=1� are used. This definition of the
spin torque differs formally from the usual definition based
on the spin currents on both sides of the FM film;4,31 equiva-
lence of both approaches for spin valves has been given by a
number of authors32,33 while their equivalence in the present
case is proved in Sec. II B. The well-known algebraic rules
for the Pauli matrices

�� · p��� · q� = p · q + i�p � q� · � ,

�� · p�� = p + i� � p , �3�

��� · q� = q + iq � � ,

valid for arbitrary classical vectors p and q, yield an explicit
form of the torque operator

� = 2�n � � . �4�

This relation shows that the spin torque is a local operator
nonzero only inside the intermediate region with a direction
perpendicular to the exchange field of the FM film.

The thermodynamic average of the spin torque � for the
NM/FM/NM system in a stationary nonequilibrium state is
given by

�̄ =
1

2�
�

−�

�

Tr��G��E��dE , �5�

where G��E� is the lesser component of the NGF.19,24 The
latter quantity is related to the retarded and advanced Green’s
functions Gr�E� and Ga�E� by means of34

G��E� = Gr�E�	��E�Ga�E� ,

Gr�E� = �E − H − 	r�E��−1, �6�
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Ga�E� = �E − H − 	a�E��−1,

where 	��E�, 	r�E�, and 	a�E� denote the lesser, retarded,
and advanced components of the self-energy, respectively.
Note that all operators in Eqs. �5� and �6� are defined in the
Hilbert space of the intermediate region.

The spin accumulation in the NM leads results in a
change of the lesser self-energy 
	��E� �see below� which
induces the following first-order change of the thermody-
namic average �5�:


�̄ =
1

2�
�

−�

�

Tr�Ga�E��Gr�E�
	��E��dE . �7�

The special form of the torque operator, Eq. �2�, together
with the expression for Gr,a�E�, Eq. �6�, provide a relation

Ga�E��Gr�E� = − i��Gr�E� − Ga�E��� + Ga�E����E�Gr�E� ,

�8�

where we introduced the usual abbreviation for the anti-
Hermitean part of the self-energy, namely,

��E� = i�	r�E� − 	a�E�� . �9�

In deriving Eq. �8�, use was made of the fact that the self-
energies of the unperturbed NM leads are spin independent,
hence �� ,	r,a�E��=0.

The total self-energies can be written as sums of separate
contributions due to the left �L� and the right �R� leads,

	x�E� = 	L
x �E� + 	R

x �E�, x = r,a, � . �10�

For stationary nonequilibrium systems without spin accumu-
lation, the lesser self-energies are given by

	L,R
� �E� = fL,R�E��L,R�E� ,

�11�
�L,R�E� = i�	L,R

r �E� − 	L,R
a �E�� ,

where the functions fL,R�E� refer to the Fermi-Dirac distri-
butions of the two leads. Note that ��E�=�L�E�+�R�E�.

In the thermodynamic equilibrium, the distributions
fL,R�E� coincide with the Fermi-Dirac distribution of the
whole system. In the presence of spin accumulation in one of
the leads �L�, the system is driven out of equilibrium by
adding a spin-dependent shift to the Fermi energy of the lead
characterized by a magnitude 
EL. This yields the first-order
change of the lesser self-energy in a form


	��E� = 
	L
��E� = f��E��� · a��L�E�
EL, �12�

where f��E� means the derivative of the Fermi-Dirac distri-
bution and a is a unit vector pointing in the direction of spin
accumulation. The spin-dependent 
	��E� according to Eq.
�12� describes compactly a change of the left-lead Fermi en-
ergy by −
EL �+
EL� for electrons with spin parallel �anti-
parallel� to the spin accumulation direction a. For systems at
zero temperature, which will be considered in the following,
f��E�=−
�E−EF� where EF is the Fermi energy. Substitution
of Eqs. �8� and �12� into Eq. �7� provides a starting expres-
sion for the corresponding response coefficient CL:

CL �

�̄


EL
=

1

2�
Tr�i��Gr − Ga���� · a��L

− ��Gr�� · a��LGa� , �13�

where all omitted energy arguments equal the Fermi energy
EF.

In order to extract the dependence of the response coeffi-
cient CL on orientation of the spin accumulation a and the
magnetization direction n, the explicit structure of the
Green’s functions Gr,a of the Hamiltonian �1� with respect to
the spin must be used,

Gr,a =
G↑

r,a + G↓
r,a

2
+

G↑
r,a − G↓

r,a

2
�� · n� , �14�

where the spin-resolved Green’s functions are defined by

Gs
r,a�E� = �E − Hs − 	r,a�E��−1, s = ↑,↓ . �15�

The substitution of Eq. �14� into Eq. �13� reduces its r.h.s. to
a sum of terms of the form Tr��X�=trS���tr�X�, where � is a
matrix in the spin indices only while X is a matrix in the
other �site and orbital� indices and where the symbols trS and
tr denote the respective trace operations. Further steps em-
ploy the rules �3� and their consequences for trace relations:

trS���� · a�� = 2a ,

trS���� · n��� · a�� = 2in � a , �16�

trS���� · n��� · a��� · n�� = 4�n · a�n − 2a .

The resulting expression for CL follows after a lengthy but
straightforward manipulation:

CL = D1a + D2a � n − D3�n · a�n , �17�

where the prefactors D1, D2, and D3 are given by

D1 =
1

2�
tr�i�G↑

r + G↓
r − G↑

a − G↓
a��L − �G↑

r�LG↓
a − �G↓

r�LG↑
a� ,

D2 =
1

2�
tr��G↑

r − G↓
r + G↑

a − G↓
a��L + i��G↑

r�LG↓
a

− �G↓
r�LG↑

a�� , �18�

D3 =
1

2�
tr���G↑

r − G↓
r��L�G↑

a − G↓
a�� .

The form of Eq. �17� can be simplified by using a general
relation

i�Gr�E� − Ga�E�� = Ga�E���E�Gr�E� �19�

that follows from Eqs. �6� and �9�. After inserting the spin-
resolved counterparts of Eq. �19�, i�Gs

r−Gs
a�=Gs

a�Gs
r �s

= ↑ , ↓ �, in the expression �18� for D1 one obtains D3=D1.
The previous formula �17� for the response coefficient CL
can thus be rewritten in a form of a vector explicitly perpen-
dicular to the vector n:
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CL = D1n � �a � n� + D2a � n . �20�

The first term in CL refers to the torque component lying in
the plane containing the two vectors n and a �in-plane com-
ponent�, while the second term refers to the component per-
pendicular to this plane �out-of-plane component�. A closer
inspection of the real quantities D1 and D2, Eq. �18�, reveals
their simple relation to a single complex quantity—the spin-
mixing conductance CL

mix:

CL
mix =

1

2�
tr�i�G↑

r − G↓
a��L − �G↑

r�LG↓
a� , �21�

which yields

D1 = 2 Re CL
mix, D2 = 2 Im CL

mix. �22�

Note that the complex response coefficient CL
mix is sometimes

denoted as a “spin-pumping conductance.”21,35 The formulas
�20�–�22� represent the central result of this section.

The real part of the CL
mix is always positive, as can be

shown from the identity D1=D3, see Eq. �18� and the text
below Eq. �19�, and from the positive definiteness of the
operators �L,R. Consequently, the in-plane torque component
is always positive and the spin accumulation tends to align
the magnetization direction n toward the spin accumulation
direction a. A recent theoretical study of Co/Cu/Co�111�
structures has predicted that the in-plane torque due to an
applied spin-independent bias can change its sign with vary-
ing thickness of the Co layer.32 This qualitative difference
indicates that the phase coherence across a structure contain-
ing two noncollinear magnetic layers gives rise to a more
complex behavior than that due to noncollinearity between
the semiclassical spin accumulation and the exchange split-
ting of a single FM film. Another interesting change of the
sign of the in-plane torque component has been predicted for
magnetic tunnel junctions under a sufficiently high bias.36 A
direct comparison of this phenomenon to results of the
present linear-response theory seems to be impossible; more-
over, the necessary high bias values can hardly be realized in
metallic systems studied here.

B. Relation to spin currents

It is well known that spin torques acting on FM layers of
a magnetic multilayer are closely related to spin currents
flowing through the structure. The physical origin of this
relation can be traced back to a general theorem for the time
derivative of the spin �magnetization� density of a many-
electron system which can be expressed by means of the
divergence of the spin-current tensor and the spin-torque
density.13,37 Application of this theorem to stationary states
gives the spin torque acting on an arbitrary spatial region
exactly equal to the flux of the spin current across the surface
of the region, i.e., equal to the surface integral of the spin-
current tensor. In the present case, the spatial region com-
prises naturally the FM film and a few neighboring atomic
layers on its both sides; its surface is formed by two bound-
ary planes parallel to the film and located outside it. The spin
fluxes on the two sides of the FM film are defined as

JL = − i��
L,H0� = − i��
L,H� ,
�23�

JR = − i��
R,H0� = − i��
R,H� ,

where the kinetic energy �intersite hopping� is contained in
the spin-independent part H0 of the Hamiltonian H, Eq. �1�,
and where the 
L and 
R denote projection operators on the
respective leads including a few adjacent NM atomic layers
of the intermediate region such that 
L�=
R�=0. Note that
the projector operators 
L and 
R project on semi-infinite
regions with zero exchange splitting and that the operators
−i�
L ,H0� and −i�
R ,H0� in the definition of the spin
fluxes represent the usual particle fluxes across the two
boundary planes. The final expression of the JL,R in Eq. �23�
has a form of the time derivative due to the full Hamiltonian
H; this form is a consequence of the special choice of the
projection operators 
L,R and it simplifies the subsequent
theoretical analysis considerably. In particular, the linear-
response coefficients for the spin fluxes, defined as

KL
L =


J̄L


EL
, KL

R =

J̄R


EL
, �24�

can be obtained in a similar way as in Sec. II A for the
response coefficient CL, Eq. �13�. The explicit expressions
are given by

KL
L =

1

2�
Tr�i��Gr − Ga���� · a��L − ��LGr�� · a��LGa� ,

�25�

KL
R = −

1

2�
Tr���RGr�� · a��LGa� ,

where several simple properties of the projectors, such as
�
L ,	r,a�E��=0 and 
L�=�L �and similarly for 
R�, were
used. Note that KL

L+KL
R=CL which reflects the above men-

tioned relation between the torque and the spin currents.
The resulting formulas can be summarized as

KL
L = 2 Re CL

L,mixn � �a � n� + 2 Im CL
L,mixa � n

+ �C↑ + C↓��n · a�n ,
�26�

KL
R = 2 Re CL

R,mixn � �a � n� + 2 Im CL
R,mixa � n

− �C↑ + C↓��n · a�n ,

where we introduced complex coefficients in analogy to the
spin-mixing conductance, Eq. �21�, namely,

CL
L,mix =

1

2�
tr�i�G↑

r − G↓
a��L − �LG↑

r�LG↓
a� ,

�27�

CL
R,mix = −

1

2�
tr��RG↑

r�LG↓
a� ,

and the spin-resolved charge conductances �in units of e2 /��
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Cs =
1

2�
tr��RGs

r�LGs
a�, s = ↑,↓ . �28�

Two comments to these results are now in order. First, the
dependence of the spin fluxes on the orientation of the spin
accumulation �a� and the magnetization �n�, Eq. �26�, is
more complicated than that of the spin torque, Eq. �20�. Sec-
ond, an obvious relation CL

mix=CL
L,mix+CL

R,mix can be proved
from Eqs. �21� and �27�. However, this decomposition does
not justify a direct interpretation of the quantities CL

L,mix and
CL

R,mix as respective contributions to the total spin-mixing
conductance due to the left and right spin fluxes, since the
latter contain also terms proportional to the total charge con-
ductance C↑+C↓ and parallel to the magnetization direction
n, see Eq. �26�. Hence, the quantities CL

L,mix and CL
R,mix refer

only to the transverse components of the left and right spin
fluxes with respect to the exchange field of the FM film.

C. Relation to scattering theory

The resulting dependences of the spin torque, Eq. �20�,
and of the spin fluxes, Eq. �26�, on the orientation of the spin
accumulation and the magnetization are identical to those
obtained within the Landauer-Büttiker scattering theory of
transport.17 In order to make the relation of this traditional
tool to the NGF approach more explicit, we consider here the
simplest case, namely, a one-dimensional �1D� system with
one propagating mode in two identical NM leads.

The configuration space of the system is a real axis with
positions denoted by a continuous variable x �−��x���.
The spin-independent part of the Hamiltonian is given by
H0=−�� /�x�2 �we set the electron mass m=1/2� and the ex-
change splitting ��x� vanishes for x�xL and x�xR, where
the points xL and xR denote the boundaries between the NM
leads and the intermediate region containing the FM part.
The Fermi energy corresponds to a positive kinetic energy in
the leads, EF=k2 with k�0.

The spin-resolved retarded and advanced Green’s func-
tions Gs

r,a �s= ↑ , ↓ � at this real energy are constructed from
two independent solutions �1s�x� and �2s�x� of the
Schrödinger equation for the Hamiltonians H↑=H0+� and
H↓=H0−�. The asymptotics of the two solutions are

�1s�x� = exp�ikx� for x � xR,
�29�

�2s�x� = exp�− ikx� for x � xL,

and the retarded Green’s function is given by

	x
Gs
r
x�� = Ws

−1�1s�x���2s�x�� , �30�

where Ws=�2s�x����1s�x� /�x�−�1s�x����2s�x� /�x� denotes
the �x independent� Wronskian of the two solutions, while
x�=max�x ,x�� and x�=min�x ,x��.

The asymptotic behavior of the solution �1s�x� for x
�xL is given by

�1s�x� = ts
−1�exp�ikx� + rs exp�− ikx�� , �31�

where we introduced the spin-resolved transmission �ts� and
reflection �rs� coefficients of the wave incoming from the

left. They satisfy the usual condition 
rs
2+ 
ts
2=1 and their
knowledge allows us to evaluate explicitly the Wronskian in
Eq. �30�, Ws=2ikts

−1, as well as the asymptotics of the solu-
tion �2s�x� for x�xR:

�2s�x� =
1

ts
exp�− ikx� −

rs
*

ts
* exp�ikx� . �32�

These relations yield, e.g., the following elements of the re-
tarded Green’s functions:

	xL
Gs
r
xL� =

1

2ik
�1 + rs exp�− 2ikxL�� ,

	xR
Gs
r
xR� =

1

2ik
�1 −

rs
*ts

ts
* exp�2ikxR�
 , �33�

	xL
Gs
r
xR� =

ts

2ik
exp�ik�xR − xL�� .

Other elements, including those of the advanced Green’s
functions, can be obtained with help of general identities
	x�
Gs

r
x�= 	x
Gs
r
x�� and 	x
Gs

a
x��= 	x
Gs
r
x��*. Since the anti-

Hermitean part of the self-energy �=�L+�R, Eq. �11�, is in
this particular case given by38

	x
�L
x�� = 2k
�x − xL�
�x� − xL� ,

�34�
	x
�R
x�� = 2k
�x − xR�
�x� − xR� ,

the total spin-mixing conductance, Eq. �21�, and its left and
right contributions due to the transverse spin currents, Eq.
�27�, are equal to

CL
L,mix =

1

2�
�1 − r↑r↓

*�, CL
R,mix = −

1

2�
t↑t↓

*,

�35�
CL

mix =
1

2�
�1 − r↑r↓

* − t↑t↓
*� .

Note that the spin-resolved CPP conductances, Eq. �28�, re-
duce within the present model to Cs= 
ts
2 / �2��.

The last result, Eq. �35�, proves an equivalence of the
developed NGF approach to the existing Landauer-Büttiker
formalism.17 In particular, the left contribution CL

L,mix was
identified with the spin-mixing conductance of a single
NM/FM interface,15,16,18 while the transmission term CL

R,mix

appeared naturally for FM films of a finite
thickness.21,22,31,35,39 The presence of several propagating
modes in the leads is taken simply into account by double
summations over these channels in Eq. �35�, see References
16, 17, and 21 for details.

The full equivalence of both approaches has been proven
for particle currents due to spin-independent chemical poten-
tials in the leads with any number of propagating
channels;40,41 a similar general proof for spin currents due to
the spin accumulation goes beyond the scope of the present
paper. In the case of realistic multiorbital tight-binding
Hamiltonians, a fundamental question concerns a possible
contribution of evanescent states to the transport coefficients.
A study of a spinless case42 indicated that although the eva-
nescent states do not contribute explicitly to the total con-
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ductance, their implicit effect has to be taken fully into ac-
count, and that an improper treatment can cause serious
theoretical flaws, such as a dependence of the calculated flux
on the position chosen for its evaluation. While a subsequent
paper43 seems to disprove some of the conclusions of Ref.
42, the most recent studies of the spin-mixing conductance
have revealed that evanescent states in FM leads cannot be
ignored in accurate calculations of single NM/FM
interfaces.17,21

We think that detailed assessment of a role of the evanes-
cent states for spin-mixing conductances is less important in
the present Green’s-function approach; instead, we show in
the Appendix that the derived transport coefficients, Eqs.
�21� and �27�, of the NM/FM/NM systems do not depend on
where boundaries between the leads and the intermediate re-
gion are chosen. This invariance property represents a most
important feature both from a purely theoretical viewpoint
and for practical calculations.

III. IMPLEMENTATION

A. Translation into the tight-binding linear muffin-tin orbital
method

The ab initio TB-LMTO method25,26,44 proved to be an
efficient tool for electronic structure and transport calcula-
tions. Various details of this approach for transport properties
of bulk and layered systems can be found in the literature
both for the Landauer-Büttiker formalism17,20 and for the
Green’s-function point of view.30,45–48 For this reason, we
present below only the final TB-LMTO expression for the
spin-mixing conductance CL

mix corresponding to Eq. �21�.
The spin-mixing conductance per unit two-dimensional

�2D� cell is given by

CL
mix =

1

2�

1

N�

tr�i�g↑
r − g↓

a�BL − �BL + BR�g↑
rBLg↓

a� , �36�

where N� refers to a large number of 2D cells in directions
parallel to atomic layers and the trace is taken over the site
and orbital indices of the intermediate region. The quantities
gs

r and gs
a �s= ↑ , ↓ � denote spin-resolved auxiliary Green’s-

function matrices calculated respectively at energies EF+ i�
and EF− i�, where �→0+. The spin-independent matrices
BL,R correspond to anti-Hermitean parts of self-energies of
the NM leads.30,45 In the principal-layer technique used here,
the intermediate region consists of N principal layers and the
BL and the BR are localized in the first and the Nth principal
layer, respectively. Conversion from the atomic units to usual
units of conductance is achieved by a prefactor of e2 /�
which leads to replacement of 1 / �2�� in Eq. �36� by the
conductance quantum e2 /h.

For epitaxial systems with perfect 2D translational sym-
metry, the evaluation of Eq. �36� rests on the lattice Fourier
transformation of the involved matrices. For FM films with
substitutional disorder, attached to nonrandom electrodes, the
CPA is used for configurational averaging.26,44 The CPA-
vertex corrections due to the second term in Eq. �36� are
formulated and calculated according to Ref. 30.

B. Computational details

Details of the self-consistent electronic structure calcula-
tions employing the TB-LMTO technique in the atomic
sphere approximation �ASA� were described
elsewhere;26,30,44 the present results were based on the local
spin-density approximation49 �LSDA� to the density func-
tional theory50 with parametrization of the local exchange
correlation potential according to Ref. 51 and with a valence
basis comprising s, p, and d orbitals. The systems treated in
Sec. IV were derived from face-centered-cubic �fcc� and
body-centered-cubic �bcc� lattices with neglected lattice re-
laxations and with layer stacking along the �100� direction;
in both cases one principal layer consisted of two neighbor-
ing atomic layers.

The energy arguments EF± i� for the conductance calcu-
lations contained an imaginary part of �=10−7 Ry. Evalua-
tion of the trace in Eq. �36� used a uniform mesh in the 2D
reciprocal space with densities equivalent to 6400 and 5000
sampling k� points in the full 2D Brillouin zone �BZ� of the
1�1 unit cell of the attached Cu�100� and Cr�100� leads,
respectively.

IV. RESULTS AND DISCUSSION

A. Ni-based magnetic films

The present study of the fcc Cu/Ni/Cu�100� and Cu/Py/
Cu�100� systems is performed with a fixed lattice having a
lattice parameter between that of pure Ni �0.352 nm� and
pure Cu �0.361 nm�; the actual value used in the calculations
�0.355 nm� is close to the experimental value of a
Ni0.80Fe0.20 Permalloy.52 However, the reported results and
the conclusions made are qualitatively fairly stable with re-
spect to variations of the lattice parameter within the limits
set by pure nickel and copper.

The spin-resolved conductances for the Cu/Ni/Cu�100�
system as functions of the Ni thickness are plotted in Fig. 1
�top panel�. They exhibit an expected behavior, namely, a
nearly constant value for both spin channels with small os-
cillations due to quantum-size effects. The majority conduc-
tance is higher than the minority one due to the well-known
spin dependence of the potential difference at the Cu/Ni in-
terface: the majority potentials of both species are nearly
identical whereas the minority electrons feel a non-negligible
mismatch of the two potentials at the interface. For the same
reason, the quantum-size effects are hardly visible in the ma-
jority conductance but they are more pronounced in the mi-
nority channel. Similar features were found in previous stud-
ies of Cu/Ni and Cu/Co based magnetic multilayers;45,53,54

they are responsible for the CPP-GMR phenomenon.
The real and the imaginary parts of the spin-mixing con-

ductance of the Cu/Ni/Cu�100� system, plotted in Fig. 1
�bottom panel�, exhibit a qualitatively different dependence
on the Ni thickness as compared to the spin-resolved con-
ductances. The behavior of CL

mix is characterized by pro-
nounced oscillations with a period of 11 ML �monolayers�
and with a large amplitude that decays only slowly with in-
creasing Ni thickness. The observed dependence is also dif-
ferent from the dependences of CL

mix found for

K. CARVA AND I. TUREK PHYSICAL REVIEW B 76, 104409 �2007�

104409-6



Cu/Co/Cu�111� and Au/Fe/Au�100� trilayers;17,21 the oscil-
lations found for the latter systems are smaller in magnitude
and they are damped very rapidly being suppressed essen-
tially for magnetic film thicknesses greater than 15 ML. Note
that the Re CL

mix for the Cu/Ni/Cu�100� system oscillates
around a mean value that is close to the Sharvin conductance
of the fcc Cu�100� lead, CSh=0.93e2 /h �per one spin and one
interface atom�, while the mean value of the oscillating
Im CL

mix is appreciably smaller, in qualitative agreement with
the other metallic systems.

A quantitative theory of oscillations of the CPP transport
properties was formulated a decade ago for the spin-resolved
conductances of magnetic multilayers with varying thickness
of a NM spacer,55,56 whereas the case of the spin-mixing
conductance of a single magnetic film with varying thickness
has been worked out very recently.17,21 Both approaches em-
phasize the role of the Fermi-surface �FS� properties of the
thick layer, very much in the spirit of the theory of the os-
cillatory interlayer exchange coupling in magnetic
multilayers.57,58

In the present case of Cu/Ni/Cu�100�, the unimportant
oscillations of the conductances in each separate spin chan-
nel together with the pronounced oscillations of the spin-
mixing conductance �see Fig. 1� indicate that an origin of the
latter has to be identified with stationary points of the differ-
ence ki�

↑ −kj�
↓ as a function of the k� point where i and j run

over the individual sheets of the fcc Ni FS in the two spin
channels.17,21

The majority FS of fcc Ni is rather simple having only a
single sheet �topologically similar to the well-known FS of
fcc Cu�, whereas four sheets are encountered in the minority
FS.59,60 However, one of them, namely, the e6

↓ sheet,59 is
nearly parallel to the spin-up FS in large parts of the fcc BZ.
The cross sections of these two FS sheets �constructed from
the bulk band structure of fcc Ni obtained using the present
TB-LMTO-ASA technique� by the plane �001� are shown in
Fig. 2. These two sheets give rise to a stationary point of the
difference k�

↑ −k�
↓ ; the corresponding k� vector and the sta-

tionary value of the difference, �k�, are marked in the figure
as well. The resulting stationary value �k��1.111a−1,
where a denotes the fcc lattice parameter, yields oscillations
with a period �=2� /�k��11.3 ML, in a very good agree-
ment with the period observed in the calculated data, see
bottom panel of Fig. 1. The large amplitudes of the oscilla-
tions can qualitatively be understood in terms of the small
curvatures of the two FS sheets at the stationary point.55

The FS origin of the oscillations of CL
mix in the pure

Cu/Ni/Cu�100� system can be documented by their sensitiv-
ity with respect to alloying in the magnetic film. The thick-
ness dependence of CL

mix for the Cu/Py/Cu�100� system
�where Py denotes a random fcc Ni0.84Fe0.16 alloy� is free of
any long-range oscillations, see bottom panel of Fig. 1. The
randomly placed Fe impurities are very efficient in suppress-
ing the quantum interference effects in the Ni films and the
asymptotic values of the spin-mixing conductance are ob-
tained already for Py film thickness of about 12 ML.

Since effects of alloying on FS properties can be very
different in different parts of the alloy BZ61 and, for FM
alloys, in the two spin channels,59,62 we present the spin-
resolved Bloch spectral functions �BSFs� of the fcc
Ni0.84Fe0.16 alloy in Fig. 3. The BSFs are evaluated for the k
point in the center of the �-K line, i.e., close to the stationary
point relevant for the oscillations of CL

mix in the pure
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Cu/Ni/Cu�100� as functions of the Ni thickness �top panel� and the
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Cu/Ni/Cu�100� system, see Fig. 2. The spectral function for
majority electrons near the alloy Fermi energy is character-
ized by a narrow Lorentzian peak indicating a weak alloy
disorder whereas a broad non-Lorentzian shape is observed
in the minority channel slightly above the Fermi level. This
broad peak is closely related to a virtual Fe d bound state
located in the same energy range in the minority density of
states �DOS� of Ni-rich fcc NiFe alloys;62 the latter features
prove a strong scattering regime which is responsible for the
absence of oscillations of CL

mix in the Cu/Py/Cu�100� system.

B. Films of the Heusler compound Co2MnSi

The ferromagnetic full-Heusler compound Co2MnSi with
an L21 structure represents an interesting system for spin-
tronics due to its high Curie temperature of 985 K �Ref. 63�
and due to its half-metallicity that was predicted theoretically
a few years ago64,65 and that has very recently been con-
firmed experimentally.66

The L21 structure consists of four interpenetrating fcc
sublattices with origins shifted to points �0,0,0�,
�a /4 ,a /4 ,a /4�, �a /2 ,a /2 ,a /2�, and �3a /4 ,3a /4 ,3a /4�,
where a denotes the fcc lattice parameter. In the case of the
Co2MnSi compound, these four sublattices are consecutively
occupied by Co, Mn, Co, and Si atoms. The bulk self-
consistent spin-polarized DOSs of the compound, calculated
by means of the TB-LMTO method for an experimental fcc
lattice �a=0.565 nm�,63 are presented in Fig. 4. The
minority-spin DOS is characterized by a narrow band gap
that is 0.43 eV wide and by the Fermi energy EF located only
0.05 eV below the bottom of the conduction band, in reason-
able agreement with the experiment providing the width of
the band gap of 0.35–0.40 eV and a very small energy sepa-
ration of 0.01 eV between the EF and the conduction band.66

The calculated total spin moment of 5�B per formula unit as
well as the final DOS shapes agree well with existing full-
potential results.65

The CPP transport properties are studied for �100� films of
the Co2MnSi compound embedded between nonmagnetic
bcc Cr�100� leads, as motivated by prepared Cr/Co2MnSi
epitaxial interfaces.66 All atoms are located at sites of an

ideal bcc lattice leading thus to a small ��2% � compression
inside the Cr electrodes as compared to an equilibrium Cr
bcc lattice parameter. The Co2MnSi films contain an even
number of atomic layers with the pure Co layer and the MnSi
layer neighboring the left and the right Cr lead, respectively.

The resulting transport properties versus the Co2MnSi
thickness are plotted in Fig. 5. The spin-resolved conduc-
tances �top panel of Fig. 5� correspond to a metallic and a
tunneling regime in the two spin channels. The majority con-
ductance is essentially constant with unimportant oscillations
due to interference effects whereas the minority conductance
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decreases exponentially with increasing film thickness, de-
spite the tiny energy separation between the EF and the bot-
tom of the bulk minority-spin conduction band.

The thickness dependence of the spin-mixing conductance
�bottom panel of Fig. 5� exhibits a nearly constant value with
superimposed small oscillations due to quantum-size effects,
in analogy to the case of metallic FM films with a strong
exchange splitting, e.g., Cu/Co/Cu�111� and
Au/Fe/Au�100�;17,21 the real part of CL

mix has values only
slightly smaller than the Sharvin conductance of the bcc
Cr�100� lead, CSh=2.63e2 /h �per one spin and two interface
Cr atoms�. However, the imaginary part of CL

mix acquires
values as high as one-half of the real part in the case of
Cr/Co2MnSi/Cr�100�. Such a high value of the imaginary
part of the spin-mixing conductance has not been encoun-
tered in metallic NM/FM and NM/FM/NM systems;17,18,21

this new feature deserves thus a more detailed study.
The k�-resolved contributions to the total imaginary part

of the CL
mix are shown in Fig. 6 for a 20 ML thick film of

Co2MnSi. Note that due to the L21 structure of the film, the
2D BZ of the Cr/Co2MnSi/Cr�100� system forms only one-
half of the 2D BZ corresponding to the 1�1 unit cell of the
bcc Cr�100� electrode; moreover, the two BZs were rotated
mutually by 45° for computational reasons. One can see that
dominating positive contributions originate in regions around

the �̄ and M̄ points; regions close to the X̄ points are char-
acterized by parts of the 2D BZ without propagating chan-
nels in the Cr leads17 surrounded by small areas with slightly
negative contributions. The rest of the k� points yield posi-
tive contributions of minor magnitudes. The sum of the nega-
tive k�-resolved contributions amounts only to 7% of the
total Im CL

mix. These facts distinguish the present system with
a half-metallic ferromagnet from the studied metallic
systems18,21 where significant cancellation of positive and
negative contributions takes place that results in a small net
total sum. The reduced destructive interference in the
Cr/Co2MnSi/Cr�100� system is explained qualitatively in
Sec. IV D.

C. Films of (Ga,Mn)As diluted magnetic semiconductor

The diluted ferromagnetic semiconductors, such as Mn-
doped GaAs,67,68 represent systems with full spin polariza-
tion of electron states at the Fermi energy and a small aver-
age exchange splitting; this particular combination of spin-
dependent properties might lead to unexpected CPP transport
characteristics including the spin-mixing conductance.

The bulk electronic structure obtained within the LSDA
for the Ga1−xMnxAs alloy using the TB-LMTO-CPA tech-
nique is shown in Fig. 7 in terms of spin-polarized DOSs.
The computational treatment of the system relies on the same
four fcc sublattices as in Sec. IV B with consecutive occu-
pancies by the atomic species as follows: Ga1−xMnx, As,
Vac1, and Vac2, where the latter two symbols denote so-
called empty atomic spheres introduced for reasons of good
space filling. The experimental fcc lattice parameter �a
=0.565 nm� of the parent GaAs semiconductor is used
throughout the whole interval of Mn concentration studied
�0.03�x�0.10�. Further details on the bulk electronic struc-
tures can be found in Refs. 69 and 70. The resulting DOSs
exhibit clear half-metallic features with the Fermi energy in-
side the minority-spin band gap; the separation between the
EF and the top of the minority-spin valence band is appre-
ciably smaller as compared to the width of the minority-spin
band gap as well as to the width of the unoccupied part of the
majority-spin valence band �see Fig. 7�.

For examination of the CPP transport properties of the
�Ga,Mn�As alloy, its films in �100� stacking direction are
chosen and attached to bcc Cr�100� electrodes, motivated by
the small lattice mismatch between the two systems. The
ideal bcc structure used for these systems corresponds again
to a 2% compression of the bcc Cr lattice; the �Ga,Mn�As
films contain an odd number of atomic layers, terminated on
both sides by As layers.

The spin-resolved CPP conductances of the
Cr/ �Ga,Mn�As/Cr�100� systems exhibit a tunneling regime
for the minority-spin channel due to the half-metallic nature
of the bulk �Ga,Mn�As, whereas an Ohmic regime is encoun-
tered in the majority-spin channel for film thicknesses bigger
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than 15 ML.30 The latter fact proves a very strong intrinsic
disorder in the �Ga,Mn�As films despite the small content of
Mn impurities.

The dependences of the spin-mixing conductance on the
�Ga,Mn�As thickness are presented in Fig. 8 for two Mn
concentrations. Similar dependences have been found for all
other concentrations; they reveal rapid convergence of CL

mix

with increasing film thickness. The magnitude of the imagi-
nary part is again comparable to the real part as in the case of
the Co2MnSi films. There are, however, two striking differ-
ences between the two half-metallic systems: the signs of
Im CL

mix are different, and the magnitudes of CL
mix are signifi-

cantly smaller in the �Ga,Mn�As case than in the Co2MnSi
case, see Figs. 5 and 8. Note that small spin-mixing conduc-
tances with comparable magnitudes of real and imaginary
parts were reported for interfaces of doped nonmagnetic
semiconductors �InAs� and metallic ferromagnets �Fe�,71

which has been explained by a very small FS of the doped
semiconductor.17

In order to get understanding of the present results,
asymptotic values of the spin-mixing conductance, obtained
for a large fixed �Ga,Mn�As thickness, are plotted in Fig. 9
as functions of the Mn content x. One can see that both the
real and the imaginary parts exhibit simple concentration
trends, namely, their magnitudes increase monotonically with
increasing x. These trends indicate that an origin of the
small values of CL

mix might be closely related to the number
of holes in the majority-spin valence band of the bulk
�Ga,Mn�As, see Fig. 7, or, equivalently, to its majority FS.72

This interpretation is also supported by a quantitative analy-
sis of a simple free-electron model carried out in the next
section.

D. Free-electron model

The results obtained in Secs. IV B and IV C for spin-
mixing conductances in the presence of qualitatively differ-
ent half-metallic FM films deserve a unifying theoretical pic-
ture capable to explain roughly the reported properties. For
this reason, we consider here a very simple free-electron

model of the NM/FM/NM system that has been frequently
quoted in the literature, mainly in a context of metallic
systems.13,21

Since the minority-spin channel is in a tunneling regime
both for Co2MnSi and �Ga,Mn�As films, the contribution of
transmitted electrons, CL

R,mix in Eq. �27�, becomes negligible
for thicker films and the problem can thus be reduced to the
contribution of reflected electrons, CL

L,mix in Eq. �27�, evalu-
ated for a single NM/FM interface of two semi-infinite parts.

Let us denote the spin-resolved values of the constant
potential in the FM half-metal as Us �s= ↑ , ↓ �, while the
constant potential inside the NM metal is set zero, i.e., it is
taken as a reference value for one-electron energies. The
minority-spin potential is always repulsive, U↓�0, whereas
both signs of the majority-spin potential U↑ are allowed in
the range U↑�U↓. The reflection coefficients obtained at a
NM/FM interface in a 1D system �Sec. II C� for electrons
with a kinetic energy E�0 in the NM metal are given by

rs�E� =
1

Us
�2E − Us − 2�E�E − Us��, s = ↑,↓ , �37�

where �E�E−Us�� i�E�Us−E� has to be used for E�Us.
The electron energy at the studied NM/FM interface con-

tains a kinetic contribution due to the electron motion in two
directions parallel to the interface; this leads to a variation of
the energy E of the perpendicular motion in the range 0
�E�EF where the positive Fermi energy EF represents an-
other parameter of the model. The latter is further con-
strained by EF�U↓ owing to the assumed half-metallicity of
the FM part. Integration of CL

L,mix, Eq. �35�, over the k� vec-
tors yields the resulting spin-mixing conductance in a form

CL
mix

CSh
=

1

EF
�

0

EF

�1 − r↑�E�r↓
*�E��dE , �38�

where CSh denotes the Sharvin conductance of the NM metal
per one spin channel.

In order to make the model appropriate for the
Cr/Co2MnSi MnSi system �Sec. IV B�, we identify the bot-
tom of the minority-spin band with the Fermi energy, U↓
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�EF, see Fig. 4, and treat the attractive majority-spin poten-
tial U↑�0 as an independent variable. The model is appli-
cable to the Cr/ �Ga,Mn�As system as well; however, one
has to take into account the negative effective electron mass
at the top of the valence band of bulk �Ga,Mn�As, i.e., a
particle-hole symmetry of transport properties must be em-
ployed in this case. The restriction to U↓�EF can again be
used, see Fig. 7, while the majority-spin potential acquires
now positive values with the limit U↑→EF corresponding
naturally to x→0 �undoped GaAs�.

The reflection coefficients, Eq. �37�, in the case of U↑
�0 �Cr/Co2MnSi�, shown in Fig. 10 for a particular nega-
tive value of U↑, are real in the majority channel and com-
plex in the minority channel. Consequently, they do not lead
to any destructive interference effects in the Im CL

mix, Eq.
�38�, and the latter can reach positive values non-negligible
with respect to the Re CL

mix, see Fig. 11, in qualitative agree-
ment with data in the bottom panel of Fig. 5. Note that
CL

mix/CSh→1+ i� /4 for U↑→−�, hence Im CL
mix can be as

high as 78% of Re CL
mix in the present model. Moreover, the

real part of CL
mix comes out slightly smaller than the Sharvin

conductance of the NM metal, see Fig. 11, reproducing thus
another feature of the results of Sec. IV B.

The case of positive U↑ �Cr/ �Ga,Mn�As� leads to com-
plex reflection coefficients in both spin channels. In the limit
of U↑→EF �diluted case, x→0�, the spin-mixing conduc-
tance tends to zero, the magnitudes of the Re CL

mix and the
Im CL

mix become comparable, and the sign of the latter is
negative, see Fig. 11. The magnitudes, signs, and concentra-
tion trends of the data points in Fig. 9 are thus semiquanti-
tatively explained by the adopted simple free-electron model.

V. CONCLUSIONS

We have developed a nonequilibrium Green’s-function
approach to the linear response of the spin torque and the
spin fluxes at a ferromagnetic thin film due to the spin accu-
mulation in one of adjacent nonmagnetic electrodes. We have
sketched an equivalence of the developed scheme to the stan-
dard Landauer �scattering theory� formulation of the spin-
mixing conductance and have given a proof of invariance of
the response coefficients with respect to the choice of bound-
aries between the semi-infinite leads and the intermediate
region. The theory was implemented on an ab initio level
using the TB-LMTO method; application to several ex-
amples yields results that partly disprove general conclusions
drawn from previous studies of other systems.

In contrast to metallic ferromagnets with a large exchange
splitting �Fe, Co� where strong damping of the transverse
spin current takes place, the weak splitting of nickel and the
particular shape of its Fermi surfaces are responsible for pro-
nounced long-range oscillations of the calculated spin-
mixing conductance of Cu/Ni/Cu�100� system as a function
of the film thickness. The period of the oscillations can be
quantitatively described by existing theories. This oscillatory
behavior proves that the transverse component of the spin
current in the nickel film is not absorbed within a few atomic
layers near the interface but it survives over appreciably
longer distances.

Half-metallic ferromagnetic films exhibit spin-mixing
conductances with magnitudes of the imaginary parts com-
parable to the real parts; this has been demonstrated both for
a strongly polarized system, namely, the full-Heusler com-
pound Co2MnSi, and for diluted ferromagnetic semiconduc-
tors �Ga,Mn�As. This property as well as other features of
the spin-mixing conductance �magnitude, sign of the imagi-
nary part, concentration dependence� have been explained
within a free-electron model of the spin-polarized metal/half-
metal interface. The non-negligible imaginary part of the
spin-mixing conductance can give rise to big perpendicular
�out-of-plane� spin-transfer torques in spin valves containing
half-metallic ferromagnetic layers. The obtained results can
also be important for studies of magnetization dynamics of
thin films in contact with nonmagnetic electrodes, since the
imaginary part of the spin-mixing conductance is directly
related to the effective gyromagnetic ratio entering the
Landau-Lifshitz-Gilbert equation of motion as discussed in
Refs. 21, 35, and 39.

The present Green’s-function formulation of the linear re-
sponse is inevitable for application of effective-medium
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FIG. 10. �Color online� Spin-resolved reflection coefficients in
the free-electron model as functions of energy E: in the spin-↑ chan-
nel for the potential U↑=−EF �black curve� and in the spin-↓ chan-
nel for the potential U↓=EF �red line, real part; blue curve, imagi-
nary part�.
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FIG. 11. The spin-mixing conductance in the free-electron
model as a function of the majority-spin potential U↑ �full curve,
real part; dashed curve, imaginary part�.
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theories of substitutional disorder, such as the coherent po-
tential approximation, and it will be used in future systematic
investigations, e.g., of effects of interdiffusion at the Cu/Ni
interface or of antisite atoms in the half-metallic ferromag-
netic compounds and diluted ferromagnetic semiconductors.
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APPENDIX: INVARIANCE PROPERTY OF THE SPIN-
MIXING CONDUCTANCE

Let us consider the thermodynamic average of a one-
particle quantity Q �e.g., a component of the spin torque or
of the spin current� in a stationary nonequilibrium state,

Q̄ =
1

2�
�

−�

�

Tr�QGr�E�	��E�Ga�E��dE , �A1�

where Q is an operator nonzero only inside the intermediate
region, denoted here by I, the trace refers to the Hilbert
space of I and the self-energy 	��E� is given by Eqs. �10�
and �11�. In contrast to the usual case of scalar Fermi-Dirac
functions fL,R�E�, the presence of spin accumulation in the
leads requires to include spin-dependent distributions. This
means that fL,R�E� in Eq. �11� must be understood as opera-
tors acting only on spin indices; for a given lead �L ,R� and
a given energy E, this operator is uniquely specified by a
Hermitian 2�2 matrix. We assume that fL�E� commutes
with the Hamiltonian H inside the left lead, so that
�fL�E� ,	L

r,a�E��=0, and similarly for the right lead; however,
the operators fL,R�E� do not in general commute with H
inside the intermediate region I and with the operator Q. Let

us prove that the resulting Q̄, Eq. �A1�, does not depend on
positions of interfaces L /I and I /R �provided that Q re-
mains localized in I�. It is implicitly assumed that matrix
elements of H are short ranged, i.e., H is a tight-binding
Hamiltonian.

The total value Q̄ can easily be decomposed in two con-

tributions according to Eqs. �10� and �11�, Q̄= Q̄L+ Q̄R,
where

Q̄L,R =
1

2�
�

−�

�

Tr�QGr�E�fL,R�E��L,R�E�Ga�E��dE . �A2�

Since the propagators Gr,a�E� refer to the whole infinite sys-
tem while the operator Q is localized in the interior of I and
the operators �L,R are localized in narrow regions at the

respective interfaces, it is obvious that the contribution Q̄R
does not depend on the position of the L /I interface and
vice versa.

Let us investigate the dependence, e.g., of Q̄L, on the
position of the L /I interface. Let us move the interface to-

ward the left, which results in a modified lead L̃�L and a

region � of a finite thickness such that �=L \ L̃, L= L̃��.
The original intermediate region I is thus modified to an

extended region Ĩ=��I. An explicit expression of Q̄L, Eq.
�A2�, in terms of the left self-energies is given by

Q̄L =
i

2�
�

−�

�

Tr�QGr�E�fL�E��	L
r �E� − 	L

a �E��Ga�E��dE ,

�A3�

where the trace refers to the original intermediate region I.
Let us consider the original lead L decoupled from the

rest of the system; its Green’s function projected on the re-
gion � will be denoted GL

r,a�E�. It holds �fL�E� ,GL
r,a�E��=0.

The self-energy of the original left lead can be expressed as

	L
r,a�E� = tGL

r,a�E�t†, �A4�

where t denotes that part of the Hamiltonian H that describes
hoppings from � to I while t† describes hoppings from I to
�; these �spin-independent� hoppings satisfy �fL�E� , t�=0.
We assume for simplicity that � is thick enough so that no

matrix elements of H couple L̃ to I. Substitution of Eq. �A4�
in Eq. �A3� yields

Q̄L =
i

2�
�

−�

�

Tr�QGr�E�tfL�E��GL
r �E� − GL

a �E��t†Ga�E��dE .

�A5�

Let us further denote by 	̃L
r,a�E� the self-energy of the modi-

fied lead L̃. Since GL
r,a�E� refers to the Green’s function of

L= L̃��, i.e., of a finite region � attached to the semi-

infinite lead L̃, the following relation holds:

GL
r �E� − GL

a �E� = GL
r �E��	̃L

r �E� − 	̃L
a �E��GL

a �E� , �A6�

which represents an analogy to Eqs. �9� and �19�. The use of
Eq. �A6� in Eq. �A5� leads to

Q̄L =
i

2�
�

−�

�

Tr�QGr�E�tGL
r �E�fL�E��	̃L

r �E�

− 	̃L
a �E��GL

a �E�t†Ga�E��dE . �A7�

Finally, let us take into account the Dyson equation for a

coupling of the isolated left lead L= L̃�� to the rest of the
whole system, I�R, by using the hoppings t and t† as a
perturbation. Since the operator Q is localized inside the re-

gion I while the self-energy 	̃L
r,a�E� is localized in �, one

can replace the products Gr�E�tGL
r �E� and GL

a �E�t†Ga�E� in

Eq. �A7� by the perturbed Green’s functions G̃r�E� and

G̃a�E�, respectively. Here, the G̃r,a�E� denote propagators of
the coupled infinite system, projected on the extended inter-

mediate region Ĩ, in contrast to their projections Gr,a�E� on
the original region I. This replacement yields a modified

formula for Q̄L,
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Q̄L =
i

2�
�

−�

�

Tr�QG̃r�E�fL�E��	̃L
r �E� − 	̃L

a �E��G̃a�E��dE ,

�A8�

where the trace is taken over the extended region Ĩ. A com-
parison of Eq. �A8� and Eq. �A3� proves insensitivity of the

contribution Q̄L to the position of the L /I interface. This
completes a proof of the invariance of the thermodynamic
average Q̄, Eq. �A1�, with respect to the L /I /R partitioning.

The same invariance holds for the spin-mixing conduc-
tance CL

mix, Eq. �21�, as well as for other quantities, Eqs. �27�
and �28�, that can be obtained by infinitesimal variations of
averages of the form �A1�.
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