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Propagation of acoustic waves in phononic-crystal plates and waveguides
using a finite-difference time-domain method
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Propagation of acoustic waves in a phononic-crystal plate and related waveguides are analyzed in this paper.
A two-dimensional phononic-crystal plate consisting of circular steel cylinders which form a square lattice in
an epoxy matrix is studied first using the finite-difference time-domain (FDTD) method. The Bloch theorem is
employed to deal with the periodic condition, and the traction free condition is set on the top and bottom
boundaries of the plates. The dispersion curves and displacement fields are calculated to identify the band gaps
and eigenmodes. With the existence of a complete band gap in the phononic-crystal plate, an acoustic wave-
guide is presented accordingly. Eigenmodes of acoustic waves inside the waveguides are indicated, and the
modes are affected by the geometry arrangement of waveguides. Inside the phononic-crystal plate waveguides,

wave propagation is well confined within the structure.

DOI: 10.1103/PhysRevB.76.104304

I. INTRODUCTION

Phononic crystals have attracted much academic interest
in their property of band gaps during the past decade. A band
gap is the frequency range that acoustic waves cannot propa-
gate in a periodic structure. The bulk acoustic waves (BAWs)
in the unbounded phononic crystals'~3 and the surface acous-
tic waves (SAWs) in the phononic crystals with a free
surface*® were analyzed. In these studies, band gaps of
BAW and SAW were observed. Furthermore, complete band
gaps that BAW and SAW are forbidden to propagate in any
direction were also analyzed. With the properties of complete
band gaps, many applications of phononic crystals were de-
signed accordingly, such as elastic wave filters, couplers,’
and waveguides.’~!® A phononic-crystal waveguide is an im-
portant elementary component to build an acoustic wave cir-
cuit. In fact, to construct the SAW waveguides is more prac-
tical because the unbounded BAW waveguide is difficult to
realize. However, the possible energy loss of pseudosurface
acoustic wave (PSAW) in the SAW waveguides is another
considerable issue.!®!

Recently, the acoustic wave propagation in the two-
dimensional phononic-crystal structure with a finite thick-
ness referred to as a phononic-crystal plate was studied.'®!”
The plate is constructed by periodic arranged elastic materi-
als with two free surfaces. Unlike the PSAW in semi-infinite
phononic-crystal media that allows energy leakage, the finite
plate thickness keeps acoustic waves inside the structure. In
this paper, we study the characteristics of acoustic wave
propagating in the phononic-crystal plates and the related
waveguides. The FDTD method is developed to analyze the
dispersion of acoustic wave in the phononic-crystal plates.
The Bloch theorem and traction free conditions are em-
ployed to deal with the periodic boundary condition and the
top and bottom surfaces of plates, respectively. A steel/epoxy
square lattice phononic-crystal plate is studied, and complete
band gaps of acoustic wave are obtained. With the properties
of the complete band gaps, a phononic waveguide is de-
signed by arranging adjacent point defects. The eigenmodes
of acoustic waves inside waveguides are indicated and the
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acoustic waves propagating inside the straight waveguide are
demonstrated. The results show that the allowed surface
waves can be propagated and well confined within the wave-
guide.

II. ACOUSTIC WAVES IN A PHONONIC-CRYSTAL PLATE

The FDTD method had been developed to analyze the
BAW in infinite phononic crystals'®!® and SAW in semi-
infinite structures.'!3 This method has the flexibility to con-
struct a variety of two-dimensional (2D) and three-dimen-
sional (3D) periodic structures, and the phenomena of acous-
tic waves propagating inside the structures can be investi-
gated. A typical phononic-crystal plate is shown in Fig. 1(a).
The cylindrical inclusions are arranged to form a square lat-
tice on the x;-x, plane. The lattice constant of the phononic
crystal is denoted by a. In the x3-axis direction, the thickness
of the plate is defined by /4, and the normal of the free sur-
faces of the plate is in the x5 axis. To analyze acoustic waves
in a phononic-crystal plate, the periodic boundary condition
based on Bloch’s theorem and the traction free surface con-
dition for the free surfaces are applied in the FDTD method.

The FDTD method for acoustic waves is developed from
the equations of motion and the constitutive law of elastic
materials. They are expressed as

pli; = 7 i+ pfis (1)

7;i = Cijui€us (2)

ij

where p is the density of materials, u; is the displacement, 7;;
is the stress, f; is the body force, Cjj is the elastic constant,
and g is the strain. With the definition of staggered grids,
differential equations (1) and (2) are transferred into differ-
ence equations based on Taylor’s expansion, and then the 3D
heterogeneous finite-difference formulation is developed. By
arranging the densities and elastic constants, these equations
are applicable to the inhomogeneous structure of phononic
crystals. Bloch’s theorem is then introduced to treat the pe-
riodic boundary condition of a unit cell of the phononic
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FIG. 1. (Color online) (a) The phononic-crystal plate with cir-
cular cylinders embedded in a background material arranged in a
square lattice. (b) The unit cell of the phononic-crystal plate and
setting of boundary conditions.

crystals.!® The direct periodic boundary conditions (PBCs) in
terms of the displacement u; and the stress 7;; are defined as!?

ik.au[(x9t)7 (3)

u(x+a,r)=e

Tij(x+a,t) =eik'aTij(X,t), (4)

where K is a wave vector, and a is a lattice translation vector.
Further, the traction free condition is defined on the top and
bottom surfaces of the plates:

TSj(X7t)|X3:0 = T3_j(X’t)|x3=h =0. (5)

Figure 1(b) is the unit cell of the square lattice phononic-
crystal plates, and the setting definitions of the boundaries
are applied to the FDTD method. With the periodic boundary
condition, the unbounded periodic structures can be analyzed
by calculating a unit cell; furthermore, the property of
phononic-crystal plates is available with the definition of
traction free surfaces. In the unit cell, a small disturbance in
a random position is set as the initial condition. Thus, all
possible wave modes are excited inside the considered
phononic-crystal plate. The time-varying displacement is re-
corded during the calculations, and the Fourier transforma-
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tion is then performed to obtain the frequency spectrum. The
eigenfrequencies of a given wave vector k are indicated by
selecting the resonance peaks of the spectrum.

In this paper, a square lattice phononic-crystal plate con-
sisting of steel cylinders embedded in an epoxy matrix is
analyzed, and then it is also used to construct the
waveguides. The material constants used in calculation are
p=7900 kg/m3, C,;;=280.2 GPa, and C,=82.9 GPa for
steel, and those for epoxy are p=1180kg/m?, Cy,
=7.61 GPa, and C44=1.59 GPa. To calculate the eigenmodes
of acoustic waves in the phononic-crystal plate, the unit cell
in Fig. 1(b) is defined. The cross section on the x;-x, plane is
laX 1la, and a is the lattice constant. a is divided into 48
grids in this study. The lattice constant a of the phononic
crystal is defined as 8 mm, and the radius r of steel cylinder
is 3 mm. Thus, a time step interval of 10 ns in the FDTD
calculation is sufficient to satisfy the numerical stability con-
dition.

In this case, the filling fraction, defined as 7r?/a?, equals
to 0.442. In general, the eigenmodes of acoustic waves in
phononic crystals are decided by the filling fraction, while
the materials and geometry conditions (i.e., lattice symme-
try) are chosen. However, the values of the eigenfrequencies
of acoustic waves in the phononic-crystal plates are not only
a function of filling fraction but also the plate thickness.!®!’
In this paper, we chose the thickness & as 0.25a for the fol-
lowing study of waveguides.

To investigate the band gap of the phononic-crystal plate,
the dispersion relations of acoustic waves are calculated first.
Although the phononic-crystal plate is actually a 3D prob-
lem, the wave propagation is mainly confined within the
X1-X, plane. Thus, the first Brillouin zone and the denotation
of the smallest irreducible area in k space for 2D cases are
inherited here; moreover, the denotations are denoted with a
bar on top to present the surface Brillouin zone symmetry
points. The dispersion is shown in Fig. 2 and inset is the first
Brillouin zone. In Fig. 2, there are three developing bands
starting from the zero frequency to higher frequency range
which are similar to the results of BAW.'> In addition, two
noticeable complete band gaps appear from 89 to 101 kHz
and 125 to 162 kHz, respectively.

In an unbounded 2D phononic crystal, the structure is
infinite along the x5 direction. Thus, the BAW propagating
within the x;-x, plane can be decoupled into the in-plane
modes (x;-x, plane) and the antiplane modes. However, in
the phononic-crystal plate, the eigenmodes cannot be classi-
fied in the same way. The modes in the phononic-crystal
plates are coupled, and they are identified as flexural (anti-
symmetric), longitudinal (symmetric), and transverse (shear
horizontal) waves such as Lamb waves in the classical plates.

To investigate the acoustic wave modes in the dispersion,
the transmission of waves and the polarization of specific
modes are analyzed. First, to launch a wide frequency wave

packets along I'X direction, line sources of x, and x; polar-
izations are defined on the plate surface, respectively. The
acoustic waves propagating through a ten-layered phononic-
crystal plate and a homogeneous plate without steel cylinders
are recorded and compared with each other to calculate the
transmission. The corresponding results are plotted in the left
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FIG. 2. (Color online) Band structure of the steel/epoxy
phononic-crystal plate with square lattice. The filling fraction is
0.442 and plate thickness is 0.25a. The transmission of acoustic
waves along T'X direction is also plotted on the left part. The solid
and dotted lines present result of wave sources polarized along the
x3 and x, directions, respectively.

part of Fig. 2. When the wave is generated from the
xz-direction polarized source, the gaps appear at 72-116,
125-172, and 176-183 kHz, shown by the solid line. The
dotted line presents that, when the wave is generated from
the x,-polarized source, the passbands are between
73-87 kHz and the range below 43 kHz. Compared to the

dispersion of f)_(—direction, these two transmission distribu-
tions show a consistent result with the band structure, except
a deaf band that can be observed on the top of the second
complete band gap.

The displacement distribution inside the unit cell is calcu-
lated to investigate the eigenmodes of acoustic waves. The
setup is the same as Fig. 1(a) but the initial condition is now
replaced by a monochromatic wave source. The source gen-
erates a wave package with the chosen eigenfrequency, and
the corresponding wave vector is set at the periodic boundary
condition. By assigning both of the wave vector and the fre-
quency, the specific eigenmode is, therefore, excited, and the
displacement field is recorded to identify the modes.

The displacement distributions of the eigenmodes which

belong to the first seven bands at I'X direction are plotted in
Fig. 3 to investigate the wave propagating inside the plate. In
these 3D plots, the directions of cones indicate the direction
of displacement vector, and the sizes of the cones reflect the
magnitudes of displacement vectors. First, the eigenmodes of
wave vector k=(7/a,0) with frequencies f=22.5 kHz (point
A in Fig. 2) and =28 kHz (point B in Fig. 2) are calculated,
and the displacement distributions are shown in Figs. 3(a)
and 3(b). These two modes belong to the lowest band and its
folded band with the same wave vector. Since the wave-
length of the first band with |k|=7/a is 2a, and thus, only
one-half of the periodic displacement field is shown. In these
two cases, the displacement fields are almost invariant along
the x, axis. The 3D vector plots show the displacement dis-
tribution inside a unit cell. Additional 2D figures are also
plotted for clearer understanding. The 2D figures show the
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polarizations along the plane which is parallel to x;-x3 plane
and passing through the center of the steel cylinder. Obvi-
ously, the displacement components #; and u#; dominate the
behavior of these modes, which are basically corresponding
to the lowest flexural mode in a plate.

The next eigenmode belongs to the second band in the
phononic-crystal plate, and it has a wave vector k
=(m/a,0) and f=42.5 kHz (i.e., point C in Fig. 2). The dis-
placement field on the plate at x3=h/2 is shown in Fig. 3(c).
The eigenmode has a primary polarization in the x, direction.
This is the lowest mode of horizontally polarized shear wave
that the distribution does not vary obviously along thickness.

The case of the third band has a vector k=(7/2a,0) and
f=49.5 kHz (i.e., point D in Fig. 2). The mode has a higher
phase velocity than the previous two bands. The distribution
of the displacements is shown in Fig. 3(d), and the polariza-
tion on the plane x3=h/2 of the plate is also plotted. The
polarization in this case is mainly along the x; direction, and
the field does not have a large change along the thickness of
the plate. This means it is the lowest longitudinal mode.

The modes of the next two bands are the waves of k
=(m/2a,0) with f=75.5 kHz (point E in Fig. 2) and f
=82 kHz (point F in Fig. 2), respectively. For the mode of
point E, the slice of typical displacement field is parallel to
the x,-x3 plane and passes through the center of the steel
cylinder, as shown in Fig. 3(e). The polarization remains at
the x,-x3 plane but the magnitude also varies with the x;
direction. Basically, this mode has x; components, but they
are antisymmetric with respect to the x;-x3 plane passing the
center of the unit cell. Thus, this band cannot be excited by
the x3-polarization line source, as shown in the transmission
of Fig. 2. The result of point F is shown in Fig. 3(f), and this
band determines the lower boundary of the first complete
band gap. The displacement distribution shows a circular po-
larization pattern on the plate at x3=h/2, and this band is
excitable by the x,-polarization source.

The next mode shown in Fig. 3(g) is the mode with k
=(0,0) and f=116 kHz (point G in Fig. 2) which exists in
between the two complete band gaps. The normalized dis-
placement fields of two slices a-a’ and b-b’ are plotted, re-
spectively, in order to show the polarization clearly. Basi-
cally, the displacement field shows the property as a flexural
mode in a plate, similar to the case shown in Fig. 3(b), but
the field varies significantly along the x, direction.

Finally, an example of the deaf band observed in the
transmission is calculated. The mode of k=(7/a,0) and f
=162 kHz (point H in Fig. 2) is shown in Fig. 3(h), and
normalized displacement distributions of the unit cell and the
two slices a-a’ and b-b’ are plotted. The displacement field is
antisymmetric with respect to the x;-x3 plane passing
through the central line of the unit cell. The x; component is
antisymmetric and the x, component shows two opposite di-
rections across the unit cell. Thus, neither the x, polarization
nor the x5 polarization line sources on the plate surface can
excite this wave, and this band is identified as a deaf band.

Compared to the results of BAW reported in Ref. 15, the
complete band gaps of BAW are at 90-143 and
153-204 kHz; the phononic-crystal plate has narrower com-
plete band gaps than ones of BAW in the 2D case of the

104304-3



PHYSICAL REVIEW B 76, 104304 (2007)

JIA-HONG SUN AND TSUNG-TSONG WU

®

F--

X1

T

Frommmmeeeeeee e F

e ———————— -

TEraTT

T

©

The ticks on axes and dashed lines indicate the boundaries of the unit cells. (a) k

(7la
(e) k

FIG. 3. The displacement fields of eigenmodes.

42.5 kHz (point C of Fig. 2);

(m/a,0), f

75.5 kHz (point E of Fig. 2); (f) k

28 kHz (point B of Fig. 2); (c) k

0), f
(m/a,0), f=162 kHz (point H of Fig. 2).

Af:

0),

s

k=

(b)

49.5 kHz (point D of Fig. 2);

s

22.5 kHz (point A of Fig. 2);

(7/a,0), f=

(=d) kK

82 kHz (point F of

‘f:

0),

(7/2a,

(m/2a,

(1_1) k

s

116 kHz (point G of Fig. 2);

(77/2a,0), f=

s

(0,0), f=

Fig. 2); (2) k

and all the complete band gaps are smaller than those of the

same filling fraction. We calculated dispersion relations of

phononic

BAW. In these analyzed cases, the maximum complete band

gaps belong to the case of thickness &

crystal plates with the same filling fraction but dif-

0.875a, and the

ferent thicknesses. The thickness varies from 0.125a to 1.5a,
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ranges are 90-134 and 146190 kHz. The calculation shows
that in these phononic-crystal plates, the bands of longitudi-
nal waves (the band of point D in Fig. 2) and transverse
waves (the bands of points C and F in Fig. 2) appear at
similar ranges. Thus, the plate thickness does not alter the
gaps of these two types of waves. However, the flexural
modes (the bands of points A, B, E, G, and H in Fig. 2) in the
plates are affected by the thicknesses. In a thinner plate, the
lowest flexural mode shifts toward the lower frequency
range. Thus, the folded bands above the gaps of longitudinal
and transverse waves shift downward and narrow the gap
width. For a thicker plate, the cutoff frequency of higher
order flexural modes is lowered, and then, the higher order
modes appear at the range of the band gap. Therefore, the
phononic-crystal plates usually have narrower complete band
gaps than those of the 2D phononic crystal at the same filling
fraction.

In brief, the dispersion curves, the transmissions, and the
displacement distribution of the eigenmodes can be analyzed
by the FDTD method. The displacement analyses help iden-
tify the polarizations of acoustic wave modes and verify the
results of transmissions. In this phononic-crystal plate, the
acoustic waves have not only similar modes as the Lamb
modes in a classical plate but also some more complex
modes because of the periodic cylinders. Furthermore, with a
plate thickness as thin as 0.25a, the acoustic waves of the
higher modes which vary along the thickness do not appear
at the concerned frequency range. This simplifies the band
structure and results in the obvious complete band gaps. Fi-
nally, the steel/epoxy phononic-crystal plate shows complete
band gaps, and then it can be employed to create a wave-
guide in the next section.

III. ACOUSTIC WAVES IN A PHONONIC-CRYSTAL
PLATE WAVEGUIDE

A waveguide is one of the important applications of
phononic crystals for its unique role in acoustic circuits. To
construct a waveguide, continuous point defects are defined
in the phononic-crystal structure, as shown in Fig. 4(a).
These defects form an area without scatters, i.e., the cylin-
ders, and thus, the acoustic waves can propagate accordingly.
Currently, most studies focus on the BAW in phononic-
crystal waveguides, and few analyses of SAW in waveguides
are reported. In this section, the acoustic waveguides in the
phononic-crystal plates are analyzed with the FDTD method.

A phononic-crystal waveguide is formed based on the
complete band gaps of acoustic waves. In the steel/epoxy
phononic-crystal plate presented in Sec. II, there exist com-
plete band gaps in 89-101 and 125-162 kHz. Thus, the plate
can be used to create waveguides. Inside the waveguides,
acoustic waves cannot penetrate across the boundaries. The
existence of waveguides means that the defects are created in
the perfect phononic-crystal structure, and thus the pass-
bands are splitting off from its original value. At the bottom
of a band gap, the gap-edge band splits into a higher fre-
quency mode into the band gap. Similarly, the gap-edge band
at the top of a band gap also splits into the band gap. Thus,
these split modes contribute to defect modes (or guided
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FIG. 4. (Color online) (a) Top view of a waveguide in the
phononic-crystal plate and the supercell. (b) Band structure of
acoustic waves in the steel/epoxy phononic-crystal plate waveguide
of width w=10 mm.

modes) in the waveguides, and the defect modes will appear
at the range of complete band gaps.?”

In the FDTD method, the supercell technique is used to
analyze the dispersion of a waveguide. A supercell is defined
by combining several unit cells and then the whole supercell
is treated as a basic cell in the analysis. As shown in Fig.
4(a), a supercell for the waveguides is chosen to contain the
defect area and extra ten unit cells. Therefore, according to
the definition of the supercell, there are ten rows of periodic
phononic-crystal structure between two waveguides in our
analysis. After defining the supercell and using the similar
boundary conditions shown in Fig. 1(b), the wide band wave
sources are then excited and the eigenmodes are analyzed by
selecting the local maximum peaks from the Fourier trans-
formed spectra as the procedure for a unit cell in Sec. II.

First, we consider a waveguide with a width w=10 mm,
i.e., the distance between two neighboring cylinders on both
sides of a waveguide. This means that one row of cylinders
in the supercell is removed from the perfect periodic struc-
ture. Thus, a supercell of phononic-crystal plate consisting of
11 unit cells is defined to calculate eigenmodes of wave-
guide. The dispersion of the waveguide of w=10 mm in the
plate is obtained and shown in Fig. 4(b) with an inset on the
top right to present the structure. This figure is focused on
the frequency range of 60—190 kHz to observe defect modes
in the complete band gaps, and the boundaries of complete
band gaps are marked with horizontal solid lines. In the
waveguide, there are numerous extended modes at the pass-
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band of the phonic crystal, i.e., outside the range of complete
band gaps. In this case, they appear at the range below
79 kHz, the range of 101-125 kHz, and the range above
162 kHz. These modes are not concerned and the regions are
presented in gray.

In the band structure of acoustic waves in the phononic-
crystal plate shown in Fig. 2, band gaps at I'X direction
appear at 89-116 and 125-162 kHz. However, a passband
locates at 101-125 kHz along the XM direction; therefore,
the first complete band gap is actually in the range
89-101 kHz. In this case, acoustic waves propagating to-

ward T'X direction have a larger partial band gap than the
complete band gap. The additional partial band gap cannot
result in useful guided waves because the acoustic waves at

that frequency range will leave the waveguide along the I'M
direction. In Fig. 4(b), the band structure of the waveguide is
analyzed along the I'X direction, and the result shows that
extended bands are allowed in the frequency range of
101-125 kHz, instead of the range of 116—125 kHz. This
verifies the necessary of complete band gaps to form a wave-
guide. Besides, the upper limit of the lowest extended band
in Fig. 4(b) is not 89 kHz, which is the highest value of sixth

band at the T'X direction shown in Fig. 2, but the highest
value 79 kHz of the fifth band. The reason is that, as shown
in Fig. 3(f), the acoustic waves of the sixth band polarized
around the cylinder, and thus the mode does not appear in the
waveguide. As a result, the useful frequency range for con-
structing the waveguides is still the same as the complete
band gaps. Besides, some branches of the guided modes ex-
tend from the complete band gaps to the outside range.
Acoustic waves that belong to these modes outside the com-
plete band gaps can be excited. However, they convert into
other transmission modes and propagate away from the
waveguide when these modes encounter the waveguide
boundaries. Thus, the modes outside the complete band gap
still do not contribute to well propagation of waves in the
waveguides.

In Fig. 4(b), there are 13 recognizable defect bands ap-
pearing in the complete band gaps. We did not examine all of
the defect bands of phononic-crystal waveguides to indicate
if they are active or deaf. In general, numerous defect bands
at the same frequency range support the acoustic waves to
propagate inside the waveguide. In the FDTD method, an
area of 20a X 1la is defined and the waveguide of w
=10 mm is constructed to demonstrate the wave propagation.
A monochromatic line source is set in the left-hand inlet of
the waveguide and the acoustic waves propagate toward the
right hand side. As illustrating cases, the waves generated
from 95 and 140 kHz sources with the x; polarization are
calculated. These two frequencies belong to the first and the
second complete band gaps, respectively. The result shows
that wave propagation is confined within the scatter-free
area. Therefore, these two complete band gaps are applicable
to construct waveguides. These frequencies are marked with
dashed lines in Fig. 4(b), and the figure shows that both the
monochromatic wave sources of 95 and 140 kHz can excite
multiple defect modes inside the waveguide. Thus, the am-
plitude distribution shows a complicated pattern, not a
simple harmonic wave.
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FIG. 5. (Color online) Band structure of acoustic waves in the
steel/epoxy phononic-crystal plate waveguides of width w=6 mm.

However, a waveguide with a single mode or fewer defect
modes is much preferred for some further applications. In the
study of BAW in 2D phononic-crystal waveguide which has
a narrower width allows fewer defect modes.>!! In this study,
we also depress the number of defect modes by reducing the
width of the waveguide. The narrowed waveguides with a
width w=6 mm is analyzed, and the band structures are pre-
sented in Fig. 5. In the dispersion relations, the number of
the bands at the range of complete band gaps is reduced from
13 to 10. In the first complete band gap, 89-101 kHz, there
are only two bands of defect modes. Similar to the above-
mentioned procedure, a 95 kHz wave source is set in the
inlet of waveguide to investigate the propagation of acoustic
wave. In this case, the amplitude distribution on the surface
at x3=0 is shown in Fig. 6(a). In the plot, darker color means
larger amplitude. The acoustic wave propagation inside the
waveguide has a simple pattern. From the dispersion, the
defect mode is marked as point A in Fig. 5 and it belongs to
a folded band. We found that the corresponding wave vector
k is (1.697/a,0), and thus the wavelength is about 1.18a,
which agrees with result of the displacement pattern. The
characteristic displacement field is also plotted in Fig. 6(b).
The 3D vector plot shows a full view of the waveguide, and
the 2D figure of the cross section at the center of waveguide
helps identify the wave as a flexural mode. This mode shows
symmetric x; component with respect to the x;-x3 plane pass-
ing through the central line of the waveguide, and thus it is
excitable by the line source of flexural waves.

The acoustic waves perform fewer bands in the wave-
guides with 6 mm width at the first complete band gap.
However, there are still numerous defect modes at the second
complete band gap of 125-162 kHz. Further, we calculate
another narrowed waveguide of width w=4 mm. This means
the waveguide results from an additional space of one-
quarter of a lattice constant between adjacent unit cells. The
band structure is calculated and shown in Fig. 7. Because of
the extremely narrowed width, there are only six bands in-
side the waveguide. Both two complete band gaps have
simple band structures, and in addition, the range of 93—
101 kHz in the first complete band gap allows no defect

104304-6



PROPAGATION OF ACOUSTIC WAVES IN PHONONIC-...

010]010]0]0]0)0]010]0]0]0]0)0]6)0]610]e)
010]010]0)0]0)0]010]0]6]0]0)0]0)0]010]e)
OOO0O0OOOO0OOOOOOOOLOOOO
010101001 0]0]0]010]010]01010I0)01010]e)
0000000000000 0000000

O O )
010101001 0/0]0]010]0]0]0]010]6]0]0]01e)
010]010]0100]0]010]0]6]0]0)0]010]610]e)
010]0100)00]0]010]016]010)0]61010101e)
Q00000000 OOOOOOOOOO00

(2)

=il

X3

(b)

FIG. 6. (Color online) (a) Amplitude distribution of the 95 kHz
acoustic wave (point A in Fig. 5) on the surface of the linear wave-
guide. (b) The displacement fields of the eigenmode point A in
Fig. 5.

modes. The consistent phenomenon is obtained because we
observed that the 95 kHz waves cannot propagate into the
waveguide. Thus, more defect modes are depressed by con-
structing a narrower width waveguide, and the width of the
waveguide cannot be too small in practice for the acoustic
wave propagation.

Although the waveguides with a narrowed width have
fewer modes, however, these waveguides are no longer con-
sisted of the multiply unit cells. This is inconvenient to con-
struct an acoustic circuit in a periodic phononic crystal, es-
pecially to create a bend waveguide. We proposed another
modified waveguide by inserting scatters in the center of
waveguides, as shown in Fig. 8(a). The waveguide has a
width of 10 mm and the scatters in the center of the wave-
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FIG. 7. (Color online) Band structure of acoustic waves in the
steel/epoxy phononic-crystal plate waveguides of width w=4 mm.
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FIG. 8. (Color online) (a) Top view of a waveguide with scatters
in the phononic-crystal plate and the supercell. (b) Band structure of
acoustic waves in the steel/epoxy phononic-crystal plate waveguide
of width w=10 mm with the scatters of diameter d=4 mm.

guide have a smaller diameter of 4 mm. This means that one
row of cylinders in the phononic-crystal plate is replaced by
the smaller ones in radius. Thus, the waveguide is consisted
of multiply unit cells. After defining the corresponding su-
percell, the band structure of the waveguides is calculated
and presented in Fig. 8(b). In the dispersion diagram, there
are 11 bands of defect modes in the complete band gaps.
However, there is a single-mode band range from
130 to 142 kHz at the second complete band gaps. In addi-
tion, there is a forbidden gap at 125-130 kHz. We demon-
strated the propagation of the 136 kHz acoustic wave in Fig.
9(a). From the corresponding mode marked as point A in the
dispersion curve, the wave vector k is (0.57/a,0), and thus
the wavelength is 2a. The amplitude field of the wave is
affected by the scatters, but the periodic pattern satisfies the
foregoing calculation. The characteristic displacement field
of this mode is shown in Fig. 9(b). In addition to the 3D
vector plot, two 2D figures of the cross section at the center
of waveguide and a half lattice constant away from the center
are also plotted. The sizes of cones in these 2D figures are
normalized independently. From these displacement patterns,
the wave is also identified as a flexural mode and the polar-
ization varies along the x, direction. Since the polarization
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FIG. 9. (Color online) (a) Amplitude distribution of the 136 kHz
acoustic wave [point A in Fig. 8(b)] on the surface of the linear
phononic-crystal plate waveguide with scatters. (b) The displace-
ment fields of the eigenmode point A in Fig. 8(b).

shows symmetry with respect to the central plane (the x;-x;
plane) of the waveguide, the mode is excited by the line
source of x3 polarization. Indeed, the single-mode frequency
range is useful for further applications. For example, an
acoustic wave coupler can be designed based on this prop-
erty.

Finally, the phononic-crystal plate of the inserted scatters,
the lattice constant a=8 mm, thickness #=2 mm, and cylin-
ders of 4 mm in diameter, has also been analyzed. The dis-
persion relation shows that there is only one complete band
gap, the first one, at 101-112 kHz. The second complete
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band gap observed in Fig. 2 vanishes because other high
frequency modes move downward. Obviously, the single row
scatters do not act as the perfect phononic crystal. The band
gaps and extended modes are still dominated by the original
phononic-crystal plate but the scatters change the defect
modes inside the waveguides.

IV. CONCLUSION

In this paper, we have applied the FDTD method to ana-
lyze acoustic wave propagation in phononic-crystal plates
and waveguides. Combining the free surface condition and
PBC, the band structure of the 2D phononic-crystal plate is
calculated and the steel/epoxy phononic-crystal plate shows
two complete band gaps. By investigating the displacement
fields of eigenmodes, the modes similar to the one of a clas-
sical plate and some different modes resulted from the peri-
odic structure are identified. Furthermore, wave-
guides based on the complete band gaps of a phononic-
crystal plate are constructed. Inside the phononic-crystal
plate, the waveguides have numerous defect modes that
acoustic waves can propagate in. To modulate the defect
modes of waveguides, the waveguides with narrowed width
were calculated and the modes were depressed by the con-
straint. Besides, the defect modes are also changed by intro-
ducing scatters inside the waveguides. Finally, the phononic-
crystal plate has a limit size in thickness which is practicable
to be manufactured, and the acoustic wave is confined with
the structure without the possibility of propagating away.
Thus, it has potential to realize acoustic circuits on the
phononic-crystal plates.
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