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Low-temperature elastic constant Cij�T� measurements for Cu60Zr30Ti10 and Cu60Hf25Ti15 bulk metallic
glasses �BMGs� have been carried out to clarify their acoustic properties including a nonlinear interaction term.
The BMGs show remarkably low shear to bulk modulus ratio C44/B or equivalently high Poisson’s ratio �

compared with the corresponding crystalline states. The Cij�T� behaviors are well described by Varshni’s
formula �Phys. Rev. B 2, 3952 �1970�� and estimated Einstein temperatures suggested significant softening in
the transverse-mode acoustic phonon. Mean Grüneisen parameters � derived from dB /dT slopes become
almost identical with those of crystalline Cu. Our theoretical analysis based on inhomogeneous microstructure
model successively explains the elastic constants and characteristic features of the BMGs within a framework
of quasiharmonic thermodynamics, suggesting that microstructural inhomogeneity plays a dominant role in the
BMGs.
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I. INTRODUCTION

Elastic constants Cij and their temperature behaviors are
closely related to atomic configurations and potentials in-
cluding anharmonic interaction terms.1 The precise measure-
ments on Cij�T� are therefore essential to understand the
physical properties displayed in condensed matter. Bulk me-
tallic glasses �BMGs� attract special interest because of their
distinctive glass transition feature as well as superior me-
chanical properties,2 although some of the underlying phys-
ics remain not clarified.3,4 Recently, Johnson and co-workers
reported a strong correlation between shear modulus and
yield criteria and gave explanation by cooperative shear
model.5–7 Novikov and Sokolov reported a linear relation
between bulk to shear modulus ratio and kinetic fragility m
which is defined as an apparent activation energy for viscous
flow.8,9 While the presented experimental data show scatter-
ing, similar correlation between Cij and viscosity has been
suggested.7,10–12 Also, correlations between fragility m and
lattice vibration13 and anharmonicity14 have been reported.
On the other hand, glass transition temperature Tg itself
could be related to Cij �Refs. 12 and 15� as it is summarized
in a review article by Wang.16 These reports clearly represent
that Cij�T� of BMGs plays dominant role to solve the puz-
zling correlations and to clarify the underlying universal fea-
tures in the new class of material.

Golding et al.17 studied low-temperature elastic constants
for a Pd-based metallic glass and revealed a remarkable soft-
ening in transverse-mode acoustic phonons. They pointed out
that the softening is caused by the low density and static
atomic displacement in the glassy structure. Similar elastic
features have also been confirmed with Pd- and Zr-based
BMGs.18,19 Lambson et al.20 and Wang et al.21,22 studied the
pressure-dependent elastic constants to determine zone-
center-mode Grüneisen parameters �i and thermodynamic
equation of state �EOS�. Their studies suggest that simple

density difference between the glassy and corresponding
crystalline states fails to explain the marked softening within
a framework of quasiharmonic thermodynamics. Wen et al.
reported the changes in instantaneous bulk and shear moduli
of Zr-based BMG due to structural relaxation and provided
qualitative explanation from an energy landscape
perspective.23 Weaire et al.24 preliminary performed com-
puter simulation and suggested notable decrease in shear
modulus. Cyrot-Lackman25 reported essentially similar fea-
tures using a tight-binding potential model. Franzblau and
Tersoff26 employed a network model and explained macro-
scopic elastic behaviors by incorporating zero-frequency vi-
bration modes in the dynamical matrix. Pineda calculated
Poisson’s ratio for an ideal unicomponent metallic glass from
radial distribution function and discussed the effect of micro-
structure on it.27

Previous experimental and theoretical studies show quali-
tative concurrence; metallic glasses have remarkably low
shear modulus stemming from its unique random-packed
structure, while descriptions on the origin are controversial
and we are away from the general consensus. Recently, Ichit-
subo et al.28 proposed an inhomogeneous microstructure
model which assumes two elastic domains �weakly and
strongly bonded regions� in glassy structure and gives quali-
tative explanation for macroscopic elastic features and fragil-
ity. To fairly justify the model, quantitative verification is
essential. In the present study, we investigate low-
temperature elastic constants Cij�T� for Cu-based BMGs
which consist only of metallic elements. From analysis of the
Cij�T� behavior, we determined the acoustic Debye tempera-
ture �D, zone-center-mode mean Grüneisen parameter �,
and the Einstein temperature �E for the respective phonon
modes. Based on the results, we demonstrate that the inho-
mogeneous microstructure model sufficiently explains the
experimental results within a framework of quasiharmonic
thermodynamics.
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The construction of this paper is as follows. In the next
section, we show details of BMG samples and an ultrasound
spectroscopy technique which give us precise elastic con-
stants and their temperature dependences. Experimental re-
sults including �D, �E, and � are presented in Sec. III. In
Sec. IV, we discuss about macroscopic elastic constants of
the BMGs and show their possible interpretations using the
inhomogeneous microstructure model. Some concluding re-
marks are presented in Sec. V.

II. EXPERIMENTAL PROCEDURE

A. Material

The materials used in this study are Cu60Zr30Ti10 and
Cu60Hf25Ti15 BMGs prepared by injection molding
technique.29 These BMGs do not include any metalloid ele-
ment such as phosphorous or boron so that metallic bonding
should be dominant. Tg and crystallization temperature Tx are
697 and 716 K for CuZrTi and 724 and 761 K for CuHfTi
determined by differential scanning calorimetry with a heat-
ing rate of 40 K/min. X-ray diffraction pattern showed typi-
cal amorphous feature; only a halo pattern has been con-
firmed. Specimens were mechanically sliced into a
cylindrical shape with diameters of 3 or 2 mm. Mass densi-
ties were measured by the Archimedes method to be 7416
and 9460 kg/m3 for CuZrTi and CuHfTi, respectively.

B. Ultrasound spectroscopy

Elastic constants of the BMGs are measured by electro-
magnetic acoustic resonance �EMAR�.30 A specimen is in-
serted into a solenoid coil and we mount them into a cryo-
genic chamber. A static magnetic field �0.2 T� is applied
from outside of the chamber by pairs of permanent magnets.
Then, driving burst current ��1 MHz, 80 �s� is fed to in-
duce ultrasound vibration in the specimen through Lorentz-
force mechanism. Free vibration resonance spectrum is suc-
cessfully obtained by a frequency sweep of the input current.
The EMAR measurements are carried out from 5 to 293 K
for Ag and B3g vibration modes. As shown by Demarest,31

the stationary point of Lagrangian gives resonance frequen-
cies �or eigenvalues� of an elastic medium. This variation is
numerically solved using Rayleigh-Ritz method by approxi-
mating the displacements with Legendre polynomial
functions.32 A complete set of elastic constants Cij is then
obtained by minimizing the resonance-frequency differences
obtained by experiment and calculation. Note that elastic
constant inaccuracy is approximately 1%.

III. EXPERIMENTAL RESULTS

A. Elastic constants

Figure 1 shows Ag-group resonance spectra of the CuZrTi
BMG obtained at �a� 298 K and �b� 5 K. Here, vibration
modes are unambiguously identified by measuring the
displacement distribution using a laser Doppler
interferometer.33 Both spectra show clear resonance peaks
suggesting that the BMG has a low internal friction in this
frequency range. Frequency shifts between the spectra indi-

cate the increase in elastic constants with the decrease in
temperature since Cij are proportional to the second power of
resonance frequencies. Similar features have been found in
the CuHfTi BMG.

Figure 2 shows temperature dependence of normalized
elastic constants for �a� CuZrTi and �b� CuHfTi BMGs. For
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FIG. 1. Ag-group free vibration resonance spectra of CuZrTi
BMG obtained at �a� 298 K and �b� 5 K. Indices in the figure rep-
resent the free resonance vibration modes identified by measuring
displacement distributions using a laser Doppler interferometer.

1.00

0.98

0.96

0.94

N
or

m
al

iz
ed

el
as

tic
co

ns
ta

nt
s

300250200150100500

Temperature (K)

C12

C11

C44

B

1.00

0.98

0.96

0.94

N
or

m
al

iz
ed

el
as

tic
co

ns
ta

nt
s

300250200150100500

Temperature (K)

C12

C11

C44

B

(a)

(b)

FIG. 2. Temperature dependence of elastic constants of �a�
CuZrTi and �b� CuHfTi BMGs obtained by EMAR. Open circles
represent measurement points normalized by those of extrapolated
0 K values. The solid lines represent least-squares fit by Eq. �1�.
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both BMGs, shear modulus C44 showed the largest tempera-
ture dependence of approximately 6%, while those of B and
C11 are only 2% or 3%. Table I summarizes elastic constants
and acoustic Debye temperature �D of the BMGs at ambient
and low temperatures. For comparison, we included elastic
constants of the corresponding crystallized alloys obtained
by heat treatment over their crystallization temperatures. The
BMGs clearly show the unusually low C44/B ratio or equiva-
lently high Poisson’s ratio �. These tendencies also hold at
low temperature so that the low C44/B ratio is originated
from intrinsic amorphous structure. We note here that ther-
modynamics constrains Poisson’s ratio � from −1 to 0.5.
Here, the upper limit represents an instability criterion of
solid �Born instability�. Thus, high Poisson’s ratio represents
that the BMGs keep liquidlike elastic properties even in a
deep glassy state T�Tg.

B. Einstein temperature and Grüneisen parameter

In addition to low-temperature elastic constants, we also
estimate the Einstein temperatures for respective phonon
modes. According to Leibfried and Ludwig,34 elastic con-
stants satisfy the following relation: Cij =C�1−DE�. Here, C
and D are the constants and E represents an average energy
of a harmonic oscillator. From the Einstein-type Helmholtz
free energy F and thermodynamic relation E=F
−T��F /�T�V, temperature dependence of elastic constants
Cij�T� can be expressed in the following form:

Cij = Cij�0� − s/�e�E/T − 1� . �1�

This is known as Varshni’s equation.35,36 Here, s is an adjust-
able parameter representing anharmonicity and �E can be
interpreted as the Einstein temperature. Cij�0� is zero-
temperature elastic constant including harmonic and zero-
point vibration terms. Note that �E is different from its ther-
modynamic definition �0.75�D� due to the electronic
contributions to Cij�T� and irregularities in phonon density of
state as suggested by Ledbetter.36 However, the parameter
includes significant physical importance as seen in the next
paragraph. Adopting Eq. �1� to Cij�T� results, we can esti-
mate �E for respective phonon modes. Solid lines in Figs. 2
show least-squares-fitting results by Eq. �1� and obtained pa-
rameters for C11 and C44 are summarized in Table II. For
comparison, parameters of quasi-isotropic elastic constants37

of crystalline Cu are also included. The present BMGs
showed notably small �E of C44 compared with C11. This
intriguing feature of the BMGs is readily understood when
comparing to the case of crystalline Cu �Table II; two Ein-
stein temperatures have similar values�. Note that this ten-
dency does not change whether we carry out quasi-isotropic
approximation or not.

Figure 3�a� shows temperature dependence of the second
derivative of the elastic constants �d2Cij /dT2� for the CuHfTi
BMG calculated from Varshni’s equation. As seen in the fig-
ure, all elastic constants show a continuous asymmetric peak
between 20 and 60 K. As is well known, the elastic constants
are almost unchanged when temperature approaches 0 K
�this is due to the zero-point vibration effect�, whereas they
decrease linearly at the high-temperature side due to anhar-
monicity. These features make the second derivative,
d2Cij /dT2, virtually zero both at low- and high-temperature
limits. Thus, the peak temperature TP in Fig. 3�a� represents
the starting temperature of elastic softening upon heating.
Figure 3�b� plots the TP and the �E for the BMGs and crys-
talline Cu obtained from Varshni’s equation. As is expected,
they are correlated in a linear relation. Thus, the Einstein
temperature determined by this method represents the peak
temperature �starting temperature of elastic softening� in Fig.
3�a�; �E=4.5TP. Generally, the elastic softening temperature
depends on phonon frequency and it becomes small if low
frequency modes are dominant in the phonon density of
state. Thus, the low �E for C44 can be readily understood as
the softening in transverse-mode acoustic phonon in the
BMGs.

TABLE I. Elastic constants Cij �GPa�, bulk modulus B �GPa�, Poisson’s ratio �, and acoustic Debye
temperature �D �K� of BMGs �g-CuZrTi and g-CuHfTi� and corresponding crystalline states �c-CuZrTi and
c-CuHfTi�. Note that the relation C12=C11−2C44 holds for the all materials.

Material
T

�K� C11 C12 C44 B � C44/B �D

g-CuZrTi 4.5 179.0 103.3 37.80 128.5 0.366 0.294 302.3

g-CuZrTi 298 169.7 102.1 33.80 124.6 0.376 0.271 �285.7�
c-CuZrTi 298 190.7 95.55 47.59 127.3 0.334 0.374 �336.3�
g-CuHfTi 5 182.3 102.8 39.78 129.3 0.361 0.308 274.0

g-CuHfTi 298 177.5 102.7 37.38 127.6 0.367 0.293 �265.9�
c-CuHfTi 298 195.3 99.35 47.96 131.3 0.337 0.365 �298.5�

TABLE II. Fitting parameters of Eq. �1� obtained from elastic
constants C11 and C44 of the BMGs �g-CuZrTi and g-CuHfTi� and
crystalline Cu �c−Cu� after the VRH quasi-isotropic approximation.

Cij�0� s �E

g-CuZrTi C11 179.0 4.70 183.0

C44 37.8 1.15 122.9

g-CuHfTi C11 181.3 3.72 147.3

C44 39.6 1.18 122.6

c-Cu C11
VRH 210.5 9.09 190.4

C44
VRH 51.4 3.76 196.5
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We also evaluate zone-center-mode mean Grüneisen pa-
rameters from the Cij�T� results. At high-temperature limit,
Ledbetter38,36 derived the following relation between tem-
perature derivative of bulk modulus and Grüneisen param-
eter �:

dB/dT = − 3kB��� + 1�/Va, �2�

where kB and Va are the Boltzmann constant and the mean
atomic volume, respectively. From the analysis, � becomes
1.76 for CuZrTi and 1.70 for CuHfTi BMGs. These values
are slightly smaller than that of crystalline Cu �2.0�,39 Pd-
based BMG �2.59�,20 and Zr-based BMGs �2.0�,21 while they
are almost usual in metallic systems.39

IV. MODEL CALCULATION

A. Inhomogeneous microstructure model

In the previous section, we showed that the Cu-based
BMGs have low C44/B ratio �or high ��, low Einstein tem-
perature for transverse phonons, and usual Grüneisen param-
eter. The question to be solved here is how to understand
these elastic and vibrational properties quantitatively. Den-
sity is one of the most essential parameters affecting the
elastic and vibrational properties of solid since molar volume
directly influences the phonon frequencies through anharmo-

nicity. After crystallization, mass densities of the CuZrTi and
the CuHfTi BMGs become 7614 and 9733 kg/m3. Thus, the
estimated volume change from crystallized to glassy material
becomes almost identical in these two systems; 2.67% and
2.89% for CuZrTi and CuHfTi, and 2.78% in average.
Within a framework of quasiharmonic thermodynamics, elas-
tic features of the BMGs should be explained with the vol-
ume dilatation.

Inhomogeneous microstructure model28 is based on the
assumption that metallic glass consists of two elastic do-
mains possessing different binding natures; strongly bonded
regions �SBRs� are surrounded by a weakly bonded region
�WBR� matrix.40 Let us express the molar volume of BMG,
equilibrium crystalline alloy, SBRs, and WBR by VG, V0, VS,
and VW. Now, we have the following relation:

fSVS + fWVW = VG, �3�

where fS and fW represent volume fractions of SBRs and
WBR; fS+ fW=1. SBRs can be characterized as the region in
which local density is close to crystalline state �V0=VS� such
as short or medium range order �SRO or MRO� in glass.
With the assumption, the mass conservation law constrains
the fS and fW as

fS =
VW/V0 − VG/V0

VW/V0 − 1
, fW =

VG/V0 − 1

VW/V0 − 1
, �4�

where we used VG /V0=1.0278 which is determined from
density difference between BMGs and corresponding crystal-
lized alloys. Thus, the normalized molar volume VW /V0 of
the WBRs uniquely determines volume fractions of the two
elastic domains. Relationship between fW and VW /V0 is
shown in Fig. 4�a�. Note that fW→1 �VW /V0=1.0278� limit
gives a homogeneous volume dilatation of the model.

Let us express the elastic constants of SBR and WBR in
matrix notations by CS and CW. As seen in the next section,
molar volume influences the elastic constants through anhar-
monicity. Since VS has been assumed to be V0, only CW
depends on VW /V0 �CS is constant�. According to mean field
micromechanics, macroscopic elastic constants of the inho-

mogeneous microstructure model C̄ become,41–43

C̄ = �fWCW + fSCSA��fWI + fSA�−1, �5�

where I denotes the unit matrix and A is strain intensity
factor defined by

A = �SCW
−1�CS − CW� + I�−1. �6�

In the equation, S is called the Eshelby tensor depending on
CW and the shape of the SBRs. To simplify the analysis, we
assumed a spherical shape which is embedded in the WBR
matrix.

B. Quasiharmonic thermodynamics

According to previous work by Tallon,44,45 there are
power-law relationships between Cij and normalized molar
volume of the system V /V0,

Cij�V� = Cij
0 �V/V0�−gCij, �7�

where
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FIG. 3. �a� Temperature dependence of d2Cij /dT2 for CuHfTi
BMG calculated from Varshni’s equation. Note that the data are
normalized by −s. �b� A relationship between peak temperatures TP

and Einstein temperatures �E for the BMGs and crystalline Cu.
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gCij
= �� ln Cij/� ln V�P. �8�

This formulation is essentially equivalent to the quasihar-
monic thermodynamics, namely, integration of Eq. �7� yields
the well known Murnaghan EOS46 and gCij

is analogous to
the acoustic Grüneisen parameter. Table III summarizes the
experimentally determined parameters for crystalline Cu ob-
tained at ambient temperature.44 C� and C44 represent �110�
�110	-type and �100� �100	-type shear resistance representing
the lower and upper limits of shear modulus allowed in Cu.
The superscript VRH stands for quasi-isotropic elastic con-
stants obtained by the Voigt-Reuss-Hill approximation.37

From Table III and Eqs. �7� and �8�, one can uniquely deter-
mine elastic constants of Cu as a function of its molar vol-
ume.

Let us combine the quasiharmonic theory with our inho-
mogeneous microstructure model to examine whether the
model supports present experimental results obtained at

298 K or not. In the BMGs, Cu is the major constitutive
element and its parameters in the quasiharmonic theory are
well defined �see Table III�. In a first approximation, we
employed these parameters to calculate elastic constants of
the model. As mentioned, SBRs express the locally ordered
structures in a BMG �SRO and/or MRO�. Thus, we use the
Cij

VRH of crystalline Cu for the elastic constants of this region
CS. This treatment would be valid because the Cij

VRH are very
close to those of the corresponding crystalline states �see
Tables I and III�. Namely, elastic constants of fully crystal-
lized state of the model �VG→V0� agree with the experimen-
tal results. On the other hand, microstructure of the WBR
and its molar volume VW have not been clarified, and so we
fail to define the elastic constants of this region unambigu-
ously. To avoid the loss of generality in the present analysis,
we examined the three cases of shear moduli, C� �case 1�,
C44

VRH �case 2�, and C44 �case 3�, for CW, in which longitudi-
nal modulus has been fixed to C11

VRH. In the absence of vol-
ume dilatation, Poisson’s ratios of the three cases become
0.43, 0.34, and 0.18. Thus, the three models present how the

macroscopic elastic constants C̄ will be affected if the WBR
changes its binding nature from a liquid like �case 1� into a
solidlike �case 3� one.

V. RESULTS AND DISCUSSION

By inserting CS and CW�VW /V0� into Eqs. �5� and �6�, we
obtain macroscopic elastic constants of the inhomogeneous
microstructure model as a function of VW /V0. From quanti-
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FIG. 4. �a� A relationship between the volume fraction of WBR and normalized molar volume of the region VW /V0. The limit VW /V0

→1.0278 represents the uniform volume dilatation of the model. �b�–�d� plot macroscopic elastic constants of the inhomogeneous micro-
structure model for three cases of shear moduli as a function of VW /V0. Elastic constants of BMGs obtained at 298 K show reasonable
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1.1.

TABLE III. Room temperature elastic constants Cij of crystal-
line Cu and their anharmonicity gCij

reported by Tallon. �Ref. 44�
The superscript VRH represents the quasi-isotropic approximation
by the Voigt-Reuss-Hill scheme.

C11 C44 C12 C� C11
VRH C44

VRH

Cij
0 176.2 81.77 124.94 25.63 210.6 51.45

gCij
6.945 7.17 6.327 8.97 6.945 7.845
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tative comparison between the experimental and the theoret-
ical elastic constants, we can justify the present inhomoge-
neous microstructure model without ambiguity. Figures
4�b�–4�d� plot macroscopic bulk modulus B, shear modulus
C44, shear to bulk modulus ratio C44/B, and Poisson’s ratio �
of the model as a function of VW /V0. In these figures, three
curves represent the three cases of WBR �cases 1–3�. The
calculated elastic constants show rather insensitive VW /V0
dependences; C44, C44/B, and � of the experimental results
fall between the theoretical limits in a wide range of VW /V0.
On the other hand, bulk modulus B for case 1 is across the
experimental results around VW /V0
1.1. At this point, C44,
C44/B, and � show excellent agreement with the case 1 re-
sults consistently. Note that the present EMAR measure-
ments provide sufficiently accurate elastic constants so that
the measurement errors hardly affect the VW /V0 value. In
addition, this normalized molar volume is reasonable be-
cause it does not exceed the topological instability limit
�V /V0=1.128� addressed by Egami.47 Furthermore, the
present analysis does not include ambiguous parameters to fit
the experimental results except for VW /V0. Thus, full agree-
ment of elastic constants at the same VW /V0 value makes the
present model creditable within the quasiharmonic theory.

Let us discuss how characteristic features of the BMGs
are explained from the model. �i� In Fig. 4�a�, VW /V0
1.1
yields the volume fraction of WBR fW
20% which is al-
most consistent with the percolation threshold
concentration.48 �ii� The bulk moduli of WBR and SBR be-
come 93.7 and 142.0 GPa, giving their ratio as 2/3. Gener-
ally, bulk modulus is proportional to the melting point Tm;
the WBR behaves like a liquid phase around 2/3Tm. The
feature and results in �i� support the empirical relationship
between Tg and Tm: Tg
2/3Tm. Namely, WBR percolates
through the system and macroscopic flow takes place when
temperature approaches Tg. �iii� This microscopic perspec-
tive for glass transition qualitatively agrees with the free vol-
ume model.49 �iv� Poisson’s ratio of WBR becomes �0.44
which is close to the upper limit of thermodynamics ��
=0.5�, suggesting that the WBR has liquidlike behavior. This
nature and the relatively large volume fraction of WBR �fW


20% � would decrease transverse phonon frequency and
account for the low Einstein temperature in C44. �v� The
present analysis employed the gCij

reported for crystalline Cu
so that the Grüneisen parameter of the BMGs should be
comparable with it. This tendency has been confirmed from
the present results as shown in Sec. III B. �vi� The present
BMGs are in as-quenched states so that the volume fraction
of WBR �fW
20% � would provide an upper limit for the
systems. Generally, structural relaxation by heat treatment
increases macroscopic density and enhances the elastic stiff-
ening due to the annihilation of free volume. However, glass
transition temperature Tg is almost unchanged by the relax-
ation. According to the present model, the decrease in vol-
ume fraction of WBR readily explains this feature; a simple
decrease in fW gives an increase in density and macroscopic
elastic constants with keeping its elastic constants and esti-
mated melting point. �vii� The present analysis gives full
agreement of experimental elastic constants for case 1
�C�-type shear modulus�, while disagreements become sig-

nificant if we apply a solidlike elastic constants for WBR
�case 3�. In the actual BMGs, variety of shear bonding would
exist depending on its local structure. Among them, the
present study suggests that the C�-type bonded regions act as
the WBR. Generally, the C� shear modulus in fcc crystals is
known to be unstable around their melting points.50 The mi-
croscopic perspective on melting is therefore close to the
present interpretation of glass transition.

Wang and co-workers12,16 proposed an empirical relation
between elastic constants of BMGs M with that of constitu-
tive elements for Ce-based and Nd-based BMGs, M−1

=�f iMi
−1, where Mi and f i denote elastic constants and

atomic fraction of element i. Using the equation, we calcu-
lated C44/B ratio for the present BMGs. However, disagree-
ment reaches 38%. Recently, Zhang and Greer51 proposed
similar equations which consider atomic volumes in a glassy
solid. The model provides a modified result, while inconsis-
tency is still significant �about 33%�. Thus, a simple density
difference model fails to explain elastic constants of the
present BMGs. The modification is, however, quite sugges-
tive, namely, density difference between glass and corre-
sponding crystals should be considered. The present inhomo-
geneous microstructure model deals it with a different way;
density is nonuniform in a glass structure. As a result, nota-
bly low density in WBR �VW /V0�1.1� is acceptable with
keeping the macroscopic density difference to only 2.78%.
This extension also permits us to examine the three types of
shear resistance �cases 1–3� where all of them are allowed in
the actual crystalline Cu. Anharmonicities of elastic con-
stants have also been included within a framework of the
quasiharmonic thermodynamics. In the present model, dis-
agreement of C44/B ratio at VW /V0=1.1 �fW
20% � be-
comes only −6% for CuZrTi BMG and that of CuHfTi is also
fair �−13% �. Since the present analysis does not include any
ambiguous parameters, full agreement of elastic constants
and reasonable interpretations of �i�–�vii� support the micro-
structural inhomogeneity in the present BMGs.

VI. CONCLUSION

In summary, we have studied temperature dependence of
elastic constants Cij�T�, vibrational properties �D and �E,
and anharmonicity � of Cu-based BMGs using electromag-
netic acoustic resonance in deep glassy state at T�Tg. The
BMGs showed low C44/B ratio or equivalently high � at
ambient and low temperatures due to their intrinsic amor-
phous structures. Analysis for Cij�T� based on the Einstein-
type oscillator model suggests that low frequency modes are
dominant in transverse acoustic phonons. On the other hand,
Grüneisen parameters become almost identical with that of
crystalline Cu. Using mean field micromechanics, we dem-
onstrated that inhomogeneous microstructure model succes-
sively explains the elastic constants as well as characteristic
features of the BMGs within a framework of the quasihar-
monic thermodynamics. These results suggest that micro-
structural inhomogeneity will play dominant role to illumi-
nate the underlying physics that remain unsolved in BMGs.
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