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We have carried out first-principles molecular dynamics simulations of silica liquid over a wide range of
pressure �from 0 to �150 GPa� and temperature �3000–6000 K� within density functional theory and the
pseudopotential approximation. Our results show that the liquid structure is highly sensitive to compression:
the average Si-O coordination number increases from 4 at zero pressure initially slowly on compression and
then more rapidly after 30% compression, reaching 6.5 at 150 GPa. At low compression, nearly all Si-O
coordination environments are fourfold and relatively undistorted, whereas at high compression several coor-
dination types �five-, six-, and sevenfold� coexist and the polyhedra are significantly distorted. The heat
capacity and Grüneisen parameter show little variation with compression within the low-pressure regime and
vary rapidly with compression in the high-pressure regime. Results are successfully fitted to the Mie-Grüneisen
equation of state and show no evidence of spinodal instability or a temperature of maximum density. The
behavior of the self-diffusion coefficient is consistent with a crossover from strong to fragile liquid behavior
with increasing temperature and increasing pressure. Both Si and O self-diffusion coefficients vary anoma-
lously at 4000 K—they initially increase with pressure and then decrease upon further compression. This
anomalous behavior is absent at higher temperatures.
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I. INTRODUCTION

Silica is one of the most widely studied materials due to
its great importance in earth science and materials science.
Silica is a prototype liquid: understanding the physics of this
liquid is expected to lend considerable insight into the be-
havior of the so-called tetrahedral liquids including water,1–4

BeF2,5 and GeSe2.6,7 Such liquids are known to have many
interesting properties such as density minima and/or
maxima, dynamical anomalies, and liquid-to-liquid phase
transitions.8–13 Liquid silica is one of the major components
of geophysically relevant melts �magmas�. Partial melts are
believed to exist in Earth at depths as great as the core-
mantle boundary �136 GPa, 2890 km depth�.14,15 Knowledge
of the physical properties of liquid silica under extreme pres-
sure and temperature conditions of the deep interior is essen-
tial to modeling the thermal, chemical, and dynamical states
of the early Earth.16,17 The equation of state of the liquid
controls the relative density of partial melts produced by
geological processes and coexisting solids, and thus whether
these melts will rise or sink. The diffusivity controls the
mobility and rate of chemical reaction of liquids with their
surroundings. While there exist several experimental studies
of the density,18–22 and structural23–30 and dynamical
quantities31–33 of primarily amorphous silica and also liquid
silica at low pressures, such studies have not been performed
at pressures greater than 40 GPa.

It is of fundamental interest to explore how the structure
of the liquid phase changes with increasing pressure and
compares with the structure of the solid phase. The high-
pressure equation of state of silicate liquids, their relative
density with respect to coexisting solids, and their mobility
can be understood on the basis of their structure. Previous
theoretical34–40 and experimental23–30 studies have found that

amorphous silicates undergo remarkable pressure-induced
changes in structure. These include a gradual pressure-
induced increase in the Si-O coordination number, from four-
fold at ambient pressure toward sixfold at higher pressure.
Such a structural change mirrors that associated with poly-
morphic phase transitions in crystalline phase. However, the
nature of this coordination change in the amorphous state is
still poorly constrained. In particular, the mean pressure at
which it occurs, the pressure range over which it takes place,
and whether fourfold and sixfold coordinated states are en-
ergetically preferred and stable over finite pressure intervals
are not known.42 The structure within the transition interval
is also of considerable interest: do four- and sixfold coordi-
nation states coexist over a wide range of pressure or
are intermediate states �i.e., fivefold coordination� also
important?41 The presence of fivefold coordination states has
been predicted to enhance mobility �self-diffusion� substan-
tially. From the theoretical point of view, one of the uncer-
tainties in previous studies,9–13,34–40 which have mostly been
based on semiempirical force fields, is the form of the force
field chosen: various models that have been applied to amor-
phous silica yield significantly different results for the high-
pressure structure and compression mechanisms.42 Previous
first-principles molecular dynamics �FPMD� simulations
have focused primarily on low pressures,43–46 and in one
case explored compression mechanisms up to 27 GPa.45

Spinodal instability, the temperature of maximum density,
liquid-liquid phase transitions, and anomalies in the depen-
dence of the self-diffusion coefficient on pressure and tem-
perature, all predicted on the basis of semiempirical force
fields,9–13,38,41 have not yet been examined with first-
principles methods.

In this paper, we perform FPMD computer simulations of
the liquid state of SiO2 as a function of pressure up to
150 GPa and temperature from 3000 to 6000 K to investi-
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gate its structural and dynamical properties. The organization
of the paper is as follows: Section II presents the computa-
tional details. Section III presents the calculated results with
analysis of the equation of state, thermodynamic properties,
geometric structure, and dynamical properties. Section IV
discusses implications of our results and draws some conclu-
sions.

II. METHODOLOGY

The computations have been performed using the first-
principles molecular dynamics method �VASP parallel
code�47,48 as in our recent studies of liquid MgO and
MgSiO3.14,49,50 The interatomic forces are computed at each
time step from a fully self-consistent solution of the elec-
tronic structure to the Born-Oppenheimer surface, within the
finite temperature formulation of density functional theory.51

The local density approximation �LDA� is used52 as this has
been found to yield superior agreement with the equation of
state, structure, and elasticity of silicates and oxides,53 al-
though we also perform a limited number of computations
with the generalized gradient approximation �GGA�54 for
comparison. Ultrasoft Si �0.82 Å and 3s23p4� and O �0.82 Å
and 2s22p4� pseudopotentials47 are used with a plane wave
cutoff of 400 eV and gamma point sampling. The Pulay
correction,55 which varies with compression from
2.8 to 6.4 GPa over the volume range considered in this
study, is added to the calculated total pressure. To correct for
the well-known overbinding tendency of LDA, we follow
previous work14,56,57 by adding a uniform correction to the
pressure of 1.5 GPa, evaluated on the basis of comparison
between the LDA equation of state of quartz to experimental
data.

Our FPMD simulations are based on the canonical �NVT�
ensemble in which the number of atoms in the periodically
repeated unit cell �N�, the volume �V�, and the temperature
�T� are fixed.58 The simulation box contains 24 SiO2 units
�72 atoms�. A series of FPMD simulations of the liquid state
have been performed covering seven volumes: V /VX=1.0,
0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 along four isotherms, 3000,
4000, 5000, and 6000 K. Here, VX=45.80 Å3/SiO2 is the
reference volume, similar to the experimental volume of the
liquid at the ambient melting point.21 The corresponding
pressure-temperature conditions span the freezing curve as
estimated on the basis of shock-wave compression: 2000 K
at zero pressure to approximately 4500 K at 150 GPa �Ref.
59� and so include the liquid stability field and also the high-
pressure supercooled regime. The simulation schedule is as
follows: The crystalline structure at each volume is first
melted and equilibrated at 10 000 K for a period of 3 ps. A
time step of 1 fs is used. We then quench the system to a
desired lower temperature. At this temperature, we run the
simulation long enough to reach the diffusional regime in
which the mean-square displacement �MSD� of atoms varies
linearly with time �see Sec. III C�. We confirm that the sys-
tem at each V-T condition simulated is in the liquid state by
analysis of the radial distribution function as well as the
mean-square displacement. For instance, at V /VX=1.0 �the
reference volume�, simulation time periods of 3, 7, 20, and

58 ps, respectively, are required at 6000, 5000, 4000, and
3000 K. Our simulation time periods far exceed previous
FPMD simulation durations of 8 ps at 3500 K from Ref. 43,
2 ps at 3500 K from Ref. 45, and 12.5 ps at 3500 K and
22.5 ps at 3000 K from Ref. 46. In our simulations, the mean
displacement of the atoms from initial to final configurations
is 2 Å at 3000 K and more than 5 Å at higher temperatures.
Uncertainties in the energy and pressure are computed using
the proper statistics via the blocking method.60 The conver-
gence of the time-averaged properties and systematic energy
drift are tested as in our previous study of liquid MgO.49 We
find that equilibrium properties �e.g., structure, pressure,
energy� converge much more quickly �i.e., within a few
picoseconds at all temperatures� as in previous FPMD
studies43–46 than dynamical properties �e.g., diffusion coeffi-
cient�. Previous MD studies have not predicted any signifi-
cant effects of finite size on equilibrium properties or struc-
ture of silica liquid. However, this is not true in the case of
its dynamical properties, and we make a critical assessment
of the potential uncertainties in our calculations �see the Sec.
III C�.

III. RESULTS AND ANALYSIS

A. Structural properties

The radial distribution function �RDF�, g�r�, is computed
to examine the structural properties of the simulated liquid
system. Figure 1 shows the partial �both like and unlike�
radial distribution functions gSi-O�r�, gSi-Si�r�, and gO-O�r� at
four different compression and temperature conditions,
which are denoted as V1T1 �V=1.0VX and T=3000 K�,
V2T2 �V=0.8VX and T=4000 K�, V3T3 �V=0.6VX and T
=5000 K�, and V4T4 �V=0.4VX and T=6000 K�. These V-T
points are chosen to lie uniformly 1000 K above the silica
freezing curve over the compression range considered here.
The size of the fluctuations after the first peak in each case
decreases rapidly with distance and the RDF approaches
unity at larger distances, indicating the short-range order and
long-range disorder characteristic of the liquid state. The po-
sitions of the peaks at low compression agree well with ex-
perimental data on silica melt and glass as does the asymme-
try in the second Si-O peak23,61 �see Table I�. For all RDFs,
with increasing temperature and compression, both the first
and second peaks decrease in amplitude and become broader
�Fig. 1�. The positions of both peaks tend to shift to smaller
distances except the second peak in the Si-Si RDF, which
eventually disappears at high compression and instead a new
second peak appears at a larger distance �at condition V4T4�.
After the first peak, the like �Si-Si and O-O� radial distribu-
tion functions are very similar to each other at V1T1 and
V2T2. This behavior has been seen in previous molecular
dynamics simulations38 and is remarkable because it is typi-
cal of symmetrical ionic liquids such as the alkali halides.
However, at higher compression �V3T3 and V4T4�, the like
distributions begin to differ significantly.

The structure of the liquid demonstrates that it compresses
via mechanisms that are entirely different from those opera-
tive in the crystalline polymorphs. We calculate the average
Si-O, O-O, and Si-Si distances as �Fig. 2�
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�r� =

�
0

rmin

rg���r�dr

�
0

rmin

g���r�dr

, �1�

where rmin is the position of the first minimum in the corre-
sponding g���r�. Remarkably, all three average distances
gradually increase in the liquid up to 30% compression. This
is in contrast to the behavior of tetrahedrally coordinated

crystalline phases of silica, which are stable over a similar
range of volumes, and which compress almost entirely by
shortening Si-Si distances. At V /VX=0.7, O-O distances be-
gin to decrease rapidly, while Si-Si and Si-O distances con-
tinue to increase, before finally beginning to decrease at
V /VX=0.6 and V /VX=0.5, respectively.

We calculate the average coordination numbers �Fig. 3�
via

C�� = 4��x��
0

rmin

r2g���r�dr , �2�

where � is the number density and x� is the concentration
�N� /N� of species �. The calculated Si-O, Si-Si, and O-O
coordination numbers at V1T1 are, respectively, 4.02, 4.13,
and 7.54, compared to the corresponding experimental val-
ues of 3.9, 3.8, and 5.7 for silica melt �Table I� and corre-
sponding values of 4, 4, and 6 for the ambient pressure crys-
talline polymorph. The Si-O coordination number increases
on compression, as expected by analogy with the crystalline
polymorphs, but much more slowly initially than in MgSiO3
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FIG. 1. �Color online� Partial radial distribution functions
�RDFs� for Si-O �black�, Si-Si �blue�, and O-O �red� atomic pairs at
condition V1T1, V2T2, V3T3, and V4T4.

TABLE I. The calculated positions of the first peak, the minimum after the first peak, and the second peak for Si-O, O-O, and Si-Si RDFs,
and the corresponding coordination numbers at four V-T conditions. The experimental results for vitreous �Ref. 23� and liquid �Ref. 61� silica
at ambient pressure are shown.

Si-O O-O Si-Si

RP1 RM RP2 CN RP1 RM RP2 CN RP1 RM RP2 CN

V1T1 1.625 2.225 4.025 4.03 2.625 3.425 4.925 7.57 3.025 3.575 5.225 4.14

V2T2 1.625 2.375 3.925 4.21 2.625 3.425 4.875 10.59 3.025 3.575 4.775 5.01

V3T3 1.625 2.425 3.775 5.06 2.475 3.425 4.625 13.47 2.925 3.925 5.175 7.90

V4T4 1.625 2.375 3.675 6.52 2.175 2.925 4.175 12.17 2.825 3.725 5.175 13.03

Ref. 23 1.62 4.15 2.6 4.95 3.08 5.18

Ref. 61 1.62 �4.2 3.9 2.65 �5 5.7 3.12 �5 3.8
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FIG. 2. �Color online� Average Si-O, Si-Si, and O-O distances
as a function of compression and temperature. Lines represent the
temperature-averaged distances.
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liquid �Fig. 3, top�. In contrast to the silicate liquid, in which
the coordination number depends nearly linearly on com-
pression, in silica the coordination number remains very
nearly 4 until V /VX=0.8 where it begins to increase more
rapidly. This behavior is consistent with the behavior of
sodium-silicate glasses for which it is found that the
pressure-induced Si-O coordination increase occurs more
readily �at a lower pressure� in less siliceous compositions.63

The interpretation of these results is also consistent with our
findings, namely, that the Si-O coordination number in-
creases initially at the expense of nonbridging oxygen �nomi-
nally absent in the pure silica compositions of our study�.62,64

A similar behavior �initial slow increase� with compression
of O-Si coordination in silica liquid is also predicted by our
calculations �Fig. 3, top�. On the other hand, the O-O �and
Si-Si� coordination number increases rapidly with compres-
sion and is close to 12 at the highest compression of our
study, i.e., that of close-packed structures �Fig. 3, bottom�.

The Si-Si coordination number, however, continues to in-
crease with compression even at the highest pressure of our
study, indicating that it is not accurate to characterize further
compression of the liquid simply in terms of close-packed
structures.

At each volume-temperature condition, a variety of local
Si-O coordination environments exist �Fig. 4�. We calculate
the relative proportions of different Si-O coordinations,
which vary from threefold to eightfold. At low compression,
fourfold coordination is dominant with noticeable contribu-
tions from three- and fivefold coordination. The proportions
of these odd coordination environments decrease with de-
creasing temperature in the simulations �Fig. 4, top�, consis-
tent with the experimental observation that they are essen-
tially absent in the nearly perfectly tetrahedral room
temperature glass.23,25 With increasing compression, contri-
butions from five- and sixfold coordination increase, whereas
those from three- and fourfold coordination decrease. The
preponderance of fivefold Si-O coordination environments at
midcompression �V /VX=0.6� is significant for two reasons.
First, it demonstrates that liquid structure is not merely a
disordered version of the structure of the crystalline poly-
morphs, fivefold coordination being extremely rare in crys-
talline silicates. Second, fivefold coordination has been sug-
gested as a particularly unstable transition state that enhances
diffusion.41 At high compression, sixfold coordination is
dominant with its contribution increasing with decreasing
temperature at the expenses of five- and sevenfold coordina-
tion �Fig. 4, bottom�. Our results are consistent with the pre-
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FIG. 3. �Color online� The calculated Si-O, O-Si, Si-Si, and O-O
coordination numbers as a function of compression at four different
temperatures. Solid lines represent the temperature-averaged values.
Long dashed line represents crystalline silica phases. Short dashed
line represents MgSiO3 liquid �Ref. 14�.

Si O Coordination

V 3000 K 4000 K 5000 K 6000 K Avg P at 3000 K
1 4.03 4.04 4.02 3.95 4.01 0

0.9 4.05 4.19 4.06 4.11 4.1043 1.1
0.8 4.06 4.17 4.23 4.23 4.1724 7
0.7 4.28 4.43 4.54 4.54 4.4467 14
0.6 4.7 4.88 4.85 5.29 4.9298 24
0.5 5.67 5.7 5.66 5.91 5.7354 50
0.4 6.16 6.35 6.44 6.52 6.3695 150

1 0.9 0.8 0.7 0.6 0.5 0.4
3000 k

3 0.031778 0.001333 0.009083 0.012764 0.002403 0 0
4 0.926847 0.946583 0.926694 0.717847 0.414903 0.054181 0.000583
5 0.040764 0.050889 0.063819 0.243944 0.4645 0.247861 0.042319
6 0.000611 0.001194 0.000403 0.025347 0.117667 0.668056 0.769986
7 0 0 0 0 0.000528 0.029583 0.167653
8 0 0 0 0 0 0.000319 0.019042
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0.081793 0.00859 0.040708 0.020444 0.006861 0.000264 0
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FIG. 4. �Color online� The calculated Si-O coordination num-
bers of different types �from three- to eightfold coordination� as a
function of compression at four different temperatures �thin solid
lines�. Thick solid lines and dashed lines represent the temperature-
averaged values of different contributions. Arrows indicate the di-
rections of increasing temperature.
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vious FPMD study that considered pressures up to 27 GPa.45

For instance, at V /VX=0.8 and 3500 K, we find proportions
of four- �together with threefold�, five-, and sixfold coordi-
nation of 87%, 13%, and 0%, respectively, compared to the
corresponding values from Ref. 45 of 85%, 11%, and 0%.

Visualization of coordination environments65 reveals the
mechanism by which fivefold coordination states are formed
at low compression �Fig. 5�. The mechanism is a momentary
closing of the Si-O-Si angle between two tetrahedra, which
brings a fifth oxygen within the coordination shell of one of
the Si atoms. The product is a shared edge between a pen-
trahedron and a tetrahedron and one three-coordinated oxy-
gen. The Si-Si coordination number is unchanged by this
process as is the network connectivity: no new connections
are formed between coordination environments. At higher
compression, not only higher coordination numbers but also
edge sharing is much more common. At V3T3, a wide vari-
ety of coordination environments and shared elements are
present, while a significant amount of free volume remains
between the coordination polyhedra. Finally, at V4T4, the
structure begins to resemble a close-packing arrangement,
with little free volume, and common face sharing as well as
edge sharing and little corner sharing.

We now examine the distributions of the O-Si-O and Si-
O-Si bond angles in liquid silica �Fig. 6�. The average angles
of O-Si-O distributions at V1T1 and V2T2 are 108.4° and
107.6°, respectively, in agreement with the previous FPMD
study43 and close to the ideal tetrahedral angle �109.47°�
found with small deviations in the tetrahedral crystalline
polymorphs and silica glass at ambient conditions. With in-
creasing temperature, the distribution becomes broader with
its average value slightly shifting to smaller angles �Fig. 6,
top�. On compression beyond V /VX=0.7, the distribution be-
comes bimodal; at V4T4, the two modes are centered at 87°
and 137° and become narrower with decreasing temperature.
The first peak represents the characteristic octahedral angle
of 90°, whereas the second peak represents the angle made
by two opposite O atoms with the center Si atom. The dis-

tribution of the Si-O-Si bond angle shows a single broad
peak at all conditions �Fig. 6, bottom�. With increasing tem-
perature, the distribution broadens, and the small-angle tail
extends to smaller angles. On compression, the distribution
becomes sharper and more asymmetric with the peak and
small-angle tail shifts to smaller angles. The average values
of the distribution at V1T1 and V2T2 are 133.5° and 126.8°,
compared to an angle of 144° for the glass at 300 K.23 The
distribution extending below 120° down to angles as small as
70° contains contributions from edge-sharing polyhedra. At
conditions V3T3 and V4T4, the average values of the distri-
bution are 114.9° and 110.8°, as expected of edge- and face-
sharing polyhedra.

The initial compression mechanisms in silica liquid from
V /VX=1.0 to 0.8 cannot be understood on the basis of the
local structural features explored so far. The coordination
increase is slight over this range, and nearest neighbor bond
distances increase with compression. It has been suggested
that changes in intermediate range order in the form of ring
statistics can account for the initial compression of silica
liquid based on simulations using a semiempirical force
field.66 In particular, it was argued that a decrease in the
number of small rings and an increase in the characteristic
ring size are of the primary compression mechanisms. In
order to test this idea, we compute the ring statistics in our
simulations. Our results show an initial decrease in the pro-
portions of 3-rings with compression �Fig. 7, top�. Moreover,
the characteristic ring size calculated by using the approach
of Ref. 67 increases on compression �Fig. 7, bottom�. The
number of small rings increases upon further compression
�V /VX�0.7� due to the increase in Si-O coordination num-
ber, a feature absent from the previous simulations,66 which
used a semiempirical potential model that forced fourfold
coordination to be maintained. We also find a small propor-
tion of 2-rings, which are not included in the analysis of the

FIG. 5. �Color� Visualization of the Si-O coordination environ-
ment using the color-coded polyhedral representation at condition
V1T1 �top left�, V2T2 �top right�, V3T3 �bottom left�, and V4T4
�bottom right�. The black, red, yellow, green, cyan, blue, magenta,
and white colors represent the local coordination numbers of �3, 4,
5, 6, 7, 8, 9, and �10, respectively. The bond length is defined by
the first minimum in the Si-O radial distribution function.
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angle distributions in liquid silica at conditions V1T1, V2T2, V3T3,
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characteristic ring size. These are primarily associated with
the formation of fivefold coordinated Si, by the mechanism
discussed above, and so do not influence the network con-
nectivity. Our results are at odds with those of a previous
FPMD study45 that found the number of 3-rings increasing
on compression. The origin of this discrepancy is unclear,
but may be due to longer run duration of our simulations.

B. Equations of state

The calculated pressure-volume-temperature results are
described with the Mie-Grüneisen equation of state,

P�V,T� = P�V,T0� + Pth�V,T� , �3�

where P�V ,T0� is the pressure on the reference isotherm, T
=T0, and Pth�V ,T� is the thermal pressure. As shown in the
inset of Fig. 8, the thermal pressure increases nearly linearly
with temperature at all volumes. The increase of thermal
pressure on compression is initially gradual and then be-
comes more rapid at V /VX�0.7. The thermal pressure is
represented by

Pth�V,T� = B�V��T − T0� , �4�

where the thermal pressure coefficient B may be represented
over the range of our simulations by

B�V� = 10.4 −
9.5

1 + exp��25.2 − V�/1.86�
, �5�

in units of MPa K−1 �Fig. 8�. The reference isotherm, taken
to be T0=3000 K, is described by the fifth order Birch-

Murnaghan equation of state with zero pressure, volume,
bulk modulus, and first and second pressure derivatives
of the bulk modulus: V0=45.8 �±0.2� Å3/SiO2, K0

=5.2 �±1� GPa, K0�=22.5 �±3�, and K0K0�=−452.3 �±24�.
The necessity of using such a high order fit further illustrates
the differences in compression mechanisms already dis-
cussed between silica liquid and MgSiO3 liquid, which re-
quires only a third order fit. The calculated P-V isotherms
initially remain close and nearly parallel to each other on
compression, and then begin to diverge on further compres-
sion beyond V /VX=0.7 �Fig. 9�. For comparison, we also
perform simulations of the crystalline phases quartz, stisho-
vite, and seifertite �alpha-PbO2 structure� at 3000 K.68–72 By
comparing the slope of the equation of state in pressure-
volume space, we see that the liquid phase is more compress-
ible than any of the solid phases when compared at the same
volume. The density of the liquid exceeds that of quartz at
a pressure of about 4 GPa, consistent with previous
experimental73 and theoretical analyses.45 At 3000 K, the
density of the liquid also exceeds that of stishovite at about
90 GPa and seifertite at approximately 120 GPa. These
liquid-crystal density inversions are consistent with a recent
analysis of the high-pressure melting curve of silica, which
finds vanishing dTM /dP melting slopes at similar
pressures.59 A complete analysis of the melting curve is be-
yond the scope of this study.

Our results agree well with experimental determinations
of the equation of state of liquid SiO2. At low pressure, vari-
ous experimental analyses18–22 have yielded significantly dif-
ferent results, which span our predicted equation of state
�inset of Fig. 9�. Our results are in excellent agreement with
high-pressure high-temperature shock-wave data.59 Our cal-
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culated pressure for density of 4.71 g/cm3 at 8000 K is
106.5 GPa, compared with the value from a previous FPMD
simulation of 110 GPa.74 Our GGA simulations agree well
with previous GGA results45 �inset of Fig. 9�.

We calculate the thermal Grüneisen parameter, defined as
	= �V /CV���Pth /�T�, where CV=�E /�T is the heat capacity
at constant volume. As in the case of the thermal pressure, a
linear equation is fitted to the calculated energy-temperature
results at each volume �inset of Fig. 10�. Our results show
that CV and 	 tend to decrease and increase, respectively,
with compression in a nonlinear way �Fig. 10�. Two distinct
regions appear: a low-compression region characterized by
little variation with compression and large and small values
of CV and 	, respectively, and a high-compression region
characterized by more rapid variations with volume and by
small CV and large 	. The heat capacity of the silica liquid
substantially exceeds the Dulong-Petit value. Our results for
CV are larger than previous MD results,11 and both sets of
theoretical results are larger than the experimental values.75

The reason for the difference between theory and experiment
in this case is not clear. It should be noted that our previous
first-principles molecular dynamics simulations of MgSiO3
liquid are in excellent agreement with experimental heat ca-
pacity data.14 It is possible that the heat capacity depends
strongly on temperature at temperatures below the range of
our study, although this seems unlikely based on the linearity
of the energy-temperature relation.

C. Dynamical properties

We compute the self-diffusion coefficient as

D = lim
t→


��r�t��2�
6t

, �6�

where

��r�t��2� =
1

N
	
i=1

N


ri�t� − ri�0�
2 �7�

is the MSD and ri�t� is the position of the ith atom at time t
�Figs. 11 and 12�. The partial MSD is then calculated by
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averaging over atoms of a given species. We account for the
translational symmetry of the system so that the MSD value
is not restricted by the size of the supercell. At high tempera-
tures of 5000 and 6000 K, each MSD clearly shows two
temporal regimes. The first is the ballistic regime �for short
times� in which the atoms move without interacting strongly
with their neighbors and MSD is proportional to t2. The sec-
ond is the diffusion regime �for long times� in which MSD is
proportional to t. However, at 3000 and 4000 K, an interme-
diate regime appears where MSD increases slowly due to the
so-called cage effect. The atoms are temporarily trapped in
the cages made by their neighbors. The duration of the cage
regime increases rapidly with decreasing temperature span-
ning 0.1–1 ps at 4000 K and 0.2–20 ps at 3000 K. This is
consistent with a previous FPMD study.46 At 3000 K, the
curves show additional features; immediately after the ballis-
tic regime, the curves show a small shoulder at around
0.03 ps and a peak at around 0.2 ps. As suggested
previously,40 the first feature can be associated with the com-
plex local motion of the atoms in the open tetrahedral net-
work and the second with the so-called boson peak related to
a low-frequency vibrational mode.

The calculated diffusion coefficient at the reference vol-
ume �V=VX� as a function of the inverse temperature follows
the Arrhenius relation �Fig. 13�. Our analysis is made at con-
stant volume �along V /VX=1.0 isochore�, and the corrections
to constant pressure are within uncertainties. The calculated
activation energies are 3.43�8� and 3.27�12� eV for silicon
and oxygen, respectively. These numbers are relatively
small, compared to the experimental values for vitreous
silica at lower temperatures of 6.0 and 4.7 eV, respectively,
for Si �Ref. 31� and O �Ref. 32�, and a more recent experi-
mental value of 4.74 eV for Si diffusion.33 The difference
between our results and experiment may be explained by a
crossover from strong Arrhenian behavior at the low tem-
peratures of the experiments to fragile, non-Arrhenian behav-
ior within the temperature range of our simulations.40 Previ-
ous MD studies based on semiempirical interatomic force
models have produced a wide range of activation energies as
the predicted diffusion constants differ by up to two
decades.40,41,77,78 Our results are slightly smaller than those
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from a previous FPMD study;43 the small difference may be
due to the greater duration of our simulations. A crossover to
fragile behavior at high temperature would suggest nonlinear
dependence of the diffusion coefficient on inverse tempera-
ture over the range of our simulations. Indeed, we cannot
rule out a nonlinear dependence within our uncertainties, in
which case the values quoted above for the activation ener-
gies should be considered as average values over the tem-
perature range of our simulations.

Very long simulations at compressed volumes are needed
for 3000 K �the lowest temperature studied� to obtain the
fully converged diffusion coefficients. For instance, at the
smallest volume �V /VX=0.4� used, the 3000 K MSD re-
mains below 0.9 Å2 over the run of about 60 ps �Fig. 12�.
This behavior is consistent with a vitreous �nondiffusional�
state. We calculate the diffusion coefficients only at those
volume-temperature points where we see a clear evidence for
the beginning of the diffusional regime. At 4000 K, with
increasing pressure, the calculated diffusion coefficient
initially increases, reaching a maximum at approximately
25 GPa, and then decreases with further increase in pressure
�Fig. 14�. A similar maximum is weakly present at 5000 K
and absent at 6000 K, where the diffusion coefficient
decreases monotonically with increasing pressure to within
our uncertainty. Previous MD studies have also predicted
diffusivity maxima at temperatures ranging from
3000 to 5000 K.11,13,38,41,77–79 The Arrhenius law cannot rep-
resent the complete set of calculated pressure-temperature
values of diffusivity of silica liquid due to the diffusivity
maximum. We include only those pressure-temperature
points in the Arrhenius analysis which show a diffusivity
decreasing with increasing pressure including all seven vol-
umes at 6000 K, V /VX�0.9 at 5000 K, and V /VX�0.6 at
4000 K. Thus derived activation energy and activation vol-
ume for the total diffusivity are 2.0 eV and 1.2 Å3, respec-
tively. The activation energy is substantially less than that
�3.35 eV� at V /VX=1.0, which emphasizes difference in dif-
fusional behavior in silica liquid between low and high pres-
sures. For comparison, the corresponding values for MgO
from the Arrhenius fit to a complete set of P and T results for
the total diffusivity are 0.83 eV and 1.3 Å3, respectively.49

We note that the apparently Arrhenian regime that we have

analyzed is geophysically relevant as it encompasses
pressure-temperature conditions at which partial melting
would be expected in Earth’s mantle.

Previous MD studies have shown that finite-size effects
on diffusivity of silica liquid can be substantial.38,79,80 The
diffusion coefficient at zero pressure varies with the number
�N� of atoms as 1/N at 3000 K or as 1/N1/3 at 6000 K.80 We
estimate, based on these results, that our simulations may
underestimate the diffusion coefficient by 20% at 6000 K
and by 45% at 3000 K, relative to the infinite system limit.
Since the finite-size effect is systematic, we may estimate the
value of the zero-pressure activation energies in infinite sys-
tem limit: 3.22 and 3.19 eV, respectively, for Si and O, i.e., a
few percent difference. Finite-size scaling is not well known
at high pressure, although little difference between systems
with 324 and 728 atoms was previously found by MD
simulation.79 We note that the height of our diffusivity maxi-
mum at 4000 K is about 3.5�10−9 m2/s relative to the value
at V /VX=1.0, which is much larger than the potential finite-
size errors.

IV. DISCUSSION AND CONCLUSIONS

Liquid silica has been predicted to display several
anomalies, including a temperature of maximum density
�TMD�, spinodal instability, and liquid-liquid phase
transformations9–11 that so far have not been studied with
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first-principles methods. Predictions of these anomalies have
been based on semiempirical interatomic force models,
including van Beest–Kramer–van Santen �BKS�76 and
Woodcock-Angell-Cheeseman �WAC�.77 The prediction of a
TMD has led several authors to draw analogies between the
behavior of silica and water.3 More recent studies have
shown that the dependence of TMD on volume and the mag-
nitude of negative thermal expansivity are sensitive to the
assumed form of the atomic interactions.9,10

Our results show no evidence for a TMD. In particular,
the pressure increases monotonically and nearly linearly with
increasing temperature along all isochores investigated �Fig.
8�. This is in contrast to the strongly concave dependence of
pressure with temperature along isochores found in previous
results based on semiempirical potentials.9 For example, at a
density of 2.2 g/cm3, similar to our V /VX=1.0, Ref. 9 finds
that the pressure decreases with increasing temperature up to
a temperature of 9000 K, where the pressure is 10 GPa less
than that at 3000 K according to the WAC model. The mag-
nitude of this local pressure minimum lies well outside the
uncertainties of our simulations. The BKS model produces
more subtle effects �pressure at 5000 K is 4 GPa less than
that at 2500 K�, which can nevertheless also be excluded by
our simulations.

We find no evidence of spinodal instabilities �vanishing
bulk modulus� over the range of our first-principles simula-
tions. The pressure monotonically increases with decreasing
volume along all isotherms �Fig. 9�. Spinodals have been
found in previous simulations of liquid silica, behavior that
has been connected to the possibility of liquid-liquid phase
transformations.9–11 The WAC potential predicts two spin-
odals on the 3000 K isotherm at 8 and 10 GPa, whereas the
BKS potential predicts spinodals at positive pressure for T
�6500 K and T2000 K,9 outside the range of our results.
We cannot rule out the presence of spinodal instabilities out-
side the range of our results. Indeed, extrapolation of our
equation of state fit at 3000 K shows a spinodal at a pressure
of −0.12 GPa and V /VX=1.05. Our results show no signs of
spinodal instability at temperatures higher than the range in-
vestigated here on the basis of the nearly linear dependence
of pressure on temperature.

The disagreement between pair potentials and first-
principles simulations calls into question the accuracy of the
pair potentials. Even if two quite different pair potentials
yield qualitatively similar results, it does not necessarily fol-
low that the qualitative trends are realistic. This may be be-
cause of the limitations in the functional form of the pair
potentials: the well-known Born-Mayer form81 may not cap-
ture the essential physics of bonding.42 Indeed, by including
polarizability, Ref. 82 finds much better agreement with first-
principles simulations of liquid silica.

We find that silica liquid is characterized by two distinct
compressional regimes: a low-pressure regime �V /VX�0.7�
in which the Si-O coordination number is nearly constant
and a high-pressure regime �V /VX�0.7� in which the Si-O
coordination number increases relatively rapidly. These two
regimes are characterized by distinct thermodynamic proper-
ties. In the low-pressure regime, the liquid is much more
compressible, the heat capacity is higher, and the Grüneisen
parameter is smaller than in the high-pressure regime. The

behavior of silica liquid is thus quite distinct from MgSiO3
liquid in which the Si-O coordination number and the Grü-
neisen parameter depend essentially linearly on compression.

Structural compression mechanisms in these two regimes
are fundamentally different. In the high-pressure regime,
compression is primarily associated with an increase in the
Si-O coordination number. The low-pressure regime displays
a unique compression mechanism that is not seen in any
crystalline silicate. Whereas crystalline silicates compress ei-
ther by decreasing nearest neighbor bond lengths �e.g.,
stishovite� or the distances �angles� between coordination
polyhedra �e.g., quartz or coesite�, neither of these two com-
pression mechanisms occur in the liquid. Instead, the liquid
compresses by altering its medium range structure as mani-
fested in the ring statistics.66 In particular, the number of
small rings decreases with compression, and the ring size
increases. These results are understood in terms of the rela-
tive pruning efficiency of different sized rings as they are
formed in a Bethe lattice, and rationalized by comparison
with a suite of crystalline silicate structures, which show a
wide variety of ring statistics and a range of framework den-
sities over a factor of 3, with the least dense frameworks
associated with the largest number of small rings.67 The to-
pological compression mechanism found in silica liquid is
potentially very important for understanding the behavior of
polymerized silicate liquids at elevated pressure. The reason
is that the topological mechanism is operative in the pressure
regime where the liquid is most compressible, and therefore
is responsible for a large fraction of the compression over the
pressure regime of Earth’s mantle.

An alternative interpretation of compression in the low-
pressure regime was offered by Trave et al.45 They argued
that increased network connectivity due to the presence of a
small fraction of fivefold coordinated Si is primarily respon-
sible for compression in this regime. While this may also be
a contributing factor, it is not clear how this mechanism can
lead to substantial amounts of compression. Unlike the ring-
growth mechanism discussed above, it is not possible to use
crystalline models to quantify the relationship between the
compression mechanism and density. Moreover, we find that
formation of fivefold coordination Si does not increase net-
work connectivity, at least at low pressure.

The dynamical properties of silica liquid are also found to
show two distinct regimes, a low-compression anomalous
regime showing a temperature-dependent diffusivity maxi-
mum and a high-compression regime in which the diffusion
coefficient decreases with increasing pressure. We find that
the diffusivity maximum is closely associated with the pres-
ence of fivefold coordinated Si, in agreement with previous
studies.41 The pentahedral coordination environments can be
considered as transition states for atomic diffusion. In par-
ticular, the pressure at which fivefold coordinated Si is most
abundant coincides with the pressure of the diffusivity maxi-
mum at 4000 K. We confirm from first principles the diffu-
sivity maximum in silica liquid, which was previously pre-
dicted by MD simulations based on interatomic force
models.13,38,41,78,79 A clear pattern in our results has not been
widely discussed: the vanishing of the diffusivity maximum
with increasing temperature. Indeed, the strong temperature
dependence is at odds with a previous explanation of the
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diffusivity maximum as being associated with the crystalline
fourfold to sixfold coordination change.79 This model would
predict that the diffusivity maximum should either be inde-
pendent of temperature or move to higher pressures with
increasing temperature, contrary to our findings. Our results
are consistent with a picture in which silica liquid behaves
like a strong liquid at low pressure and low temperature and
a fragile liquid at high pressure and high temperature. This
explains the diffusivity maximum, its temperature depen-
dence, and the difference between the high-temperature acti-

vation energy obtained from our simulations and the larger,
lower-temperature activation energy found in experiments.
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