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This paper presents a systematic approach for finding efficient boundary conditions for molecular dynamics
simulations of crystalline solids. These boundary conditions effectively eliminate phonon reflection at the
boundary and at the same time allow the thermal energy from the bath to be introduced to the system. Our
starting point is the Mori-Zwanzig formalism �R. Zwanzig, J. Chem. Phys. 32, 1173 �1960�; in Systems Far
from Equilibrium, edited by L. Garrido �Interscience, New York, 1980�; H. Mori, Prog. Theor. Phys. 33, 423
�1965�� for eliminating the thermal bath, but we take the crucial next step that goes beyond this formalism in
order to obtain memory kernels that decay faster. An equivalent variational formulation allows us to find the
optimal approximate boundary conditions, after specifying the spatial-temporal domain of dependence for the
positions of the boundary atoms. Application to a one-dimensional chain, a two-dimensional Lennard-Jones
system, and a three-dimensional model of �-iron with embedded atom potential is presented to demonstrate the
effectiveness of this approach.
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I. INTRODUCTION

In this paper, we present a systematic treatment of the
boundary conditions �BCs� for molecular dynamics �MD�
simulations of crystalline solids at finite temperature. The
present paper will focus only on the issue of handling the
thermal bath. In subsequent papers, we will extend the
framework presented here to the case when nontrivial exter-
nal conditions, such as traction, are applied.1 The issues dis-
cussed here not only are significant by themselves but also
serve as a crucial step in developing multiscale modeling
strategies that couple together atomistic and continuum
models.2–4

Computer simulation based on MD has played an increas-
ingly important role in studying the atomic structure and
dynamic behavior of materials. A common problem in such a
simulation is the effect of the boundaries: Due to its compu-
tational complexity, MD simulations are typically done on
rather small systems which are truncated from much larger
samples. As a result, artificial boundaries are introduced,
where boundary conditions are needed to take into account
the effect of the atoms that have been removed. Ideally, these
boundary conditions should guarantee that the system be-
haves in the same way as if the whole sample is being simu-
lated. In particular, such boundary conditions should have
the following features.

�1� Allow the phonons generated from the simulation to
propagate out, without being reflected.

�2� Be able to introduce thermal energy into the system as
if the atoms that are removed from the simulation act as the
thermal bath.

�3� Be able to handle external loading.
Much has been said about item �1� �see, in particular, Ref.

5�. The present paper will be focused on item �2�. In addi-

tion, we will present a general framework that allows us to
discuss �1� and �2�, and subsequently �3� in a unified fashion.

The setup is illustrated in Fig. 1. The computational do-
main, denoted by D, consists of atoms that are represented
by the filled circles. The entire sample is denoted by �
which also contains atoms, represented by open circles, that
will be removed from the simulation. We will call the re-
moved atoms the bath atoms. We start with molecular dy-
namics for the entire system,

FIG. 1. �Color online� A schematic of the setup of the problem.
Filled circles: Atoms in the computational domain. Open circles:
Atoms in the heat bath. The dashed line indicates the interface
between the two groups and defines the boundary for the computa-
tional domain.
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müi = − �ui
�, i � � ,

where m is the mass, ui is the displacement of the ith atom,
and � is the potential energy of the system. The main as-
sumptions are as follows.

�1� Bath atoms are in thermal equilibrium initially.
�2� The interaction among bath atoms and the interaction

between bath atoms with the atoms in D are linear.
There is no restriction on the interaction between the at-

oms in D. These assumptions are fine in the absence of plas-
tic deformation. However, they are violated when disloca-
tions or other plastic defects move across the boundary of D.
This is the major shortcoming of the present approach.

In principle, the Mori-Zwanzig formalism6–9 provides an
ideal framework for eliminating the bath atoms. A typical
result from such a reduction procedure is the generalized
Langevin equation �GLE� for the remaining atoms, i�D, in
the form of

müi = − �ui
V + Diui

+ �
j�D

��ij�0�u j�t� − �
0

t

�ij�t − s�u̇ j�s�ds� + Fi�t� .

�1�

Here, Di is a constant matrix and V is the potential energy for
the subset D. The functions �ij�t�, known as the memory
kernels, describe the history dependence of the process after
the bath atoms are eliminated. Fi�t�, which can be considered
as random forcing, is related to the dynamics of the unre-
solved bath atoms. In the context of molecular dynamics, the
GLE approach was first used by Adelman and Doll in10,11 to
study gas-surface interaction, where a one-dimensional chain
model was considered to model the atoms in the solid. This
formulation was later extended to body-centered and face-
centered cubic crystal lattices by Tully.12 Recently, Cai et
al.13 discussed how one can obtain such exact kernels in the
general case by performing a large number of test simula-
tions. Berne and co-workers14,15 and Izvekov and Voth16 con-
sidered this problem for liquids and used MD simulations to
extract the memory kernels. Karpov, Liu, Wagner and co-
workers continued with this path and extended the formalism
to general crystal structures.17–19

However, as is usually the case with the Mori-Zwanzig
formalism, even though it is in principle exact, it is difficult
to use in practice. For the present problem, this difficulty is
reflected in the slow decay and long interaction range of the
memory kernels which couple together all the boundary at-
oms and their time history. This is a rather substantial com-
putational overhead. In addition, if for any reason we would
like to move the computational domain during the simula-
tion, for example, to track the path of a defect, we run into
difficulties with the fact that the previous history of the new
boundary atoms is not available. This is a serious problem if
we want to couple MD simulations with continuum model-
ing in a multiscale, multiphysics setting.

Therefore, the central issue is to find approximate bound-
ary conditions that allow us to represent the effect of the bath
atoms with reasonable accuracy and complexity. In the gen-

eral context, the need to approximate the Mori-Zwanzig for-
malism has been recognized by Chorin et al. in their work on
optimal prediction.20–23 In the present context, this idea was
first pursued in the work of E and Huang2,3 for simplified
models, and later for general crystal structure by Li and E.5

This series of work is limited to zero temperature in which
case the main requirement for the boundary conditions is to
prevent the reflection of the phonons. These local boundary
conditions, which are obtained from a variational formula-
tion that aims at minimizing phonon reflection, are referred
to as variational boundary conditions �VBCs�.

The present paper extends this series of work to finite
temperature. At finite temperature, the issue is not simply
phonon reflection, but also the absorption of phonon energy
from the environment. Our philosophy is very much in line
with that of optimal prediction: Given the allowed complex-
ity of the boundary condition, in the form of the set of neigh-
boring atoms that a boundary atom is allowed to interact
with and the duration of the time history that the boundary
atoms depend on, we would like to find the optimal interac-
tion kernels—in the sense that the reflection of outward
propagating phonons is minimized. It is not yet clear how to
find variational approximations of the Mori-Zwanzig formal-
ism in the general setting. Our work is possible because of
the following special features of the problem.

�1� The memory kernels are independent of temperature.
�2� The exact memory kernels can be characterized by a

variational principle.
�3� The memory kernels are not unique. More efficient

memory kernels can be found by “trading spatial dependence
for temporal dependence,” namely, by increasing their spatial
interaction range, we can obtain memory kernels that decay
faster in time.

In implementing such a program, there are several nu-
merical issues that have to be addressed, such as the stability
of the algorithm, efficient procedures for sampling the noise,
and error control. We will discuss these issues in detail. We
will continue to call the boundary conditions developed here
VBCs.

The first application of such boundary conditions is that
they can be used as thermostats. In fact, since they come
from explicit representation of the effect of the bath atoms,
one expects them to perform well as thermostats. We will
present examples demonstrating that this is indeed the case.
Compared with the commonly used thermostats, the current
method has the feature that it controls the system tempera-
ture from the boundary without directly affecting the dynam-
ics in the interior. This is particularly attractive when simu-
lating the dynamics of inhomogeneous system, e.g., systems
that contain material defects. However, even for homoge-
neous systems it has been a concern whether existing ther-
mostating techniques, such as Andersen’s thermostat,24 the
isokinetic method,25 and Berendsen’s method,26 give the cor-
rect dynamic behavior �see the discussion in Ref. 27�. For
this reason, we will show comparisons between the measured
velocity correlation functions using VBC and the exact ones.
More sophisticated examples will be presented in subsequent
publications after we discuss how to handle external defor-
mation or loading.

Another approach for prescribing the boundary condition
is to replace the atoms in the heat bath with a coarser model.
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This idea has been pursued by Rudd and Broughton28 in their
work on coarse-grained molecular dynamics �CGMD�. Simi-
lar to the Mori-Zwanzig procedure, the main idea in CGMD
is to integrate out the excess atomic degrees of freedom in
the heat bath and obtain a reduced dynamic model for the
displacement field represented by finite elements. CGMD
makes the strong assumption that the eliminated degrees of
freedom are close to thermal equilibrium with the coarse-
grained variable. In contrast, the procedure presented here
can, in principle, be made as accurate as we wish.

In order to deal with much larger systems, we will have to
consider the problem in a multiscale setting. This brings out
many interesting issues, such as the ghost forces, stress and
energy calculation in the continuum region, statistical error,
etc. They will be addressed in separate work along with fur-
ther comparison with the CGMD method.

II. MORI-ZWANZIG FORMALISM

A. Quick review

The basic setup of the problem is shown in Fig. 1. We
divide the atoms in a crystalline solid into two groups: One
group consists of atoms that we will keep in our computa-
tional domain. The variables associated with these atoms are
called the retained variables. The rest are treated as the heat
bath and the variables associated with them will be elimi-
nated from the formulation. The purpose of the heat bath is
twofold: First, it provides the phonons that maintain the
whole system at certain temperature. Second, it helps absorb
the phonons and elastic waves that are generated from the
computational domain.

Our purpose is to eliminate the atoms that are outside the
computational domain. For this purpose, we adopt the Mori-
Zwanzig formalism, which is a general procedure for elimi-
nating variables in a system. The effects of the eliminated
degrees of freedom are represented in memory kernels and
noise terms for the dynamics of the retained variables.

To briefly illustrate the ideas, let us recall the model prob-
lem introduced in Ref. 29. The system of interest has one
degree of freedom, which is coupled with many other de-
grees of freedom that act as the heat bath. These are modeled
by independent harmonic oscillators. A similar model with
coupled oscillators was considered in Ref. 30. The Hamil-
tonian for the entire system is written as

H =
1

2
v2 + U�x� + �

j=1

N �1

2
pj

2 +
1

2
� j

2	qj −
� j

� j
2x
2� .

Here, the masses of all the particles are assumed to be unity.
� j is the frequency of the jth oscillator and � j is the coupling
constant. Hamilton’s equations read

ẋ = v ,

v̇ = − U��x� + �
j

� j	qj −
� j

� j
2x
 ,

q̇j = pj ,

ṗj = − � j
2qj + � jx .

The last two equations above can be solved analytically,
yielding

qj�t� =
� j

� j
2x�t� + �qj�0� −

� j

� j
2x�0��cos � jt

+
pj�0�

� j
sin � jt −

� j

� j
2�

0

t

cos � j�t − s�v�s�ds .

Substituting this into the second equation gives

v̇ = − U��x� − �
0

t

K�t − s�v�s�ds + F�t� , �2�

where

K�t� = �
j

� j
2

� j
2 cos � jt

and

F�t� = �
j

� j�qj�0� −
� j

� j
2x�0��cos � jt +

� j

� j
pj�0�sin � jt .

Equations in the form of Eq. �2� are known as the GLEs.
The first term on the right hand side describes the interaction
among the retained variables. The second term describes his-
tory dependence of the dynamics: After eliminating the de-
grees of freedom associated with the heat bath, the dynamics
is no longer Markovian. The last term, which represents the
influence of the heat bath, is often regarded as the random
force. We will assume that for any initial value of x, the
initial configuration of the heat bath obeys the canonical dis-
tribution,

��q1,p1, . . . ,qN,pN� =
1

Z
e−�H, �3�

with temperature T=1/ �kB��. It is easy to see that F�t� is a
Gaussian process with mean zero and covariance

�F�t + t0�F�t0�� = kBT�
j

� j
2

� j
2 cos � jt = kBTK�t� .

In particular, the process is stationary. More importantly, the
time correlation of the random noise is related to the memory
kernel in the GLE. This is the essence of the fluctuation-
dissipation theorem.8

In the general case, it is more convenient to use the pro-
jection operator formalism.6,8,20–23 Following Chorin et al.,
we will view the projection as conditional expectation. Con-
sider a system of ordinary differential equations for the vari-
ables x= �x1 ,x2 , . . . ,xn�,

d

dt
x�t� = f„x�t�…, x�0� = x0. �4�

Assume that the first m degrees of freedom are to be kept
�retained variables�. The rest will be eliminated. For any
function g�x�, define the projection of g by
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Pg = E�gx1,x2, . . . ,xm� =
� g�x���x�dxm+1 ¯ dxn

� ��x�dxm+1 ¯ dxn

,

where � is a probability density, often taken to be the equi-
librium distribution for the system �4�.

Consider the Liouville equation

d

dt
u�x,t� = Lu�x,t� , �5�

where L is the Liouville operator,

L = �
i

f i�x��xi
. �6�

The solution u�x , t� of Eq. �5� can be expressed as

u�x,t� = etLu�x,0� . �7�

Let ��t�=�(x�t�) be any function of the retained variables
at time t, with initial condition ��0�. With the semigroup
notation in Eq. �7�, this can be written as ��t�=etL��0�. The
goal of the projection procedure is to derive an effective
equation for ��t�. Taking the time derivative, we have

d

dt
��t� = etLL��0� = etLPL��0� + etLQL��0� ,

where Q= I− P. Next, using Dyson’s formula,

etL = etQL + �
0

t

e�t−s�LPLesQLds ,

the second term can be written as

etLQL��0� = etQLQL��0� + �
0

t

e�t−s�LPLesQLQL��0�ds .

Defining

F�t� = etQLQL��0�, K�t� = PLF�t�

and combining all the terms, we get

d

dt
��t� = etLPL��0� + �

0

t

e�t−s�LK�s�ds + F�t� . �8�

The first and second terms on the right hand side depend
only on the retained variables. They represent, respectively,
the Markovian contribution and the history dependence of
the dynamics for the retained variables. The third term,
which satisfies PF=0, depends on the initial condition of the
heat bath variables. Since the statistics of the heat bath is
assumed, F�t� can be regarded as random noise.

B. Application to molecular dynamics modeling of solids

Now, we turn our attention to the case of molecular dy-
namics for solids. Let ri and xi be the equilibrium and cur-
rent position of the ith atom, respectively, and let ui=xi−ri
be the displacement vector. Alternatively, we will use u�ri , t�

to represent the displacement of the ith atom whenever it is
more convenient. For simplicity, we assume that the bound-
ary is planar with inward normal vector n, and we assume
that the retained variables are the ones associated with the
atoms that satisfy ri ·n	0, namely, all the atoms on the right,
and we let û= �ui :ri ·n	0�.

The dynamics of the atoms is described by Newton’s
equation,

müi = − �ui
� , �9�

with atomic potential �. In accordance with the projection
procedure, we choose the variables x in Eq. �4� to be the
displacement and momenta of all the atoms,

x = �u1,mv1, . . . ,un,mvn� .

The Liouville operator in this case becomes

L = �
i

vi · �ui
− �ui

H/m · �vi
.

To proceed further, we make a harmonic approximation
for the interaction with the bath atoms. For the retained vari-
ables, we keep the original nonlinear potential, denoted by
V�û�. The Hamiltonian for the entire system can be written
as

H =
1

2�
i

mvi
2 + V�û� +

1

2 �
ri·n
0

�
k

ui
TDkui+k. �10�

Here, Dk is the force constant for the harmonic approxima-
tion. The third term in the equation implies that the atomic
interaction involving the atoms in the bath is linear. Follow-
ing the Mori-Zwanzig procedure, we obtain the following
GLE for the retained variables:

müi = − �ui
V − 	 �

k�K

ri−k·n
0

D−k
ui

+ �
rj·n	0

��i,j�0�u j − �
0

t

�i,j�s�u̇ j�t − s�ds� + Fi�t� .

�11�

Provided that the initial data for the bath variables are drawn
from the Gibbs distribution, the random processes Fi�t� are
stationary Gaussian processes. In addition, the fluctuation-
dissipation theorem holds

�Fi�t�Fj�0�T� = kBT�i,j�t� . �12�

See Appendix A for the detailed calculations.
For atomic potentials of finite range, the memory and the

random noise terms are localized to those atoms that have
direct interaction with the heat bath. In fact, for atoms inside
the computational domain that satisfy ri ·n	rc, i.e., the dis-
tance to the boundary is larger than the cut-off radius, we
have QLvi�0�=0. Hence, both the random noise and memory
term vanish from the GLEs �11�. This is demonstrated in Fig.
2, where a triangular lattice is plotted with different orienta-
tions. Here, nearest neighbor interactions are assumed. In
Fig. 2�a�, the normal vector is �0, 1� and there is only one
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layer on which the memory and the random force terms need
to be added, whereas in Fig. 2�b� the normal vector is �0, 1�
and there are two such layers because the cut-off radius
spreads over two atomic spacings. However, we can include
two successive atoms in a single unit cell and view the sys-
tem as a “complex lattice.” The force constant and the
atomic mass will also be redefined accordingly. As a result,
we can rewrite the equation of motion in terms of the ex-
tended variables and always assume, without loss of gener-

ality, that in the normal direction the atomic interaction is
only with the nearest neighbors. We define

J0 = �j:r j · n = 0� , �13�

which represents the layer of atoms in the heat bath that are
adjacent to the boundary, and

J1 = �j:r j · n = dn� , �14�

which represents the atoms at the boundary with dn being the
atomic spacing along the normal direction. Now, we can sim-
plify the GLE �11� to

müi = − �ui
V − 	 �

k�J1

D−k
ui

+ �
j�J1

��i−j�0�u j�t� − �
0

t

�i−j�s�u̇ j�t − s�ds� + Fi�t�

�15�

for all i�J1, and the fluctuation-dissipation theorem be-
comes

�Fi�t�Fj�0�T� = kBT�i−j�t� . �16�

The size of the vectors ui and Fi is d�na, with na the num-
ber of atoms in each unit cell. Another result from our cal-
culation is that at zero temperature the GLEs �15� are equiva-
lent to the following boundary condition for any atom i, i
�J0:

u�ri,t� = �
j�J1

�
0

t

� j�s�u�ri+j,t − s�ds . �17�

This suggests that the displacement for the atoms at the
boundary can be expressed in terms of the displacement of
the atoms in the interior.

C. Example

To illustrate the Mori-Zwanzig procedure, we consider the
simplest example—a one-dimensional chain of atoms with
nearest neighbor interaction

mẍj = ���xj+1 − xj� − ���xj − xj−1� , �18�

via the Lennard-Jones potential

��r� = 4���/r�12 − ��/r�6� . �19�

The lattice parameter for this system is a0=�62�, and the
displacement is defined as uj =xj − ja0.

The phonon dispersion relation for this system is given by

��k�2 =
K2

m
�2 − 2 cos�ka0��, k � �−

�

a0
,

�

a0
� , �20�

where

K2 = ���a0� .

We define the heat bath as the set of atoms with j
0.
After adopting the harmonic approximation for the heat bath
atoms, we obtain the following Hamiltonian for the whole
system:

n

(a)

n
(b)

FIG. 2. �Color online� Boundary condition for molecular dy-
namics simulation of a two-dimensional triangular lattice. �a� n
= �1,0�. In this case, there is only one layer of atoms on which the
random forces need to be introduced, i.e., Fi�0. �b� n= �0,1�. In
this case, there are two layers of such atoms.
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H = �
j
0

K2

2
�uj+1 − uj�2 + �

j	0
��xj+1 − xj� + �

j

1

2
mv j

2.

The projection procedure gives rise to GLEs of the form

mü1 = ���x2 − x1� − �
0

t

��t − s�u̇1�s�ds + F�t� ,

�21�
müj = ���xj+1 − xj� − ���xj − xj−1�, j 	 1.

The GLE for the first atom is equivalent to the following
boundary condition:

u0 = u1�0��
t

�

��s�ds + �
0

t

��s�u1�t − s�ds + F�t� ,

where

�
t

�

��s�ds = ��t� .

As will be shown in Eq. �A10� in Appendix A, the ran-
dom process F�t� can be written as

F�t� = �
j
0

cj�t��uj+1�0� − uj�0�� + sj�t�v j�0� .

The coefficients cj�t� and sj�t� are governed by

ṡ j = cj−1 − cj ,

mċj = K2�sj − sj+1� ,

s0�t� = 0, sj�0� = 0, cj�0� = − K2� j+1, j 
 0,

from which we find

s−1�t� = −
2K2

�
�

0

� sin2 k sin �t

�
dk

and

��t� = − c−1�t� =
K2

�
�

0

� sin2 k cos �t

1 − cos k
dk .

Taking the Laplace transform, we get

�̂�s� =
m

2
�s2 + 4K2/m −

m

2
s .

Thus, we have

��t� =
�mK

t
J1	2Kt

�m

 �22�

and

��t� =
2

t
J2	2Kt

�m

 , �23�

where J1 and J2 are the Bessel functions of the first kind.
Lastly, the random process F�t� is a stationary Gaussian

process with time correlation,

�F�t�F�0�� = kBT��t� .

For this one-dimensional model, the GLE in the same
form was derived by Adelman and Doll10,11 using a different
procedure.

III. GENERALIZED LANGEVIN EQUATION AND
PHONON REFLECTION

In principle, Eqs. �11� and �A16� derived from Mori-
Zwanzig procedure give us the exact boundary condition af-
ter eliminating the heat bath variables, provided that the dy-
namics of the bath atoms is accurately approximated by the
linear models. However, in the present form the GLEs are
difficult for practical use due to the long range interaction in
the memory kernels. To find efficient and accurate approxi-
mations of the GLE, we will need an alternative description
of these memory kernels.

Observe that since the memory kernels are independent of
the temperature, we can restrict our attention to the case of
zero temperature, in which case the boundary condition
should allow the phonons to propagate out without being
reflected at the boundary. The purpose of this section is to
show that the GLE �11� is, in fact, equivalent to nonreflecting
boundary conditions at zero temperature.

A. Reflection matrices

Since phonon reflection is a basic concern, we will briefly
review the key relevant concepts. We adopt a harmonic ap-
proximation of the interatomic potential,

��u1,u2, . . . ,un� = �0 +
1

2�
i�j

ui
TDi−ju j . �24�

The Fourier transform of the force constants defines the dy-
namic matrix

D�k� = �
j

Dje
−ik·rj . �25�

The dispersion relation of this system is related to the eigen-
values �s of the matrix D by

�s
2 = �s.

For definiteness, we will take �s=��s. The corresponding
eigenvectors �s�k� are the polarization vectors. We will use
the standard normalization

�s · �s� = �ss�.

The index 1
s
S designates the different phonon branches
and S is the number of branches in the spectrum. A phonon
mode is represented by a wave number k restricted to the
first Brillouin zone B.

Next, we define the reflection matrices for the phonons.
The reflected phonon modes are determined by the condi-
tions that the displacement and strain are continuous before
and after phonon reflection. This implies that the frequency
and the tangential component of the wave number should be
conserved. To be more specific, let kI and kR be the wave
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numbers corresponding to the incident and reflected phonon
mode respectively, and kI�B. Then, kR must satisfy

kI − �kI · n�n = kR − �kR · n�n, �s�k� = �s��k
R� , �26�

for some 1
s ,s�
S.
Solving these equations can be quite complicated. We

have found an alternative procedure, in which the problem of
finding the reflected wave mode was reduced to finding the
zeros of a polynomial.5 The degree of the polynomial de-
pends on S and on the effective range of the interatomic
potential, denoted by Ne, which is the number of layers along
the normal direction that have direct interaction with the
boundary atoms. We will denote the reflected phonon mode
by

�kss�
R ,s� = 1,2, . . . ,NR�, NR = SNe.

The boundary reflection is demonstrated in Fig. 3. With the
assumption that we made in the previous section, Ne=1.
Hence, NR=S.

To compute the reflection coefficients, consider a super-
position of an incident wave on the branch s and the resulting
reflected waves,

u j�t� = ei�k·rj−�st��s�k� + �
s�

Rss�e
i�k

ss�
R

·rj−�st��s��kss�
R � .

�27�

We will restrict our attention to boundary conditions in the
form of Eq. �17�. A substitution into Eq. �17�, or equiva-
lently, to the GLE �15�, leads to a linear system, from which
the reflection coefficients Rss��k� can be obtained. Recall that
from Eq. �13�, J0= �r j :r j ·n=0� contains the heat bath atoms
next to the boundary, and for the atoms at the boundary, J1
= �r j :r j ·n=dn�, with dn the lattice spacing in the normal di-
rection. For any k�B, define

A�k� = �
j
�

0

+�

� j���e−i�k·rj+���d� , �28�

which corresponds to a discrete Fourier transform along the
boundary and a Fourier/Laplace transform in time. A direct
substitution of Eq. �27� into Eq. �17� leads to

�I − eidnkn
Ā��s + �

s�

Rss��k��I − eidnk
ss�
n

Ā��s��kss�
R � = 0,

�29�

where the bar denotes the complex conjugate. These equa-
tions form a linear system from which the reflection coeffi-
cients R can be computed.

The exact boundary condition or memory kernel is ob-
tained by requiring that the reflection coefficient vanish iden-
tically. For the one-dimensional example discussed earlier, if
we consider boundary conditions of the form

u−1�t� = �
0

t

��s�u0�t − s�ds , �30�

the reflection coefficients R�k� can be expressed as �see also
Refs. 2 and 3�

R�k� = −
1 − �̂���eika0

1 − �̂���e−ika0
, k � 	−

�

a0
,0
 . �31�

Here, �̂��� is the Fourier/Laplace transform of ��t�,

�̂��� = �
0

�

��t�e−i�tdt . �32�

k and � are related by the dispersion relation �20�.

B. Equivalence of the generalized Langevin equation with
nonreflecting boundary conditions

Here, we provide an equivalent characterization of the
memory kernels using the reflection matrices. We will prove
the following statement: The memory kernels are exact if the
corresponding reflection coefficients are zero for all wave
numbers.

The proof is as follows. First, we obtain the exact bound-
ary condition �17� via Fourier and Laplace transforms in the
case of zero temperature. Then, we check the reflection co-
efficient using Eq. �29�. At zero temperature, the initial con-

s1

n

ω=ω
ω=ω

ω=ω
k

kk s2 k

s
I

RRR

1

2

3

s3

FIG. 3. �Color online� A schematic of the phonon reflection at
the boundary. The vertical line shows the boundary with normal
direction n. An incident wave from branch s with wave number ks

I

and frequency � arrives at the boundary, generating three reflected
waves with wave number kss�

R . The second subscript s�, 1
s�
3,
represents the branches that the reflected waves belong to. The fre-
quency of the reflected waves must match that of the incident wave.
Therefore, these wave numbers should be in the level sets �s��k�
=�, as indicated by the curves in the picture, where �s� is the
dispersion relation for the s� branch. In addition, their tangential
components have to be equal from Eq. �26�. The horizontal dashed
line in this figure is a plane that contains all such wave numbers.
Therefore, the intersection of the level sets and the horizontal plane
determines the wave numbers kss�

R .

VARIATIONAL BOUNDARY CONDITIONS FOR MOLECULAR… PHYSICAL REVIEW B 76, 104107 �2007�

104107-7



dition for the heat bath variables is zero. Namely,

u j�0� = 0, u̇ j�0� = 0,

for all r j ·n
0.
In this case, the solution for the atoms in the heat bath can

be expressed analytically. We first take a Fourier transform
of the displacement along planes tangent to the boundary,

Um�k,t� = F j→ku j = �
rj·n=mdn

u je
−k·rj ,

for k ·n=0. Then, Newton’s equations �9� become

MÜm = D̂−1Um−1 + D̂0Um + D̂1Um+1,

with U1�t� given. M is the mass matrix. Note that we have
used the assumption that the atomic interaction is only via
nearest neighbors in the normal direction.

Next, we take a Laplace transform in time,

Ũm�k,s� = Lt→s�Um�k,t�� ,

which leads to a set of difference equations,

s2MŨm = D̂−1Ũm−1 + D̂0Ũm + D̂1Ũm+1. �33�

Let the eigenvalues and eigenvectors of the difference equa-
tions be �l and �l, respectively. We can then write the general
solution of Eq. �33� as

Ũm�k,s� = �
�l	1

cl�l
m�l, �34�

with constant cl. Here, we have excluded the mode for which
�l�1 to guarantee that the solution is bounded. In particu-
lar, we have

Ũ0 = E�−1E−1Ũ1,

where E is a matrix with lth column given by �l and � is a
diagonal matrix containing all the eigenvalues. Taking the
inverse Laplace transform in time and inverse Fourier trans-
form in space, we arrive at the boundary condition in the
form of Eq. �17�, with

F j→kLt→s� j�t� = E�−1E−1. �35�

In this case, the boundary condition is exact in that it pro-
duces solutions as if the atoms on the left are still present.

It remains to show that for the kernels in Eq. �35�, the
reflection coefficient is zero. We change the variable s to i�,
and �=e−idn�. Then, by substituting Eq. �34� into Eq. �33�, we
find that � is the frequency of the wave mode k+�n, with
polarization vector �l. This implies that for any wave number
k,

A�s = e−idn��s.

By comparing to the reflection matrix in Eq. �29�, we see that
the exact boundary condition, expressed via Fourier and
Laplace transforms in Eq. �35�, corresponds to zero reflec-
tion: R�k��0.

For the one-dimensional example, setting R�k��0 and us-
ing the dispersion relation, we obtain

�̂0 = e−ika0 = 1 −
m�2

4K2 − i
�m�

2K
�4 −

m�2

K2 . �36�

Taking the inverse Laplace transform, we get

�0�t� =
2

t
J2	2Kt

�m

 , �37�

which is the same as the kernel obtained earlier �Eq. �23��.

IV. GOING BEYOND MORI-ZWANZIG

In the previous section, we have discussed an alternative
characterization of the memory kernels using the reflection
matrices: the exact memory kernels should lead to no reflec-
tion of outgoing phonons. Memory kernels that satisfy this
condition are not unique. This opens up the possibility of
extending the GLE models beyond the traditional Mori-
Zwanzig framework. One benefit from such an extension is
the added flexibility of choosing the memory kernels. As one
application, we show later that the extended GLE formalism
allows us to choose memory kernels that decay faster in
time.

A. Extended generalized Langevin equation formalism

The kernels and noise term should satisfy the following
conditions.

�1� The corresponding reflection coefficient is zero:
R�k�=0 for all wave number.

�2� The fluctuation-dissipation theorem is satisfied.
For simplicity, we will illustrate the idea using the one-

dimensional model,

üj = uj+1 − 2uj + uj−1.

We extend the GLE �21� to a set of GLEs with multiple
memory and noise terms,

ü1 = u2 − u1 − �
j=1

J �
0

t

�1j�s�u̇j�t − s�ds + F1�t� ,

ü2 = u3 − 2u2 + u1 − �
j=1

J �
0

t

�2j�s�u̇j�t − s�ds + F2�t� ,

¯

üJ = uJ+1 − 2uJ + uJ−1 − �
j=1

J �
0

t

�Jj�s�u̇j�t − s�ds + FJ�t� ,

üJ+1 = uJ+2 − 2uJ+1 + uJ,

¯ . �38�

To obtain the memory kernels, we set kBT=0 so that the
random noise terms drop out. The nonreflection condition
implies that the system admits as exact solutions time har-
monic waves of the form
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uj�t� = ei�jk−�t�,

with dispersion relation

�2 = 2 − 2 cos k ,

where we picked k� �−� ,0� and ��0 so that the phase
velocity is negative. The corresponding substitution yields

i��
j=1

J

�̂1,j���e−ijk = 1 − e−ik,

�39�

�
j=1

J

�̂m,j���e−ijk = 0,

for 1�m
J. Here,

�̂��� = �
0

�

e−i�t��t�dt .

Using the dispersion relation, we can eliminate the wave
number k from the equation above. In particular, we have

eik = 1 −
�2

2
−

i�

2
�4 − �2,

which will be subsequently denoted by ����. From Eq. �36�,
we see that � is exactly the Fourier transform of the memory
kernel �0 in Eq. �37�. One can verify that �0 decays like t−3/2

over long time, and so does � given by Eq. �22�. This can be
seen from ����, which has a square root singularity at �
=2,

lim
�→2−

���� = � .

B. Choosing memory kernels with faster decay rate

We will illustrate how we can take advantage of the added
flexibility in choosing the memory kernels to obtain kernels
with faster decay rate in time. We consider extended GLEs in
the form

ü1 = u2 − u1 − �
0

t

�11�s�u̇1�t − s�ds

− �
0

t

�12�s�u̇2�t − s�ds + F1�t� ,

ü2 = u3 − 2u2 + u1 − �
0

t

�21�s�u̇1�t − s�ds

− �
0

t

�22�s�u̇2�t − s�ds + F2�t� ,

üj = uj+1 − 2uj + uj−1. �40�

From Eqs. �39�, we get

�1 − e−ik��2 = �− i����̂11���� + �̂12� . �41�

This equation can be simplified to

�̂11���� + �̂12 =
1

2
�4 − �2�3/2 −

3

2
�4 − �2 + 	1

2
�3 −

3

2
�
i .

We now choose the kernels to remove the square root
singularity. For example, one may choose the memory ker-
nels whose Fourier transform take the following form:

�4 − �2�n/2 − iP��� ,

where P��� is a polynomial which ensures that as � ap-
proaches infinity, the function above converges to zero. For
example, we can pick

�̂11 =
3

8
�4 − �2�3/2 +

3i

8
��3 − 6�� ,

which, after an inverse Laplace transform, becomes

�11�t� =
9

2t3 �J1�2t� − tJ0�2t�� .

This implies that

�̂12 =
1

32
�− 3�4 − �2�5/2 + 10�4 − �2�3/2

+ 3�5i − 30�3i + 90�i� ,

which, after an inverse Laplace transform, becomes

�12�t� =
15

t5 ��6t − t3�J0�2t� + �4t2 − 6�J1�2t�� .

Clearly, these kernels decay like t−5/2.
For the second GLE in Eq. �40�, the substitution of the

harmonic wave mode yields

�̂21 + �̂22	1 −
�2

2
+

i�

2
�4 − �2
 = 0. �42�

To remove the square root singularity, we may choose the

kernel �̂22��� as follows:

�̂22��� = �4 − �2�3/2 + i��3 − 6�� + q��� ,

where the additional function q��� is smooth and behaves as

q��� � 8i/�

near �= ±2. Obviously, �22��� decays no slower than t−5/2.
In addition, one can verify that

lim
�→2

�̂22��� = 0, lim
�→2

�̂22� ��� � + � ,

which implies that �̂21��� has finite first derivative. Hence,
�21�t� has a faster decay than � given by Eq. �22�. Therefore,
by extending the system in space, we obtain kernels that
decay faster in time.

C. Fluctuation-dissipation theorem for the extended
generalized Langevin equations

We will briefly discuss the fluctuation-dissipation theorem
for the extended GLEs. Consider a set of linear GLEs,
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mü = Bu − �
0

t

��s�u̇�t − s�ds + F�t� . �43�

Here, u is a vector representing the displacement of all the
particles in D. B is a constant matrix. We will assume that the
random noise is uncorrelated with the initial velocity,

�F�t�u̇�0�T� = 0. �44�

The Gibbs distribution for the system can be expressed in
the form

1

Z
e−���1/2�mv2+�1/2�uTAu�, �45�

where v= u̇ is the velocity or momentum. We note that the
choice of the Gibbs distribution might be an issue by itself.
The quadratic form uTAu represents the potential energy of
the system and should take into account the effect of the
boundary condition. This issue arises already in the context
of static problems at zero temperature. In particular, it arises
in quasicontinuum method.31 Failure to account correctly for
the boundary conditions in the matrix A results in ghost
forces. This has been discussed in Ref. 32. This also provides
the point of contact between the boundary conditions for the
static and dynamic problems.

Define

��t� = �u�t�u�0�T� . �46�

From Eq. �45�, the initial values of � are given by

��0� = kBTA−1, ���0� = 0, ���0� = − kBTI, ���0� = 0.

�47�

Multiplying the first equation in Eq. �43� by v�0�T and ap-
plying Laplace transform in time, we get

�̃��� = �− m�3 − �2�̃ + �B�−1

���− m�2��0� − ��̃��0� + B��0�� + mkBTI� .

�48�

Now, we can compute the time correlation of the random
noise. We rewrite the GLE as

F�t� = mü − Bu + �
0

t

��s�u̇�t − s�ds ,

and calculate the Laplace transform of the time correlation of
the random noise using the formula for �. This leads to

�F�t�F�0�T� = F−1�kBT�̃ +
1

�
�B��0� + kBT�BT�

= kBT���t� + �BA−1 + I�BT� . �49�

In particular, if B=−A, we have

�F�t�F�0�T� = kBT��t� .

Equation �49� provides a generalized fluctuation-
dissipation theorem that has to be satisfied in order for the
system to equilibrate to the right Gibbs distribution.

V. APPROXIMATION OF THE GENERALIZED
LANGEVIN EQUATIONS

We have shown that the memory kernels can be found by
setting the reflection coefficient to zero. However, in prac-
tice, these boundary conditions can be quite awkward since
all boundary atoms are coupled together and the memory
kernels decay rather slowly. For an N�N�N system, if the
memory integrals over time are truncated beyond M time
steps, then the total cost of updating the position of one
boundary atom is O�MN2� if direct summation is used. One
might be able to develop fast summation techniques, as is the
case with influence matrix techniques in numerical simula-
tion of wave propagation33 or fluid dynamics.34

We will pursue a different path: We will discuss how one
can find approximate boundary conditions which are effec-
tively local. The fact that this is possible is suggested by the
discussions in the previous section. Such approximate
boundary conditions are more flexible in practice, especially
for systems with realistic geometries and for problems in
which the computational region has to move, for example, to
follow defects.2,3 From a philosophical viewpoint, this also
serves as an example that illustrates how we can make effi-
cient approximations to the Mori-Zwanzig formalism.

A. General principle

The construction of the approximate boundary conditions
will be based on the following principles.

�1� Efficiency: The boundary condition should preferably
be local and it should not lead to too much computational
overhead.

�2� Accuracy: Given the allowed computational cost, here
in the form of the size of the stencils �to be defined later�, we
will find approximations to the exact boundary condition
�11� with optimal accuracy. In this sense, what is done here
resembles the philosophy behind optimal prediction.20

�3� Stability: The approximate boundary conditions
should be numerically stable. This will constrain the approxi-
mate kernels to be positive definite.

We will seek approximate kernels within the class of
functions that are local. In this case, the memory terms be-
come of the form

�
j
�

0

t0

�i−j�s�u̇ j�t − s�ds ,

with a finite summation over j. Here, t0 specifies the length
of the time history that we allow the boundary atoms to
depend on. This is equivalent to replacing the kernels in Eq.
�17� by local ones,

u0�t� = �
rj�J

�
0

t0

� j�s�u j�t − s�ds . �50�

Here and in the following, we will index the boundary atoms
by a subscript 0. Recall that J1= �j :r j ·n=dn�. We let
J� �j :r j ·n	0� to be a set of preselected neighboring lattice
points in the interior. The sets J� �0, t0� or J� �m
=1,2 , . . . ,M� are called the stencil, a terminology that is
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often used in the numerical computation of solutions of par-
tial differential equations. By selecting the stencils, we re-
strict the kernels to local functions. Namely,

� j�t� = 0 for j � J or t 	 t0. �51�

Another way to think about boundary conditions in the
form of Eqs. �17� and �50� is to view them as a way of
specifying the positions of the bath atoms that lie within the
interaction range of the atoms in the computational domain
and, in particular, what the positions of these atoms depend
on. This is similar to the notion of domain of dependence in
the context of partial differential equations. For the exact
boundary condition, the domain of dependence is the entire
plane next to the boundary, i.e., the set J1. For the approxi-
mate boundary condition, however, it is much more local as
shown in Fig. 4 for a two-dimensional system.

The memory kernels � j and � j are related as follows:

� j�t� = − �
k�J1

Dk�
t

+�

� j+k�s�ds . �52�

This is proved in Appendix B.
In the discrete form, the boundary condition we are look-

ing for becomes

u0
n+1 = �

j�J
�
m=1

M

� j
mu j

n−m+1�t . �53�

The number of points in J and the number of time steps M
determine the cost of implementing such boundary condi-
tion. Given the stencil, our aim is to find optimal boundary
conditions of the form discussed above, by choosing the ma-

trices �� j� or �� j� in the right way. For now, we will again
limit ourselves to the case when the computational domain is
half space and we will assume that the approximate bound-
ary conditions are translation invariant. In the continuous
form, the boundary condition for the other atoms at the
boundary takes the form

u�ri,t� = �
j�J
�

0

t0

� j�s�u�ri + r j,t − s�ds . �54�

B. Variational formulation of the exact kernels

Given a set of kernels in the proposed boundary condi-
tion, one may define the total reflection as

E��� j�;n� = �
s

�
s�
� Rss�

2Ws�k�dk , �55�

where Ws�k��0 is some weight function. Here, the depen-
dence of the right hand side on the kernels enters through the
reflection matrices Rss�. In the previous section, we have
shown that for the exact memory kernels, the corresponding
reflection coefficient must be zero. In other words, the exact
kernels form a minimizer of the functional E.

There are many natural choices of the weight function W.
In Refs. 2 and 3, W is taken to be a constant. In Ref. 5, W is
taken as

Ws�k� = ��s�k� · n . �56�

In this case, Eq. �55� represents the energy flux across the
boundary due to the reflection of phonons. One can also
restrict the integration domain in the wave number space to
the subset of the first Brillouin zone B that corresponds to the
incident wave. The functional then becomes

E��� j�;n� = �
s

�
s�
�

k�B,k·n
0
Rss�

2Ws�k�dk . �57�

C. Approximate memory kernels

Motivated by the variational formulation of the exact ker-
nels, we will find the approximate kernels by minimizing the
functional I, in the class of kernels that satisfy Eq. �51�. To
ensure accuracy for long wavelength modes, we impose the
constraint that R�0�=0, which leads to

�
j�J
�

0

�

� j�s�ds = I , �58�

where I is the d�d identity matrix. For complex lattices,
since the phonon spectrum has optical branches, this con-
straint has to be modified. Let

K =�
I

I

]

I
�

be a dna�d matrix. Then, the constraint can be written as

x

t

y

(a)

(b) x

t

y

FIG. 4. �Color online� Domain of dependence for the exact
boundary conditions �top� and the local boundary conditions �bot-
tom�. The filled circle represents an atom at the boundary, and the
shaded areas indicate the domain of dependence. The normal direc-
tion of the boundary is aligned along the x axis.
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�
j�J
�

0

�

� j�s�dsK = K . �59�

Once � j is computed, we obtain � j from Eq. �52�. Alter-
natively, one can directly use � j�t� as the variables in the
variational formulation, and solve the optimization problem

E��� j�;n� = �
s
�

k�B,k·n
0
�
s�

Rss�
2Ws�k�dk . �60�

Using Eq. �52�, the constraint �59� becomes

�
j

� j�0�K = − �
k�J1

DkK . �61�

The stability condition requires that the Fourier transform
of � j, known as the power spectrum, be semipositive defi-
nite, i.e., all eigenvalues must be non-negative. The solution
to the variational problem discussed above does not auto-
matically guarantee this property. For instance, for the one-
dimensional model, Fig. 5 shows the Fourier transform of an
approximate boundary condition, which is computed from
the variational approach using � as the variable. Clearly, the
Fourier transform becomes negative as the frequency gets
high enough. Although the power spectrum stays positive for
���max, with �max=2, which is the highest frequency for
the phonons in this system, instability may develop over long
time integrations.

To guarantee stability, we seek the memory kernels � j�t�
that have the following form:

� j�t� = �
p
�

−t0

t0

�p�s�� j+p�t + s�Tds , �62�

or in discrete form,

� j
n = �

p,m
�p

m�� j+p
n+m�T�t . �63�

This guarantees that the stability condition is satisfied. To see

this, let ��k ,�� and �̂�k ,�� be the Fourier transform in time
and on the tangent plane for � and �, respectively. Then,

��k,�� = �̂�k,���̂�k,��*,

which guarantees the semipositive definiteness. Furthermore,
in order for � j to be a correlation function as is stipulated by
the fluctuation-dissipation theorem �Eq. �16��, one must have

� j�t� = �−j�− t�T.

This is automatically satisfied with Eq. �62�.
Now, we change the variables in the variational formula-

tion to � j�t� and we solve the problem

min
��j�

E��� j�;n� . �64�

Once � j�t� is obtained from the variational principle, we
compute � j�t� using Eq. �62�.

These approximate boundary conditions were referred to
as VBCs in Ref. 5. They provide a good compromise be-
tween accuracy and complexity. It has been demonstrated5

that with VBC, one can achieve almost the same accuracy as
the exact boundary conditions, at a much lower cost. Other
implementation issues as well as comparison with other
boundary conditions are discussed in Ref. 35.

D. Sample the random noise

Once the memory kernels are available, we can sample
the random force using the fluctuation-dissipation relation

�Fi�t�Fj�0�T� = kBT�i−j�t� . �65�

We first show how to find Fi�t� analytically. Taking a Fourier
transform in time, we get

F̂j��� = �
−�

�

Fj�t�e−i�tdt .

Obviously, the Fourier coefficient F̂i��� is a Gaussian ran-
dom variable for every �. To find the correlation, we make a
substitution of the equation above to Eq. �65�, and we find

�F̂i��1�F̂j��2�T� = kBT�̂i−j��1����1 + �2� ,

where

�̂ j��� = �
−�

�

� j�t�e−i�tdt . �66�

Therefore, after the Fourier transform, the random noise is
uncorrelated. For the spatial correlation, we perform a Fou-
rier transform along the boundary. Let

F�k,�� = �
j�J1

F̂j���e−irj·k. �67�

For any wave number k, such that k ·n=0, F�k ,�� is a sta-
tionary Gaussian process. Using the identity in Eq. �65� and
the stationarity in space, we obtain

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2
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FIG. 5. �Color online� The Fourier transform of an approximate
boundary condition obtained by minimizing the total reflection.
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�F�k1,�1�F�k2,�2�T� = kBT��k1,�1���k1 + k2����1 + �2� ,

�68�

where

��k,�� = �
j�J1

�̂ j���e−irj·k.

The matrix �, known as the power spectrum, provides the
covariance matrix for the Fourier coefficients of the random
noise. The random processes are completely determined by
their power spectrum. This procedure can be implemented
numerically to sample the Gaussian noise.36–38

The specific form in Eq. �62�, however, makes this step
quite easy. Let Wp�t� be a sequence of independent white
noises,

�Wp�t�Wq�0�T� = �pq��t� .

Let

Fj�t� = �kBT�
p
�

0

t0

�p�s�Wj+p�t + s�ds . �69�

Then, Fj�t� is a Gaussian process satisfying

�Fj�t�F0�0�T� = kBT� j�t� .

In discrete form, let Wp
m be a sequence of independent iden-

tically distributed normal random variables. Then,

Fj
n = �

p,m

�kBT�t�p
mWj+p

n+m.

E. Overall algorithm

The overall algorithm consists of the following steps.
�1� Generate quadrature points in the first Brillouin zone

in order to perform the integration in Eq. �60�. Here, the
k-point method39 is used.

�2� Compute the dispersion relation and the polarization
vectors at each quadrature point.

�3� For each quadrature point k, such that k ·n
0, find all
possible wave numbers for the reflected phonon, �kss�

R ,s�
=1,2 , . . . ,NR�, as well as the corresponding polarization vec-
tors.

�4� Select the stencil, i.e., the set J and the number of time
steps M.

�5� Initialize the time history kernels �� j
m�.

�6� Compute the reflection coefficients Rss� from Eqs.
�29�, �52�, and �62�.

�7� Compute the objective function from Eq. �60�.
�8� Use an optimization routine to obtain new values for

the kernels � j
m. The BFGS subroutine40 is used here.

�9� Go to step 6 unless certain convergence criterion is
met.

After the kernels � j
m are computed from the variational

formulation, we find � j from Eq. �62� and sample the random
forces from Eq. �69�. All these are done in a precomputing
step, namely, we precompute the kernels and the random
force and store the data for later use. In the MD simulation,
we add the memory and the random force terms to atoms at
the boundary at each time step.

F. Error analysis

To analyze the error we make in approximating the ker-
nels � j, we take the Fourier transform

A�k,�� = �
j�J1

�
0

�

� j�t�e−i�k·rj+�t�dt . �70�

For the exact memory kernels, this is denoted by A0�k ,��.
Similarly, we define the Fourier transform of the kernels � j,

��k,�� = �
j�J1

�
0

�

� j�t�e−i�k·rj+�t�dt , �71�

and denote the exact power spectrum by �0. We also define

D̂�k� = �
j�J1

D−me−ik·rj .

In order to estimate the magnitude of the error, we recall
some notations for matrix norms. We will use · to denote the
length for vectors. For an n�n matrix B, we will use the l2
and l� norms, given by

�B�2 = ��max�BTB�, �B�� = max
i

�
j

Bij ,

where �max�BTB� is the largest eigenvalue of the matrix BTB.
We will show the following.
Theorem V.1. The error in approximating A0�k ,�� is con-

trolled by the magnitude of the reflection coefficients. More
specifically, we have

�A�k,�� − A0�k,���2 

�1 + �A0�k,���2��S�R�k,����

1 − �S�R�k,����

�72�

and

���k,�� − �0�k,���2 

�D̂�k��2�2 + �A0�k,���2 + �A0�k,0��2��S�R�k,����

��1 − �S�R�k,�����
, �73�
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provided that �S�R���1. Here, S is the number of phonon
branches of the system.

In order to relate A to the matrix A in Eq. �29� for the
reflection matrix, we define for any k�J0 and �	0 the
normal components �s

I and �ss�
R such that the frequency is

matched,

�s��� = �s���ss�
R n + k� = �, � = �s

In + k .

In addition, to represent the incidence and reflection modes,
we require

Im��s
I� 
 0, Im��ss�

R � � 0.

Then, � ·r j +�st=k ·r j +�t+dn�s
I. Therefore,

A�k,�� = Ā���e−idn�s
I
.

Let �ss�=�s���ss�
R n+k�. We change the variable to �k ,�� and

rewrite the Eq. �29� for the reflection matrix as

�I − eidn�s
I
A��s + �

s�

Rss��I − eidn�
ss�
R

A��ss� = 0. �74�

Now, we define the matrices EI, ER, ẼI, and ẼR whose sth
columns are

Es
I = �s, Es

R = �
s�

Rss��ss�,

Ẽs
I = eidn�s

I
�s, Ẽs

R = �
s�

Rss�e
idn�

ss�
R

�s�.

We then have

A�k� = �EI + ER��ẼI + ẼR�−1.

In particular,

A0 = EI�ẼI�−1,

for the exact boundary condition. By subtracting A0 from A,
we have

A − A0 = �ER − A0ẼR��ẼI + ẼR�−1. �75�

Since the dynamic matrix is symmetric, one can choose
orthonormal eigenvectors for �s. Therefore, �EI�2=1. In ad-
dition, we have

Es
R 
 �

s�

Rss� 
 �R��,

which implies that

�ER�2 
 �S�R��. �76�

Similarly, one can show that

�ẼR�2 
 �S�R��. �77�

The matrix inverse in Eq. �75� exists if

�ẼR�2 � 1.

This is the case if �R���1/�S. In addition, we have

��ẼI + ẼR�−1�2 

1

1 − �ẼR�2



1

1 − �S�R��

. �78�

Combining Eqs. �75�–�78�, we arrive at Eq. �72�.
A similar estimate can be established for � j. This will also

determine the accuracy in computing the random forces.
With Eq. �52�, we further relate � to A,

��k,�� = �− i��−1D̂�A�k,�� − A�k,0�� . �79�

This formula shows how to compute the power spectrum
from the applied boundary condition �50�. Combining Eqs.
�72� and �79�, we get the estimate for the power spectrum in
Eq. �73�.

For the one-dimensional example discussed earlier, we
have from Eq. �31�

�̂ =
1 + R

eika0 + Re−ika0
.

Meanwhile, from Eq. �52� and the constraint �58�, we get

�̂��� = K�i��−1�1 − �̂�, �̂0��� = K�i��−1�1 − �̂0� .

�80�

Therefore,

�̂ − �̂0 = − KR�1 − e−2ika0���eika0 + Re−ika0��i���−1, �81�

for k� �− �
a0

,0� and 0
� /K
2.
The equation above expresses the error for the power

spectrum in terms of the reflection coefficients. In particular,
it shows that a boundary condition with small reflection co-
efficient also provides a good approximation for the power
spectrum.

VI. EXAMPLES

A. One-dimensional chain with nearest neighbor interaction

Here, we consider a one-dimensional chain with nearest
neighbor Lennard-Jones interaction �Eq. �19��. As demon-
strated in Sec. II, the exact boundary condition for this
simple model can be found analytically and is given in Eq.
�22�. Since m, �, and  can be used as the unit for mass,
length, and energy, respectively, they are taken to be unity in
our computation, and all the following numerical results are
presented in terms of the reduced unit. For instance, the unit
for time is given by �=��m /. For the time integration, the
time step is taken to be �t=0.0132�.

For this one-dimensional model, various numerical ex-
periments have been conducted at zero temperature, which
have demonstrated the ability of VBC to prevent wave re-
flection at the boundary.2,3,5 Here, we focus our attention on
finite temperature VBC. We first consider the power spec-
trum obtained from the history kernel via Eq. �52�. From the
exact kernel in Eq. �22�, one can show that for the exact
boundary condition, the power spectrum is given by

�̂0��� = �1 − �2/4, � � �0,2� .

In Fig. 6, �̂0 is plotted together with the power spectrum
computed from the VBC with M =20. One can see that even
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though VBC only includes a small number of history data, it
provides a fairly accurate approximation of the power spec-
trum. As the frequency � approaches 2, which is the maxi-
mum phonon frequency, the discrepancy becomes bigger.

One application of the boundary conditions developed
here is to use it as a thermostat. Compared with existing
thermostats such as the Andersen and Nosé-Hoover thermo-
stats, the thermostat proposed here has the attractive feature
that it is derived from a rather physical setup, through the use
of heat bath atoms and then eliminating the bath atoms. The
effect of the heat bath is represented in the boundary
conditions—the dynamics of the interior atoms is not dis-
turbed directly.

We will examine the application of the VBCs as thermo-
stats. We consider a system consisting of 200 atoms. The
system is initially at rest, and then integrated for 200 000
time steps with the VBCs applied to the first and the last
atoms at a constant temperature kBT=0.001. Figure 7�a�
shows the measured system temperature for each step of the
time integration. Here, the system temperature is defined as
the mean kinetic energy per particle,

kBT̃ =
1

N
�
j=1

N

vi
2.

After about 25 000 time steps, the system is brought to the
applied temperature. This relaxation time depends on the
system size.

To see how dynamics is accurately produced, we com-
puted the velocity autocorrelation function

C�t� = �vi�t�vi�0�� .

For comparison, we conducted a separate microcanonical
simulation with periodic boundary condition applied. The
system is prepared with a simulation of the canonical
ensemble at the same temperature with Nosé-Hoover
thermostat.41,42 Once the system has equilibrated, we turn off

the thermostat and start sampling the time correlation. The
purpose of this step is to eliminate changes of the velocity
autocorrelation function due to thermostating. The velocity
correlation obtained from this procedure is considered to be
“exact.” In Fig. 7�b�, these velocity correlation functions are
shown. We see that with a small stencil M =20, the finite
temperature VBC reproduces quite accurately the time cor-
relation function.

One special case of the GLE �21� is the regular Langevin
equation,

ü1 = ���x2 − x1� −
1

2
u̇1 + Fi�t� . �82�

This corresponds to choosing a singular memory kernel
��t�=��t� and Fi�t� to be the white noise. This type of models
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FIG. 6. �Color online� Comparison of the power spectrum. Solid
line: Power spectrum from the exact boundary condition. Dashed
line: Power spectrum computed from VBC with M =20.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

t

te
m

p
er

at
u

re

× 104

0 5 10 15 20 25 30
−5

0

5

10
x 10

−4

t

<v
(t

)v
(0

)>

(a)

(b)

FIG. 7. �Color online� Molecular dynamics simulation in a one-
dimensional Lennard-Jones system with variational boundary con-
ditions applied: �a� system temperature and �b� velocity correlation.
Solid line: Velocity correlation computed from a separate microca-
nonical MD simulation with the same temperature. Dashed line:
Velocity correlation computed from the MD simulation with finite
temperature VBC applied.
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has been quite popular in molecular dynamics simulations at
finite temperature. They have also been used as boundary
conditions to absorb elastic waves and introduce thermal
noise.43,44 However, such boundary conditions do not pro-
duce the correct time correlation functions, especially for
atoms near the boundary. This is shown in Fig. 8 where we
plotted the velocity autocorrelation function computed from
a simulation with boundary condition �82� applied at the
boundary. These results are compared to the correct correla-
tion functions and the results from a VBC with a bigger
stencil, M =20. One can see that even though the system has
been brought to an equilibrium consistent with the applied
temperature, indicated by the correct value of the correlation
function at t=0, the velocity autocorrelations for t	0 do not
quite agree with the correct values. The discrepancy, how-
ever, will diminish as one moves into the interior. For the
VBC with a bigger stencil, M =20, the results are quite good
even for the atoms near the boundary. These phenomena

have also been observed in other examples that we have
studied.

B. Two-dimensional triangular lattice

Next, we consider a two-dimensional triangular lattice.
The atomic potential is again given by the Lennard-Jones
potential with nearest neighbor interaction. The lattice pa-
rameter is a0=�62� with a cut-off distance rc=1.7a0. Figure 9
shows the crystal structure near the boundary with normal
n= �1,0�. For this system, the force constant for the lattice
point r is given by

Dr =
���a0�

a0
2 r � r .

The boundary condition for the first layer of atoms out-
side the boundary can be written as

u�0,i� = �
j=−N+1/2

N−1/2 �
0

t

� j�s�u��3/2,i+j��t − s�ds .

There are 2N atoms involved in this boundary condition. The
exact boundary condition would require N= +�.

From Eq. �52�, we get
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FIG. 8. �Color online� The velocity autocorrelation function for
atoms near the boundary. The simulation is conducted with VBC
applied at the boundaries. Solid lines: Results from simulation for
the microcanonical ensemble. Dashed line: Results using various
versions of the VBC. Left: Results of VBC with 20 time steps
involved in the boundary condition �M =20�. Right: Only one time
step is involved, which corresponds to the regular Langevin equa-
tion �82�. From top to bottom: The velocity autocorrelation func-
tions for the first to the fourth atoms next to the boundary.

FIG. 9. �Color online� Two-dimensional triangular lattice: the
solid line indicates the location of the boundary, and the filled
circles are the atoms at the boundary. The subscripts indicate the
lattice point. The first and second subscripts indicate the location of
the lattice points in the horizontal and vertical directions, respec-
tively, in the units of the lattice constant a0.
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�i = �
t

+�

D�−�3/2,1/2��i−1/2�s� + D�−�3/2,−1/2��i+1/2�s�ds ,

assuming �N+1/2=�−N−1/2=0.
To test the VBCs, we consider a system with 20�20

atomic units. The system is initially at rest and is then inte-
grated for 130 000 steps with step size �t=0.03. Again, re-
duced units are used for the mass, energy, and length scales,
which subsequently determine the time scale. The phase dia-
gram of this two-dimensional lattice is quite complicated.
For instance, around kBT=0.5 the system develops a new
structure that involves dislocations. Our applied temperature
�which enters as a parameter in the VBC� is chosen to be
well below this value: kBT=0.1. In the first test, we monitor
the system temperature, and this is plotted in Fig. 10�a�. In

the second test, we compute the velocity autocorrelation
function after the system is equilibrated. The results are
shown in Fig. 10�b� together with the exact velocity autocor-
relation function computed from a separate microcanonical
MD as was done in the previous example. The two results
agree quite well for short times but deviate slightly at larger
times. For this simulation, we have chosen N=5 and M
=20 in the VBC.

C. Model of bcc iron

Next, we consider a more realistic example, a model of
�-iron, a three-dimensional bcc system. Here we will use
physical units. The atomic potential used is the embedded
atom potential developed in Ref. 45. The system studied is a
three-dimensional rectangular sample, with the three or-

thogonal axes along the �110�, �11̄0�, and �001� directions,
respectively. The system has the dimension of 16�16�6
atom units. VBC with temperature kBT=400 K is applied to
the left and right boundaries. Along the other two directions,
periodic boundary conditions are applied. In the VBC, we
choose the spatial stencil to consist of 25 atoms, with 5 at-
oms in each tangential direction, and we set M =20. In the
simulation, we set the time step to �t=0.0246 ps. The sys-
tem is initially at rest and is then integrated for 150 000
steps. Figure 11 shows the numerical results including the
system temperature �Fig. 11�a�� and the velocity autocorrela-
tion �Fig. 11�b��. After about 30 000 steps, the system has
settled down to an equilibrium at the correct temperature. In
addition, the velocity correlation function agrees quite well
with the exact values.

VII. CONCLUSION

We have presented a theoretical framework for finding
effective boundary conditions for molecular dynamics simu-
lations of crystalline solids at finite temperature, and we have
presented practical applications of this framework. Heat bath
atoms are modeled using a Kac model. The Mori-Zwanzig
formalism is used to eliminate the bath atoms and represent
their effects in the form of GLEs. However, key to the suc-
cess of this framework is the fact that we can go beyond the
Mori-Zwanzig formalism and formulate approximate GLEs
that are much more local than the exact ones. The approxi-
mate GLEs are obtained using a variational formulation of
the exact GLEs.

Although there are many possibilities for improving and
simplifying the technical aspects of the boundary conditions
developed here, we feel that this is at least the right theoret-
ical framework to think about the problem. It naturally em-
bodies two limiting situations: zero temperature and static
problems. The kernels are the same as the nonreflecting ker-
nels at zero temperature. The noise is determined using the
fluctuation-dissipation theorem, through which a natural con-
nection is made with the static case in the form of the bound-
ary conditions in the Hamiltonian. In some sense, the bound-
ary conditions for dynamics at finite temperature are a
combination of these two ingredients.
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FIG. 10. �Color online� Molecular dynamics simulation in the
two-dimensional Lennard-Jones system with variational boundary
conditions applied at the top and bottom boundaries: �a� system
temperature and �b� velocity correlation. Solid line: Velocity corre-
lation computed from a separate microcanonical MD simulation
with the same temperature. Dashed line: Velocity correlation com-
puted from the MD simulation with finite temperature VBC applied.
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There are at least three possible applications of these
boundary conditions.

�1� As a thermostat. Noise only acts on boundary atoms,
not the interior atoms. This is closer to the physical situation.

�2� As a boundary condition for molecular dynamics. In
particular, we can naturally extend the current framework to
incorporate nontrivial external boundary conditions such as
loading.

�3� As an interface condition for coupled continuum-MD
modeling methods. This was the original motivation for de-
veloping such boundary conditions, and the changes required
for this setting will be discussed in separate publications.

Extending the current method to fluids does not seem
straightforward. Although the GLEs can, in principle, be de-

rived and memory kernels can be obtained from test simula-
tions as have been done in Refs. 14 and 16, the particles can
move outside the system and new particles have to be intro-
duced and inserted back to the system. Furthermore, there is
no underlying lattice structure on which efficient approxima-
tions can be made.
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APPENDIX A: DERIVATION OF THE GENERALIZED
LANGEVIN EQUATION

For completeness, we provide the details for the deriva-
tion of the GLE. Fix i such that ri ·n	0. We first pick �
=ui. In this case, notice that

Pv j = v j . �A1�

Therefore, L��0�=vi�0�, PL��0�=vi�0�, and QL��0�=0.
Therefore, the equation is unchanged after the projection
procedure

u̇i = vi.

Now, we let �=mvi for vi ·n	0. Next, we will explicitly
compute the projection operators P and Q. For this purpose,
we first arrange the lattice points in such a way that �ri

−r j� ·n	0 if i� j. This way of indexing the atoms implies
that in the reference coordinate, for any atom i, all the atoms
with larger indices are on its right. The second step to sim-
plify the calculation is to rewrite quadratic terms in the
Hamiltonian �10� as

1

2�
i

�
k

ui
TDkui+k =

1

2�
i
	ui − �

k�K

Bkui+k
T

�A	ui − �
k�K

Bkui+k
 . �A2�

Here, the set K is of the form �k	0, rk
rc� with some
cut-off distance rc that should be provided by the atomic
potential V. For convenience, it will be assumed that for any
atom i, the set �ri+k ,k�K� consists of all the atoms within
the cut-off radius with higher indices. By matching the force
constants, one finds that the matrices A and Bk are related to
the force constants by

A + �
j�K

Bj
TABj = D0, − ABk + �

j�K

j+k�K

Bj
TABj+k = Dk.

�A3�

The identity in Eq. �A2� needs to be corrected at the in-
terface since it produces excessive cross terms for the re-
tained variables. Because the interaction between the re-
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FIG. 11. �Color online� Molecular dynamics simulation of the
three-dimensional bcc iron with VBC applied at the left and right
boundaries: �a� system temperature and �b� velocity correlation
function. Solid line: Velocity correlation computed from a separate
microcanonical MD simulation with the same temperature. Dashed
line: Velocity correlation function computed from the MD simula-
tion with finite temperature VBC applied. The unit for time is
8.2 ps.
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tained variables is already included in the function V, this
term must be removed, resulting in

H = V�û� +
1

2�
i

mvi
2

+
1

2 �
ri·n
0

	ui − �
k�K

Bkui+k
T
A	ui − �

k�K

Bkui+k

− �

ri·n	0

rj·n	0

�
k�K

ri−k·n
0

rj−k·n
0

1

2
ui

TBk
TABj−i+ku j

+ �
ri·n
0

�
k�K

ri−k·n
0

1

2
ui

TD−kui. �A4�

This representation of the quadratic terms is motivated by
the previous example for independent harmonic oscillators,
and it greatly simplifies the calculation. In particular, let

� j = A1/2�u j�0� − �
k�K

Bku j+k�0�� , �A5�

which is a discrete analog of strain gradient, and we have for
r j ·n
0

P� j = 0, Q� j = � j .

To compute the first term in Eq. �8�, we have for
ri ·n	0

Lvi�0� = − �ui
V„û�0�… + �

k�K

ri−k·n
0

Bk
TA1/2�i−k

− �
k�K

ri−k·n
0

rj−k·n
0

Bk
TABj−i+ku j�0� − �

k�K

ri−k·n
0

D−kui�0� .

Therefore, we get

PLvi = − �ui
V„û�0�… + �

k�K

ri−k·n
0

rj−k·n
0

Bk
TABj−i+ku j�0�

− �
k�K

ri−k·n
0

D−kui�0� .

More generally, we have the following lemma.
Lemma A.1. The first term in the GLE �8� becomes

etLPLvi�0� = − �ui
V„û�t�…

+ �
k�K

ri−k·n
0

rj−k·n
0

Bk
TABj−i+ku j − �

k�K

ri−k·n
0

D−kui.

�A6�

Applying the operator QL, we have

QLvi�0� = �
k�K

ri−k·n
0

Bk
TA1/2�i−k = �

rj·n
0

i−j�K

Bi−j
T A1/2� j . �A7�

Next, we compute the random force term Fi�t�. The or-
thogonality condition PFi=0 suggests that we seek Fi�t� with
the following form:

Fi�t� = �
rj·n
0

Ci,j�t�� j + Si,j�t�v j�0� , �A8�

with Si,j�t� and Ci,j�t� to be determined. This form of repre-
senting the random force can be validated by expanding the
operator etQL in power series in the equation

Fi�t� = etQLQLvi�0� .

For each term in the expansion, the operator QL is applied
repeatedly: The operator Q will confine the summation to the
atoms on the left, and thus the operator L will always pro-
duce linear terms.

Now, notice that Fi solves the equation

Ḟi = QLFi.

Substituting Eq. �A8� into the above equation, we have

QLFi�t� = �
j

�Ci,j�t�A1/2 − �
k�K

Ci,j−kA
1/2Bk�v j�0�

+ �
j

�− Si,j�t�A1/2 + �
k�K

Si,j+kBk
TA1/2�� j/m .

�A9�

Consequently, for any r j ·n
0, we have the following sys-
tem of equations:

mĊi,j = − Si,jA
1/2 + �

k

Si,j+kBk
TA1/2,

Ṡi,j = Ci,jA
1/2 − �

k

Ci,j−kA
1/2Bk,

Si,j�0� = 0, �A10�

Ci,j�t� = 0 for i − j � K ,

Ci,j�0� = Bi−j
T A1/2 for i − j � K .

Lemma A.2. Fi�t� is a stationary Gaussian process, and for
i− j�K, we have

�Fi�t�Fj�0�T� = kBT �
rk·n
0

Ci,k�t�A1/2Bj−k. �A11�

Proof. It is easy to see that Fi�t� is a Gaussian process
with mean zero. Notice that ��i� j

T�=kBT�ijI. From Eq. �A8�,
the time correlation is given by

�ij�t,t0� = �Fi�t + t0�Fj�t0�T�

= kBT�
k

Si,k�t + t0�Sj,k�t0�T + Ci,k�t + t0�Cj,k�t0�T.

�A12�
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Next, we take the time derivative of �ij using Eqs. �A10�
and �A3�. With the boundary condition

Ci,j = 0 for i − j � K ,

one finds that

d

dt0
�ij�t,t0� = 0,

which proves the stationarity.
Finally, since Fi�0�=QLvi�0�, the time correlation can be

computed by combining Eqs. �A8� and �A7�. �
It remains to calculate the memory term.
Lemma A.3. The memory term in the GLE 8 takes the

form

− �
0

t

�
rj·n	0

�
k�K

rj−k·n
0

Ci,j−k�t − s�A1/2Bkv j�s�ds .

Proof. In computing Eq. �A9�, we projected out all the
velocity terms for the retained variables. These terms appear
in K�t�:

K�t� = PLFi�t� = − �
rj·n	0

�
k�K

rj−k·n
0

Ci,j−k�t�A1/2Bkv j�0� .

Therefore, the memory term becomes

�
0

t

e�t−s�LK�s�ds

= − �
0

t

�
rj·n	0

�
k�K

rj−k·n
0

Ci,j−k�t − s�A1/2Bkv j�s�ds .

�
Now, for ri ·n	0 and r j ·n	0, define

�i,j�t� = �
k�K

rj−k·n
0

Ci,j−k�t�A1/2Bk. �A13�

In particular, we have

�i,j�0� = �
k�K

rj−k·n
0

Bk
TABj−i+k.

Collecting all the three terms, we have the following theo-
rem.

Theorem A.1. For the retained variables, the following
GLEs hold:

müi = − �ui
V − 	 �

k�K

ri−k·n
0

D−k
ui

+ �
rj·n	0

��i,j�0�u j�t� − �
0

t

�i,j�s�u̇ j�t − s�ds� + Fi�t� .

�A14�

Provided that the initial statistics is given by the Gibbs dis-

tribution, the random processes Fi�t� are stationary Gaussian
processes. In addition, the second fluctuation-dissipation
theorem holds

�Fi�t�Fj�0�T� = kBT�i,j�t� . �A15�

In the GLE �11�, both the memory term and random noise
term are expressed in terms of the functions Si,j and Ci,j. To
find these functions, take the time derivative of the second
equation in Eq. �10� and combine it with the first equation.
One then finds

mS̈i,j
T = A	− Si,j

T + �
k�K

BkSi,j+k
T 


+ �
k�K

Bk
TA	− Si,j−k

T + �
k��K

BkSi,j−k+k�
T 


= − �
k

DkSi,j+k
T , �A16�

where Eq. �A3� has been used. This shows that each row of
the matrix Si,j obeys the linearized Newton’s equation of
motion. Meanwhile, the initial condition is given by

Si,j�0� = 0, Ṡi,j�0� = Ci,j�0�A1/2 − �
k

Ci,j−k�0�A1/2Bk.

Hence, in principle, the memory kernels can be computed by
solving Eq. �A16�, which in turn determines the random
force term. This calculation also indicates that the memory
kernels, which are only related to the functions Si,j�t� and
Ci,j�t�, are temperature independent. This is a result of the
harmonic approximation beyond which the kernels can be
dependent on the temperature.46 Finally, the memory kernels
are related to the lattice Green’s functions. More discussion
can be found in Ref. 18.

APPENDIX B: TWO FORMS OF THE
BOUNDARY CONDITION

The GLEs derived in the previous section only involve
the atoms in the computational domain. They seem to differ
from typical form of boundary conditions for MD which asks
for the displacement of the outside atoms that are adjacent to
the boundary. The following calculation shows that the GLEs
can be recast into that form.

Proposition B.1. Let �ij�t� and Gi�t� be functions so that

�
k�K

ri−k·n
0

D−k�
t

�

�i−k,j�s�ds = �i,j�t� ,

�B1�
�

k�K

ri−k·n
0

D−kGi−k = Fi.

Then, the GLEs �11� are equivalent to

müi = − �ui
H for ri · n 	 0, �B2�

with the following boundary condition for the heat bath vari-
ables vi ·n
0:
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ui�t� = �
rj·n	0

�
t

�

�i,j�s�dsu j�0� + �
0

t

�i,j�s�u j�t − s�ds + Gi�t� .

�B3�

Proof. For the atoms associated with the retained variable
ni, the force due to the heat bath variables is

fi
ex = �

k�K

ri−k·n
0

D−k�ui−k − ui� .

With the boundary condition �B3� applied, we have

fi
ex = − �

k�K

ri−k·n
0

D−kui + �
k�K

ri−k·n
0

D−k �
rj·n	0

�
t

�

�i−k,j�s�dsu j�0�

+ �
0

t

�i−k,j�s�u j�t − s�ds + �
k�K

ri−k·n
0

D−kGi−k.

Substituting this into Eq. �B2� for the ith atom and using the
identities in Eq. �B1�, we arrive at the GLEs �11�. �

Because the atomic interaction is usually of finite range,
the boundary condition �B3� is only necessary for those out-
side atoms such that ri+k ·n	0 for some k�K. Therefore, it
is natural to assume that

�ij�t� = 0 if j − i � K .

At zero temperature T=0, we have Fi=0. Hence, �i=0 for
ri ·n
0. So, we require that Gi=0 and in light of Eq. �A5�
we require that ui�0�=0 for those atoms such that ri−k ·n

0 for some k�K. Therefore, at zero temperature the first
term and the last term in Eq. �B3� should vanish, leading to

ui�t� = �
rj·n	0

�
0

t

�i,j�s�u j�t − s�ds . �B4�

This is the more familiar form of the boundary condition at
zero temperature.
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