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The possibility to relate analytically elastic shear modulus to melting temperature in the framework of
Lindemann melting criterion is investigated here in the particular case of the body-centered cubic phase of
tantalum, which is identified as a problematic case. Equation of state, elastic constants, and full phonon
dispersion curves (PDCs) are first gathered for a wide pressure range using density functional theory and its
perturbation within the generalized gradient approximation. A global fair agreement is found with previous
experimental studies. Anomalies in PDCs tend to disappear with compression. Various equivalent Debye
temperatures Op(n) are then deduced and compared for increasing compression. The initial Debye model for
atomic vibration is found to stand well above 120 GPa. Under this pressure a possibly significant difference up
to 10% is found between elastic Debye temperature 6p(—3) and 6p(-2) required in Lindemann melting
criterion. As for all the theoretical melting curves proposed in the past, the one found here using 6p(-2,V)
completely overpasses the melting curve established by static measurements in diamond anvil cells, but agrees
well with the shock melting experiment available. This fact is extensively discussed in terms of evolution of

PDCs and explaining hypotheses to be tested in the future are proposed.

DOI: 10.1103/PhysRevB.76.104104

I. INTRODUCTION

Two independent and simultaneously published studies'-?

proposed to relate compression dependence of melting tem-
perature 7, and that of shear modulus G in polycrystalline
isotropic monoatomic material. They both invoke the origi-
nal Debye-model for atomic vibrations® and Lindemann
melting criterion.* In Ref. 1 the relation is expressed in the
following simple terms:

G, (V)V

A W)

In Eq. (1) x is considered independent of atomic volume V.
The subscript m indicates values taken in the monoatomic
solid just before melting. Extensive work of Burakovsky and
coauthors on G, T,,, and related quantities,” including a
new analytical model for compression evolution of the Grii-
neisen parameter,® provides useful tools to interpret mechani-
cal and thermal properties of polycrystalline solids. Experi-
mental study of shear modulus near and through the melting
temperature at ambient pressure can also be found for some
elemental solids,'®!! but, as mentioned by Burakovsky,>%!2
constancy of y probably fails for some elemental solids be-
fore the infinite compression limit because its ambient value
is about twice that expected theoretically for the Thomas-
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Fermi state, which is reached in the compression range
10°-10*.13 Among these problematic metals are body-
centred cubic (bec) Mo, W, Cr, and Ta.

In this study, we intend to inspect detailed evolution of
G(V) and T,,(V) of tantalum in the quasiharmonic approxi-
mation, and to contribute to the identification of a possible
failure of relation (1) in the case of this metal. Tantalum (Z
=73, and Xe 4f'*5d%6s? equilibrium configuration) is a group
V A transition metal, like vanadium and niobium. It is stable
for pressure up to at least a few megabar,'*-1® and has a very
high melting temperature, 3269 K at ambient pressure. No-
tably, energy-volumes curves of ideal hcp, fcc, A15, and bee
structures proposed in Soderlind et al. !> predict that bee is
stable up to 10 Mbar at least at 0 K. Due to this high me-
chanical and thermal stability, bcc Ta is a high-pressure stan-
dard. A rich history of experimental 7!8 and
theoretical>!%2! studies exists on its mechanical properties.
To discuss relation (1) for bee tantalum, we use 0 K elastic
constants (c;;) and phonon dispersion curves (PDCs) com-
puted from first-principles electronic structure calculations,
and experimental data of T,,(P) from literature.”>?* Calcula-
tion of equation of state (EOS), ¢;;, and PDCs are first pre-
sented in detail. Then, PDCs are interpreted in terms of
equivalent Debye temperatures which allow us to test melt-
ing relation 7,,(V) as deduced through Lindemann melting
criterion.
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TABLE I. Numerical parameters used for the calculations. En-
ergy cutoff and smearing are given in Ha.

Properties EOS Cij PDCs
Cutoff energy 60 60 40
Smearing 0.02 0.02 0.01
Irreducible k-points 440 1100-2200 550-1100

II. CALCULATIONS
A. Computational details

All the ab initio results presented here are obtained within
density-functional theory (DFT)**?3 with the Perdew-Burke-
Ernzerhof version of the generalized gradient approximation
(GGA).?> We have used the plane-waves formalism plus
the separable “dual-space” Gaussian pseudopotential of
Hartwigsen, Goedecker, and Hutter (PP-HGH).?’ Five true
valence states (5d°6s?) and eight semicore states (5s25p°)
were treated as in Bercegeay et al.”® Gaussian smearing was
used and spin-orbit coupling was taken into account for the
EOS and elastic constants as recommended by Soderlind et
al.’> PDCs calculations were presented in Ref. 28 and negli-
gibility of spin-orbit coupling was checked in this reference.
We used the ABINIT code package.”” Energy convergence
tests were performed to determine the cutoff energy, the
number of k-points, and the smearing for the Brillouin zone
(BZ) integration for the whole compression range, depending
on the properties addressed. Table I summarizes these nu-
merical data.

B. Equation of state

We calculated the total energy for 17 undeformed unit
cells with volumes spanning from 18.5 to 8 A3. 0 K equa-
tion of state is calculated by local least-squares fits of these
E(V) data points from the relation P=—(JE/JV)—, . Figure
1 presents the corresponding P(V) data. The equation of
state of Ta has been extensively studied by several experi-
mental techniques and ab initio DFT electronic-structure
calculations.'>!® Figure 1 compares our calculations with
diamond anvil cell (DAC) experimental data of Dewaele!d
and shock-wave experiments.>® Thermal pressure between
0 K calculations and ambient DAC experiments is about
1.3 GPa over the whole compression range according to Co-
hen et al.'®, so it can be safely neglected. If we follow Dew-
aele’s recommendation to take into account the Holzapfel
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FIG. 1. Pressure-atomic volume relationship according to PP-
HGH-GGA calculations (large open squares), reduced shock-wave
measurements (Ref. 30) (closed diamonds), and diamond anvil cell
experiments of Dewaele (Ref. 18) with modified ruby pressure scale
after Holzapfel (thick line).

modification of Ruby scale,®' diamond anvil cell (DAC) and
shock-wave experiments are in perfect concordance. We
confirm?® here the excellent agreement between P(V) data
computed with the PP-HGH-GGA method and experiments.

C. Elastic constants

For each volume of the unit cell, the complete set of the
bee Ta elastic constants (c¢y, ¢y, c44) and pressure were de-
duced from a least-squares fit of the strain energy for par-
ticular deformations’? listed in Table II. For each strain type,
eight symmetric values of & in the range +5% were used to
make the strain energy fit. The results of these calculations
are presented in Table IIT and Fig. 2. Since five deformations
are used to fit four unknown parameters (¢, €2, C44, and P),
two values for each parameter are derivable. Because of
symmetry relations in a bce crystal, perfectly converged en-
ergy calculations should give two identical values. In Table
III, only median values are given. For P, mean value takes
also into account the value calculated from local fits of
E(V) data. Differences between the three P values never ex-
ceed 0.1 GPa and are therefore negligible. For c¢;; and ¢,
differences do not exceed 1.5% over the whole compression
range. Noticeable differences exist only for ¢4 as shown in
Fig. 2. Particularly, it should be noted that the difference
increases and reaches approximately 16 GPa between 150
and 250 GPa. Then it decreases very slowly. We remarked
also that convergence of c4, values with respect to k-points

TABLE II. Strain tensors employed for computation of elastic constants, and associated strain energy
formula. € is a 3 X3 symmetric tensor; unspecified &;; are 0.

Strain tensors

Energy formula

£11==80=0, ex3=0°/(1-&)
£1,=0/2; £33=81(4- )
£11=&p=0

£33=0

e3=0

AE/V=(cij—c1p) & +0{5}
AE/V=(cyy/2) 8+ 0{5}
AE/V==2P&+(c{|+c1o—P) &+ 0{6%
AE/V=—=P&+(c;1/2)8+0{6%
AE/V=(2cyy+P) 8 +0{5%

104104-2



FIRST-PRINCIPLES STUDY OF THE RELATIONS...

PHYSICAL REVIEW B 76, 104104 (2007)

TABLE III. Zero temperature EOS and c;; calculated at the 17 volumes considered. Volumes are in A3,
energy of unstrained bec cells is in Ha, and pressures and c;; are in GPa.

4 E\nstrained Py, Clim Clam Caam
18.5000 -59.1691811 -4.0 238.5 149.8 64.6
18.0109 -59.1690056 1.0 263.6 165.8 69.8
17.5000 -59.1687265 6.9 292.3 184.1 75.4
16.0680 -59.1631329 28.5 390.1 247.2 93.3
14.6015 -59.148415 61.2 525.8 336.7 115.7
13.5784 -59.1304681 93.3 652.8 421.3 136.3
12.8282 -59.1118717 123.9 772.0 500.0 156.6
12.2372 -59.0931263 153.5 888.9 575.7 178.6
11.7362 -59.0738033 183.5 1009.7 652.4 203.5
11.0788 —59.0426357 231. 7 1208.3 777.0 248.8
10.5025 —59.0086289 284.8 1427.7 916.6 303.7
10.0123 —58.9735759 340.5 1652.3 1064.5 363.3
9.6170 -58.940344 394.1 1862.3 1207.7 421.1
9.2142 —58.9010331 458.8 2108.3 1380.6 490.3
8.8645 —58.8616483 524.8 2354.3 1558.1 560.4
8.4739 —58.8108389 612.1 2671.8 1795.3 651.1
8.0000 —58.7374978 742.2 3132.2 2156.4 783.1

sampling of the BZ is also more difficult in this compression
range.

Studies of compression dependence of elastic constants
exist in literature. Experimentally, there have been near
ambient-pressure ultrasonic measurements'’ and measure-
ments up to 105 GPa by stress/angle-resolved x-ray diffrac-
tion (SAX) in diamond anvil cells (DAC).!* Elastic constants
were also computed, first at 0 K in the 0—10 Mbar range,
from a full-potential method with linear muffin-tin orbital
(FP-LMTO),"® and second in the [0-10* K, 0—450 GPa]
range by a full potential linearized augmented plane wave
method (FP-LAPW) associated with a particle-in-a-cell
procedure.?® All ¢, and tetragonal shear constant c,=(cy,
—c1»)/2 issued from these references are presented in Fig. 2.

Due to uncertainties in DAC-SAX experiments, it is dif-
ficult to discuss the agreement with them. Our elastic c;; are
mostly within error bars of the experimental values, except
for ¢4, at low pressures which is underestimated here, like in
Giilseren et al. (by 16%). This error is probably underesti-
mated by a few percents as we are comparing 0 K calcula-
tions to experimental data at ambient temperature.

Agreement with the first principle results of Soderlind et
al. or Giilseren et al. is reasonable as a whole; but some
differences must be noticed. First, above 400 GPa, values for
c44 diverge appreciably; but pressures considered in Giilseren
et al. do not exceed 450 GPa. The difference of 10% for c4y
with Soderlind et al.; at the highest pressure considered here,
is not highly significant given classical divergences of ab
initio methods at high pressures. More interesting to mention
is the evolution of elastic shear moduli between 100 and
250 GPa. In this range, the FP-LAPW study of Giilseren et
al. reported a strong softening of ¢,y but no softening of c,,
so that anisotropy ratio c4/c, even passes transitorily under
unity in this interval. On the other hand, the PP-HGH-GGA

method used here, theoretically more precise, predicts hardly
any softening of ¢, and very smoother softening of c,y. The
DFT method used in the study of Soderlind et al.,'” related in
different papers later,>?! is theoretically the finest of the
three methods. According to the values of ¢4y and ¢, at
193 GPa presented in some of these references (Fig. 2), soft-
ening is noticeable for both shear elastic constants. But it is
worth noting in this study that 193 GPa is the only pressure
considered in the range 100-250 GPa. Moreover, in Ref. 21,
the model generalized pseudopotential theory (MGPT)
multi-ion potential constructed by the authors just misses
these values for ¢y and c,.

This high variability of shear elastic constants, and of cyy
in particular, when calculated by different ab initio methods
in this pressure range is somehow confusing. Indeed, EOS of
all the studies mentioned are in good agreement with ours,
and show no peculiar evolution in this compression range.
Giilseren and Cohen? attributed the softening of cyy to a
major reconfiguration of the Fermi surface evidenced be-
tween 5 and 460 GPa'® and concluded that elastic constants
can be much more sensitive to changes in the Fermi surface
than the equation of state. This major transformation of the
electronic structure in the first few hundred GPa was also
observed during this study. Similarly, we note that softening
of ¢4y was very sensitive to convergence with respect to
k-points sampling and smearing in PP-HGH-GGA calcula-
tions, unlike other elastic moduli and EOS. Then, trigonal
shear strain energy, corresponding to c,4, may be particularly
dependant on peculiar structures in the electron energy at the
Fermi surface, and these structures may be fine enough to
require detailed sampling of the Brillouin zone to be cor-
rectly reproduced. Consequently, ¢,y would naturally be also
very sensitive to the DFT method employed. We will observe
similar effects in phonon dispersion curves hereafter.
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FIG. 2. (a) Elastic ¢4y and (b) elastic ¢, for Ta: closed diamonds
and dotted line are for mean values of these 0 K PP-HGH-GGA
calculations (cyy4 error bars in the inset indicate the two values when
distinguishable). Open circles are for experimental SAX values of
Cynn et al. (Ref. 14). Closed circle is for ambient ultrasonic mea-
surement (Ref. 17). Open diamonds and long dashed lines are for
0 K FP-LMTO calculations of Soderlind er al. (Ref. 15). Open
triangles and thick lines are for FP-LAPW computations of
Giilseren et al. (Ref. 20). In the inset, the values of ¢, and c44 shown
at 193 GPa of Soderlind et al. were ignored in Ref. 15, but featured
in a subsequent paper (Ref. 21) by the same authors.

D. Phonon dispersion curves

The calculated phonon dispersion relations discussed here
in detail have already been presented by Bercegeay et al.?®
They were obtained in the framework of density functional
perturbation theory (DFPT).3*35 The strategy is to construct
the full dynamical matrix corresponding to a wave vector q
in the BZ, containing the second derivatives of the energy
with the displacement of the atom. The three eigenfrequen-
cies of this matrix are the three phonon vibrations modes for
this q vector. In DFPT, the strain of the crystalline unit cell
corresponding to each phonon state is described in the Born-
Oppenheimer approximation, as a static perturbation to the
electronic structure which is self-consistently calculated. Do-
ing this on a fine enough mesh of q vectors in the BZ, the
dispersion curves along the symmetry direction and the pho-
non density of states (PDOS) can be interpolated by a Fou-
rier procedure. Computational parameters reported in Table I
were used, and a mesh of 8 X8X 8 q points in the BZ cor-
responding to 29 vectors in the irreducible BZ was consid-
ered for interpolation. This was done for the following five
compression values: 1.00, 1.25, 1.39, 1.96, and 2.51, corre-
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FIG. 3. P=0 phonon dispersion curves of Ta. Symbols with
error bars are from Woods (Ref. 36), and lines are DFPT calcula-
tions. The corresponding phonon density of states is shown at the

right.

sponding approximately to 0, 60, 120, 450, and 1000 GPa,
respectively, according to our equation of state.

PDCs of bec transition metals of group V A (V, Nb, and
Ta) and VI A (Cr, Mo, and W) show numerous anomalies
with respect to PDCs of standard bcc metals. Born-von Kar-
man fits to these generally extend at least to seven nearest
neighbors, indicating complicated long distance and angular
dependences of atomic force constants. The comparison of
the PDCs calculated at P=0 with dispersion relations mea-
sured in ambient conditions by Woods3® is fair as presented
in Fig. 3. The peculiar points to notice on PDCs are the
following.

(I)The crossing over of acoustic longitudinal (L) and
transverse (T) branches due to a softening of the longitudinal
mode around £=0.7 along the [£,0,0] direction.

(2)The pronounced changes in slope for ¢=0.5 and 0.75
along the [£,&, €] T branch.

(3)The increase in the dw/d§& value which occurs at about
halfway across the zone for the [£,0,0] T and [0, &, €] T2
branches.

(4)The decrease below the elastic constants line (dashed
line near I" points in Fig. 3) near £=0.25 for the [£,0,0] T
branch.

(5)The high lying [0, £, £] T2 branch which does not cross
over the [0, &, €] T1 branch. This is coherent with the obser-
vation that ¢,y is greater than ¢, in Ta (Fig. 2), and that the
calculated T2 phonon frequency is much greater than T1
phonon frequency at the N point of the BZ boundary (Fig. 4).

Features (1)—(4) are common with Nb PDCs.?” Anomalies
(1) and (2) are clearly seen on both experimental and calcu-
lated PDCs of Ta. The third anomaly is also noticeable but
much less important than the two previous. The fourth is also
a well-known anomaly of Nb PDCs. It is visible on the com-
puted PDCs of Ta but in the study of Woods the sampling of
the BZ is not fine enough to confirm or infirm it experimen-
tally. The last anomaly is very distinctive of Ta with respect
to PDCs of other group V A and V I A bcc transition metals.

The minus three, zero, first and second equivalent Debye
temperature Op(n,V,) corresponding to the P=0 PDCs for
tantalum are also in good agreement with their available
measured values by various experimental tools,*®3 as shown
in Table IV. We verify also here that 6(-3,V,), calculated
from computed PDCs, is sensibly greater than all other
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FIG. 4. Phonon frequencies calculated at the H and N points for
11 different compressions and comparison to frozen-phonon calcu-
lations in Soderlind et al.(Ref. 15). Triangles are for degenerated
modes in H point, dots are for the longitudinal mode in N point,
squares and diamonds are, respectively, for the first and second
transversal modes in N points. Closed symbols represent calcula-
tions of this study and open symbols are results from Ref. 15.

known 6p(n,V,). This constitutes a significant departure
from the Debye first model for atomic vibrations, according
to which all PDCs follow a unique linear dispersion law,
which implies equality of all 6y(n,V,). This is also coherent
with anomaly (4) mentioned above which makes the initial
slope of PDCs in the central BZ sensibly greater than the
mean slope over the rest of the PDCs.

With compression, phonon frequencies calculated can be
compared to the frozen-phonon calculations done by Soder-
lind et al."> at H and N high-symmetry points of the BZ.
Again, the agreement presented in Fig. 4 is good except for
longitudinal N point frequency above 400 GPa.

Thanks to the good agreement of calculated PDCs with
both ambient experiments and available calculations in pres-
sure, we can now inspect rather confidently their detailed
evolution with compression. With decreasing volumes,
anomalies reported above tend to disappear, giving disper-
sion curves typical of normal bce elements (Fig. 5). One
important modification in the PDCs is the relative lowering
of the [0,§,&] T2 branch with respect to the longitudinal
mode along the same direction. Then, with compression,
anomaly (5) reported above disappears and tantalum gets
back the classical two low lying shear modes of bcc lattices
in the [0, £, &] direction, and the corresponding shape of the
low frequency part of the PDOS. In the mean time one ob-
serves relative elevation of other branches of the spectrum,
namely the [, &, €] T branch (vanishing of second anomaly),
the central part of the [£,0,0] L branch (vanishing of first

TABLE IV. Comparison of the available experimental value of
Debye temperatures with those derived from the first-principles cal-
culated P=0 PDCs. Unity is Kelvin (K).

At P=0 p(2)

218.9

bp(-3) p(0)  Op(1)

Present calculation 247.0£5.0 218.7
Experiment (Ref. 38) 258 229
Experiment (Ref. 39)

218.6

217.0+£2.0 217.0£2.0
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FIG. 5. P=1000 GPa phonon dispersion curves of Ta calculated
within DFPT. At this high pressure, PDCs of Ta present the typical
regular shape for normal bcc elements.

anomaly), and also quite a noticeable elevation of the
[0,&,€] L branch near the BZ border, which becomes the
highest part of the spectrum. Finally, one can also notice that
slight anomalies (3) and (4) also disappear from PDCs.

Figure 6 represents the PDOS deduced from PDCs for the
five compressions considered. Frequencies are reduced to the
highest frequencies w,,,, of each PDOS to get easier com-
parison, independently of the natural extension of the spec-
trum to the high frequencies due to the increase of strain-
energy with pressure. One can clearly see important
modifications in the detailed shape of PDOS at various fre-
quencies, corresponding to the evolution of anomalies men-
tioned before. Disappearance of anomaly (5) corresponds to
the progressive broadening of the first high in the PDOS
(w/ W =0.5). As quoted before by Zener,*° this strength-
ens the weight of the PDOS at low w. On the other hand, as
shown on the PDCs, vanishing of anomalies (1) and (2) and
relative elevation of the [0,&,£] L branch strengthen the
high-frequency content of the spectrum.

The PDOS at different compressions presented above are
the basic tool for the analysis hereafter. Indeed, if anharmo-
nicity is not too important at the temperature considered,

T ) T L T T T

— P=0GPa
— P =60 GPa
— P =120 GPa
P =450 GPa
— P =1000 GPa

arb. units

FIG. 6. Phonon density of state calculated at five pressures.
Frequencies are reduced to the highest frequencies w,,,, of each
PDOS. w,,,,=5.006 THz for P=0 GPa, 7.045 THz for P=60 GPa,
8.484 THz for P=120 GPa, 13.730 THz for P=450 GPa, and
18.557 THz for P=1000 GPa. Note the relative strengthening of
the highest and lowest frequency contents, at increasing pressure.
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more than rough approximations of numerous thermal and
mechanical properties can be deduced from quasiharmonic
treatment of the PDOS calculated at 0 K.*® Then we will
now see what can be inferred in terms of melting temperature
T,(V) and G(V).

III. IMPLICATIONS FOR RELATION
BETWEEN T,,(V) AND G(V)

A. Theoretical understatements of relation (1)

Relation (1) requires essentially two conditions. First, it
invokes the Lindemann melting criterion according to which
a solid melts when atomic mean square vibration (u?)
reaches a fixed fraction of the mean interatomic distance.*
For temperatures above Debye temperature (~230 K
in the case of Ta) harmonic mean square atomic vibration
(u?) is related to the —2 equivalent Debye temperature
0p(-2,V,T,,). This leads to the most commonly used version
of the Lindemann criterion:

T,,(V)

—i5 ————=cst, VV. 2
VB (=2,V) cs (2)

Second, relation (1) requires volume dependence of 6,(-2,
V) to be collinear to that of the —3 equivalent Debye tem-
perature 6(-3,V). Rigorously, 6p(-2,V) is proportional to
the second frequency moment of atomic vibrations. It is then
deduced from integration of PDCs spanning all over the first
Brillouin Zone (BZ). On the other hand, 6,(-3,V) averages
only the initial dispersion coefficients at the I" point of BZ,
that is to say monocrystalline elastic constants (c;, ¢;,, and
cy44 in case of a cubic crystal). A very simple relation exists
between G(V) and 6p(=3,V),%3

1/3
GD(—3,V)z<¥> 5\/?15%, 3)
B

where V is atomic volume, # reduced Planck constant, kg
Boltzmann constant, and p density. This relation is much
more precise than its bulk modulus counterpart invoked in
Slater’s form of the Griineisen parameter.*! The reason is that
it is analytically much less dependent on the variation of
Poisson ratio with compression. Note also that this relation
requires no other theoretical approximation except negligi-
bility of anharmonicity if nonzero temperatures are consid-
ered. Then supposing 6(=2,V)/ 6(=3,V)=cst, relations (2)
and (3) give relation (1).

Just above, relation (1) has been introduced in the quasi-
harmonic framework for simplicity. Then, shear modulus and
nth equivalent Debye temperatures were treated as tempera-
ture independent quantities on isochors. This is a rather
wrong hypothesis in general.®® To be valid relation (1)
should be considered with G(V) and moments frequencies
evaluated near melting. However, in a first approximation, it
is possible to test the hypothesis above thanks to the c;; and
PDCs calculated at 0 K, with relatively simple corrections of
quasiharmonic relations. In the Preston-Wallace model,*2
temperature dependence of shear modulus between 0 K and
melting temperature is written

PHYSICAL REVIEW B 76, 104104 (2007)
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FIG. 7. Minus three equivalent Debye temperature deduced
from elastic constants calculations 6py,(=3) (dots) and from PDCs
Oppr(=3) (diamonds). Both methods give a similar value. Cold
pressures corresponding to the PDCs calculations are reported on
the top axis.
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The linearity was verified experimentally over the accessible
range between 6 and T, for a wide variety of monoatomic
crystals, and statistically, 8 was found*? equal to 0.23+0.08.
Burakovsky et al.! found similar values when modeling
behavior of the infinite pressure limiting Thomas-Fermi
state. Then, as initial and expected final values of 8 hardly
differ over 2—-4 decades of compression, it is proposed in
Ref. 1 to regard B as density independent. Consequently
G, (V)x«G(V,T=0), and relation (3) implies 6p(=3,V,T
=0)x 65(-3,V,T,,). Similarly, one can suppose that 65(-2,
V,T=0) scales with 6(-2,V,T,,) whatever compression is
considered. Then, relation (1) can stand in a more realistic
anharmonic model if we only suppose that temperature in-
duced relative losses of 6p(=2) and 6p(-3) between T=0
and melting are independent of the isochors considered.

We will now derive the evolution with compression of
various nth Debye temperatures (2, V) from the calculated
PDOS and see, in particular, if 65(-2,V)/6p(-3,V) is con-
stant as understated in relation (1).

B. Evolution of various 6p(n,V) with compression

Op(n) are defined for ne[-3,+%]. Complete defini-
tions can be found in Ref. 38. For n=-2, 6p(n) is deduced
from the calculation of the moment frequency (w")!"" using
the whole PDOS presented in Fig. 6. On the other hand,
0p(=3) can be deduced either from elastic constants calcula-
tions using Debye average for sound velocity, or from the
least-squares fit of the divergent behavior of the PDOS with
the suitable following form:*® F(w)=a,w’+a,w*. Hereafter
these two values will be noted 6py,(=3) and 6pp,(=3), re-
spectively. The best fit for pp,(—3) was obtained when con-
sidering the region w=<0.2w,,,, of the PDOS. Uncertainty of
the fit was always inferior to 10 K. 6py,(=3) and 6pp,(-3)
are represented in Fig. 7 for the whole compression range
considered, and the expectable global agreement is verified.
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FIG. 8. Relative variation with compression of various 6p(n,V)
calculated with PDOS reduced to 6p(0, V). 6py,(=3), deduced from
cjj, is included for comparison with 0p(=3). Pressures at 0 K are
reported on the top axis.

The evolutions with compression of various nth 6p(n,V)
are now compared. First, only 6p(n,V) related to the PDOS
are considered. Values of 6p(n,V) reduced to 6,(0,V) are
illustrated in Fig. 8. Within the [1-1.38] compression range
(0—120 GPa), 6(n,V) increases faster than 6p(n’,V) if n
>n'. This can be simply correlated to the modification of
PDCs described before. Indeed, as quoted before, vanishing
of the anomalies in the low frequency part of the spectrum
tends to strengthen the low frequency contents of the spec-
trum whereas evolution of the high frequency part of the
spectrum has the opposite effect. Due to the definitions of the
0p(n,V), the bigger n is, the less 6(n, V) will be influenced
by the evolution of the low frequency part of the PDCs. Then
it is natural that the bigger n, the faster is the increase of the
corresponding moment frequency {”)""* and Debye equiva-
lent temperature 6p(n, V).

Figure 8 shows that PDCs calculated predict that 6(-3,
V) decreases, in ratio to 6p(-2,V), of approximately 11%
within the [1-1.38] compression range. Eleven percent varia-
tion is not huge, given fundamental uncertainties in ab initio
calculations. If we now look at the evolution of 6py,(-3)
(deduced from c;), differences with 6p(~2,V) are even much
smaller. So, if we consider that an estimation of some kind of
uncertainty on 6(=3,V) is given by the difference between
Opy(=3) and 6pp,(-3), then it would not be too rough an
approximation to regard 6p(-2,V)/65(-3,V) as constant, at
least above 1.25 or 1.38 compression. This means that, in
this relatively high compression range, no highly significant
differences are expected when using 65(-3,V) or 65(-2,V)
in Eq. (2) to estimate 7,(V) with the Lindemann melting
criterion.

A similar conclusion can be drawn about 6(n,V) for n
€ [-1,4]. In particular, 65(0,V) and 6(2,V), which deter-
mines the free energy in the classical limit, are nearly pro-
portional to each other on the whole compression range.
Quasiharmonic estimation of the thermal ionic contribution
to many physical properties such as thermal expansion
should then be possible using a unique Debye temperature up
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FIG. 9. Melting temperatures of Ta according to experiments
in DAC with the laser heating device of Errandonea (Ref. 22)
(gray little diamonds), our experiment at 35 GPa (large open dia-
mond), an estimate from shock measurement of Brown around
300 GPa (Ref. 30) (closed square), various published theoretical
studies from Refs. 43—-45 (dotted, continuous, and dashed lines,
respectively), and values deduced from the Lindemann melting cri-
terion and PDOS of this study using either 6,(-2,V) (crosses), or
Oppr(=3,V) (open squares), or 6(0,V) (open circle). Pressures at
0 K corresponding to the isochors considered in PDCs calculations
are reported in the top of the figure.

to 1000 GPa, like in the very simple initial Debye model for
atomic vibration.

C. Melting temperature

Interest on bee tantalum, as well as on the other bece tran-
sition metals of group V A (V, Nb, and Ta) and VI A (Cr, Mo,
and W), has been revived recently by the first measurements
of their melting temperatures T,, up to 100 GPa,?? with a
laser-heating and diamond anvil cell (DAC) device. A very
rapid flattening of melting curves 7,,(P) in the first 50 GPa
with nearly constant 7, above has been observed. This is in
clear disagreement with all the various theoretical models
and calculations for Ta,*>* Mo,!? and W,” and difficult to
conceal with the high pressure shock melting studies.?>?
These discrepancies are illustrated in Fig. 9 together with
melting temperatures from this work. Using relation (2) with
0p(=2,V) we have found melting temperatures 7,,(V) indi-
cated by thick crosses. In comparison with this melting curve
deduced from 6p(-2,V) as required by the Lindemann melt-
ing criterion (2), the one deduced from 6p(=3,V) on the
whole compression range leads to a significant underestima-
tion of Tm between 1 and 1.25 compression (open squares in
Fig. 9). This is the straightforward consequence of the rela-
tive softening with compression of shear modes in central
BZ and vanishing of the fifth anomaly. 6(-3,V) averages
these modifications of elastic phonons in the central part of
the BZ and does not integrate the other modifications of
PDCs which affect simultaneously the other branches of the
spectrum. As Wallace argues for 6(0) as the relevant mo-
ment in the Lindemann rule,*® melting temperatures deduced
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from relation (2) with 6,(0,V) are also represented in Fig. 9
for comparison.

Like previous theoretical models for melting tempera-
tures of Ta, values obtained here using the Lindemann melt-
ing criterion together with precise 0 K calculations of 6p(
—2,V) or 65(0,V) are coherent with shock-melting tempera-
ture measurement around 300 GPa, but they do not better
match low pressure experimental data from Errandonea.?? A
measurement of 7, at 35 GPa was made during this study in
our laboratory, using a DAC and laser heating device similar
to that of Errandonea.?? Here is briefly described our experi-
mental procedure. Pressure transmitting medium in the DAC
is argon. The pressure is estimated at ambient temperature by
ruby luminescence. The tantalum sample is approximately
80 wm wide and 40 wm thick. To heat the sample, a continu-
ous YAG laser is focused at its surface. The spot is approxi-
mately 25 um wide. Temperature measurement is achieved
on the same surface by the spectrometry method all along a
line crossing the spot at it center. This permits us to measure
the horizontal temperature gradient. Temperature is approxi-
mately homogenous and maximal only on a 10 um wide
area in the center, and then it diminishes dramatically toward
the exterior of the spot. During the experiment, laser power
is progressively increased and temperature is measured con-
tinuously in the meantime. When power of the laser is suffi-
cient, the solid melts at the center of the spot, which cause a
change in the power-temperature relation observed. Liquid
phase is also commonly pushed out of the place, which
leaves a characteristic hole in the sample. Three combined
melting criteria are used. The speckle method and laser
power-temperature relation permit recognition of melting
during the experiment.*’~* After opening the diamond anvil
cell, a hole in the sample at the position of the spot confirms
its melting. Using the apparatus described just above, we
confirmed a very low melting point for bcc Ta at moderate
pressure as compared to theoretical estimations (Fig. 9).

We have no precise theoretical explanation for systematic
deviation of experimental melting temperatures below
100 GPa and theoretical values of this study. We have noted
important modifications in the PDCs in the pressure range
where experiments of Errandonea®” report melting tempera-
tures much smaller than theoretical estimations; but even if
modifications of the low frequency part of PDCs in the first
120 GPa [vanishing of anomaly (5) and possible softening of
C44] should lower 65(-2,V), the effect is compensated by
simultaneous disappearance of anomalies (1) and (2) and el-
evation of the [0, £, &] L branch. Then hardly any lowering is
visible on the melting curve deduced from the Lindemann
melting criterion with 65(=2,V). On the contrary when using
0p(=3,V) between 0 and 120 GPa in Eq. (2), Tm tends to be
significantly lowered. This is straightforwardly the conse-
quence of that 6,(-3,V) averages the modifications of elas-
tic phonons only, in the central part of the BZ, and does not
integrate the other modifications of PDCs.

One can question the validity of the Lindemann melting
criterion. This is a one phase melting criterion. Like all one
phase criteria, its validity is rightly debated. Rigorously, only
equality of the free energy of the two phases should be con-
sidered. In practice, however, as shown by Ross on Mo,
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free energy curves of solid and liquid phases can almost
coincide with each other. As modeling of these free energies
contains a number of adjustable parameters, a slight variation
of one of them may shift the critical temperature away from
its correct value. In the study of Ross, it is evidenced that a
small broadening of the d-band width (~1%), in a particular
model for the liquid phase, leads to an increase in the stabil-
ity of the liquid relative to the solid sufficient to depress the
melting to a value in agreement with the recent diamond-
anvil cell measurements of Errandonea.?? This is supposed
by Ross to be a quite typical situation in transition metals.
Hence as fine-tuning of the free parameters for solid and
liquid tantalum are hardly achievable, the numerous recorded
success of the Lindemann melting criterion still make it a
worth testing hypothesis.

Another possibility is to address the hypothesis we have
made that 6p(-2,V,T=0) scales with 6p(-2,V,T=T,,) at
every compression considered. As explained before, this hy-
pothesis corresponds to a very simple but usual approach?!
for anharmonicity which might deserve questioning. Simi-
larly, if we refer to the melting criterion in terms of 6,(0)
proposed by Wallace,* this would lead one to suspect that
0p(0,V,T=0) does not scale with 6,(0,V,T=T,,) at all com-
pressions, in other words that the relative anharmonic in-
crease of entropy of the solid with temperature up to melting
can be very different at low and at high compression.

The experimental device might also deserve some atten-
tion. Belonoshko et al.,'? facing the same difficulty to predict
laser-heating DAC experiments on molybdenum, argued that
this technique, based on the visual observation of an emerg-
ing phase, leads to an erroneous conclusion. Precisely, it was
proposed by the authors that, in DAC experiments of
Errandonea,?? a solid-solid transition was misinterpreted as
melting; but in the case of Ta, no such stable phase is pre-
dicted at low temperature below 1000 GPa.'> A high-T solid-
solid transition at lower pressure cannot be totally excluded,
but we firmly believe that the transition identified in DAC
experiments is melting. First, Errandonea used angle-
dispersive x-ray diffraction to identify bcc and liquid
phases.?? The hole observed in the sample, at the end of our
experiment in DAC, confirmed that melting was reached. It
was also proposed that important thermal stress in the sample
may produce dynamic recrystallization, which may be inter-
preted as onset of convectivelike motion at lower tempera-
tures than melting temperature.’! Such a recrystallization
process may indeed take place during laser-heating experi-
ments in DAC, but it probably cannot create the hole we
observed in the sample at the end of the experiment. Finally,
the fact that the temperature measured at the drastic onset of
clear speckle motion in DAC evolves continuously toward
the exact value of melting temperature in ambient
conditions?? is another strong argument. On the other hand,
even if the melting transition is rightly identified, one must
reckon the difficulty of the spectrometry method employed
for non-contact temperature measurement in laser-heating
DAC experiments. Uncertainties due to optical and chro-
matic aberrations and various other phenomena are then very
difficult to estimate.’> The three hypotheses above might be
more or less true altogether and no unique explanation might
then be verified.
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Finally, there is one last hypothesis that could provide
some very surprising explanation of the discrepancies be-
tween all the theoretical models (Fig. 9) and the DAC ex-
periments. Both might be true if the melting processes in
each case are different. Shock melting and all the theoretical
models cited, including ours, correspond to bulk melting. On
the other hand, we believe that laser induced melting in DAC
is a heterogeneous process because the laser is heating the
sample at the boundary with the transparent pressure me-
dium. One might argue that there is now a free surface to
permit heterogeneous melting since the sample in DAC ex-
periments is surrounded by a pressure medium (either solid
or liquid argon, depending on the pressure and temperature
considered); but two recent molecular dynamic studies®-*
reveal that it is probably not necessary for the boundary to be
absolutely free, or to separate solid and liquid of the same
nature, to permit heterogeneous melting. In Ref. 50 the au-
thors simply say that the heterogeneity itself is sufficient to
ensure the equilibrium melting of the solid if it offers states
with higher entropy, no matter the detailed nature of the lig-
uid in contact. As the pressure medium in a DAC, even solid
argon, is considerably softer than tantalum [65(0)~ 60 K
and bulk modulus K~7 GPa for solid argon whereas
05(0) ~220 K and K ~200 GPa for tantalum], atoms of tan-
talum at the boundary will probably be allowed to reach such
higher entropy states. Then we think that the process of melt-
ing is most probably “heterogeneous” in the DAC experi-
ment.

Superheating is generally very small at ambient pressure
(25 K in the case of silver at ambient pressure), but at higher
pressure it can reach many hundreds of Kelvins. However,
the highest superheating correction proposed in the past
never exceeded 30% of the total bulk melting temperature.
Then it is not sufficient in itself to reconcile the theoretical
predictions or shock measurements for bulk melting tem-
peratures and the DAC measurement;?> but we believe that
the superheating correction might reach even higher values
in the case of tantalum, and probably of the other V A and
VI A bec transition metals which all present similar unusual
flat melting curves, an unusually high value of y at ambient
compression, and peculiar anomalies in PDCs at low pres-
sures. A specific study of this question is needed, but some
insights are proposed hereafter as open hypothesis. It is well-
known that the vibrational properties at the surface of a crys-
tal are influenced by crystallographic orientation of the
boundary. For example, the molecular dynamic study by
Sorkin® on vanadium, another V A bcc transition metal, re-
vealed much larger atomic vibrations on a [1,1,1] surface
than on other surfaces or within the bulk. Our study of bulk
PDCs tends to show that vanishing at low compressions of
the fifth anomaly along the [0, &, £] direction would tend to
increase the thermal vibrations of the crystal if it was not
compensated by simultaneous evolution of other anomalies.
Then, the discontinuity between pressure medium and tanta-
lum in DAC experiments may strongly affect the equilibrium
between these effects and permit larger atomic vibrations
along certain boundaries. As a result of such larger atomic
vibrations, Sorkin observed on vanadium the development of
a thin disordered layer at the surface of the solid, initiating a
spreading melting transition of the whole material 300 K
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FIG. 10. Evolution of the ratio x/yx.. where x.. represents ex-
pected final values in the Thomas-Fermi state according to Burak-
ovsky et al. (Refs. 5 and 6). The thick horizontal line is for evolu-
tion predicted by Belonoshko et al. (Ref. 12). The short dashed line
is for values deduced from c;; of this study together with static
measurements of 7, (Ref. 22). The long dashed line is for values of
0p(=3,V)/ 6p(=2,V) deduced from the computed PDCs. Pressures

at 0 K are reported on the top axis.

lower than the bulk melting temperature, already at ambient
pressure. When it is heated, it may then develop, near the
surface of the solid bee tantalum, such a partially disordered
surface state of substantially higher energy than the bcc state
in the bulk solid. Interestingly enough, such a disordered
state was observed at low pressures in Ref. 44 in resolidifi-
cation simulations of liquid tantalum.

IV. CONCLUDING REMARKS

0 K first-principles calculations of ¢;; and PDCs for bce
Ta presented in this study produced results in global fair
agreement with previous experimental and theoretical works.
We predict that PDCs are highly influenced by peculiar local
changes in the electronic structure between the first few hun-
dred GPa which have hardly any effect on the EOS. This is
similar to what was observed on elastic trigonal shear moduli
in Giilseren et al.’ Well-known anomalies of ambient PDCs
progressively vanish over the first 1000 GPa. Depending on
the particular anomaly considered, its vanishing tends either
to lower or to increase moment frequencies of atomic vibra-
tions; but as a whole, these variations compensate each other
so that, within uncertainties, all 6(n,V) for n € [-3,2] can
be considered proportional above 120 GPa and up to
1000 GPa. This means that the initial Debye model for
atomic vibration stands relatively well for this compression
range.

As for the ratio xy=G,,V/T,,, as its value is expected to
decrease only by a factor of about 2 over 2-4 decades of
compression before reaching Thomas-Fermi behavior, it was
proposed to take it for a very weak function of density, vary-
ing uniformly toward its final value.'> According to this hy-
pothesis, y should not be lowered by more than 0.1% over
the first 1000 GPa. On the contrary, static measurements of
T., up to 100 GPa by Errandonea?? make y increase by more
than half in this very limited compression range (Fig. 10).
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The first-principles calculations presented here permit one
to rule out the hypothesis that this variation is due to a
failing of the Debye model for atomic vibration. Indeed
0p(=3,V)/6p(-2,V) calculated tends to decrease by a few
percent over the first 60 GPa and is constant above within
uncertainties up to 1000 GPa (Fig. 10). Then, it is the esti-
mations of 7, themselves that must be addressed.
Uncertainties in the spectrometry method for the noncon-
tact static measurement of temperature can be reevaluated,
but it is very unlikely that this can explain all the difference
between experimental static 7, and theoretical melting
curves. The existence of an extra solid phase that could cause
a misinterpretation of melting transition'? is also excluded in
the case of bce Ta. Then, unless complex anharmonicity was
ignored in the various theoretical studies of bcc lattice, ex-
periments in DAC and theoretical ab initio calculations of T,
seem both reliable but incompatible. Another hypothesis sug-
gested here is the development of partial disorder near the
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boundary of the sample in DAC experiments, related to the
vanishing of directional phonon anomalies at low pressures.

In the future, it might be interesting to test relations (1)
and (2) in transition metals with precise evaluation of anhar-
monic effects on phonons between 0 K and 7,, and with
surface phonons modeling. Interesting results are also ex-
pectable from molecular dynamic simulations of melting
with a coexisting phase method, to avoid superheating, and
interatomic potentials specifically constructed to take into
account the directional d-electron bounding at different com-
pressions like MGPT potential** or modified embedded atom
method (MEAM) potential %>’
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