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Electric field induced critical points and polarization rotations in relaxor ferroelectrics
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The giant electromechanical response in ferroelectric relaxors such as Pb(Mg;3Nb,,3)O3-PbTiO3 (PMN-PT)
is of great importance for a number of ultrasonic and medical applications as well as in telecommunications.
On the basis of the dielectric, heat capacity, and piezoelectric investigations on PMN-PT crystals of various PT
compositions and bias fields, we have recently shown the existence of a line of critical points for the paraelec-
tric to ferroelectric transformations in the composition-temperature-electric field (x-7-E) phase diagram. Here,
we show the piezobehavior in more detail and present a theoretical evaluation of the Widom line and the
critical line. This line effectively terminates a surface of first order transitions. Above this line, supercritical
evolution has been observed. On approaching the critical point, both the enthalpy cost to induce the interme-
diate monoclinic states and thus the barrier for polarization rotations decrease significantly. The maximum of
the piezoelectric response is not at E=0, but at the critical field values. It is shown that the critical fluctuations
in the proximity of the critical points are directly responsible for the observed enhancement of the electro-
mechanical response in the PMN-PT system. In view of the large electric field dependence of the dielectric

constant near the critical point, these systems may also be important as electric field tunable elements.
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I. INTRODUCTION

Classical relaxors such as Pb(Mg;,3Nb,,3)O3 (PMN) are
perovskite solid solutions characterized by site and charge
disorder.!> They show no symmetry breaking transition on
cooling but exhibit broad and strongly frequency dependent
peaks in the dielectric and electromechanical responses as
well as glassy-type freezing.!"* In contrast to dipolar
glasses,’ a ferroelectric phase can be induced in relaxors by
applying a sufficiently strong electric field.®° This is due to
the fact that relaxors consist of small, randomly oriented po-
lar nanoregions,'%!# which, in view of their relatively large
dipole moments, couple to the electric field more efficiently
than individual dipoles in dipolar glasses.

The coupling to the electric field is still enhanced if
the disorder is reduced by changing the composition, e.g.,
by adding ferroelectric PbTiO; (PT) to PMN.!S The
PMN,_,-PT, system is for x>0.05 at low temperatures
ferroelectric and rhombohedral up to some specific PT
content.”> At still higher PT concentrations, it undergoes a
morphotropic phase transition'®!” and becomes tetragonal. A
giant piezoelectric response is observed near this transition.
At higher temperatures, the system becomes paraelectric and
cubic for all PT concentrations.

The PMN-PT system exhibits a number of different
phases. Pure PMN exhibits in addition to the electric field
induced ferroelectric state (E>E) also an ergodic relaxor
state at high and a nonergodic relaxor state at low tempera-
tures (E < E(). For sufficiently high PT concentrations, ferro-
electric tetragonal (T), rhombohedral (R), monoclinic (M),
and orthorhombic (O) phases occur at low and a paraelectric
cubic (C) phase at high temperatures. The spontaneous po-
larization directions are [001] in the tetragonal (P4mm)
phase, [111] in the rhombohedral (R3m) phase, and [110] in

1098-0121/2007/76(10)/104102(8)

104102-1

PACS number(s): 77.84.Dy, 77.65.—j, 77.80.Bh

the orthorhombic (mm2) phase. There are possibly three dif-
ferent monoclinic phases (M,, Mg, and M)'"~2° between the
rhombohedral and tetragonal phases (Fig. 1).

The phase transition between the R and T ferroelectric
phases observed by many authors'->!!:1%17 becomes degener-
ate near the morphotropic phase boundary. Schmidt and
co-workers?!?2 concluded that the R-T phase transition oc-
curs as a rotation of the polarization through M phases. The
piezoelectric effect is due to the coupling between the strain
and the polarization. When the polarization is along the cube
diagonal, the lattice strain is small, but when the polarization
is along the cube axis, the lattice strain is large, resulting in a
large piezoelectric effect.

The combinations of stress and electric field are particu-
larly effective to drive the system through the phase
transformations.'>2324

Cohen and co-workers?>?* have studied the polarization
rotation mechanism under electric field using first principles
calculations. The polarization rotation mechanism has been
directly verified by x-ray and polarized light microscopy
studies, 17-20.22.25

It has recently been shown?® that by applying a suffi-
ciently strong electric field E= E, the first order paraelectric
to ferroelectric phase transitions in the PMP-PT system ter-
minate in a line of critical points (CL) of the liquid-vapor
type above which supercritical behavior is observed. On ap-
proaching the critical line (E— E;), the piezoelectric coef-
ficients as well as the static dielectric constant and the heat
capacity always exhibit maximum values. The electric field
necessary for polarization rotations?® and the energy barriers
involved significantly decrease on E— E;, thus revealing a
new driving mechanism for the giant electromechanical re-
sponse of relaxors.

Very recently, a study of the phase diagram of PMN for
electric bias fields applied along [111], [110], and [100] was
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FIG. 1. (Color online) (a) The polarization vector rotates from
the [001] direction in the tetragonal (P4mm) phase to the [111],
direction in the rhombohedral (R3m) phase via the [110] direction
in the orthorhombic (mm?2) phase. The polarization vector is within
the (010)¢, (101)¢, and (110)¢ planes in the monoclinic M, Mg,
and M, phases, respectively. (b) The composition-temperature
(x-7) phase diagram of the PMN-PT system. Double arrows show
the compositions measured in this study.

published by Zhao et al.”’ Whereas they confirmed the exis-
tence of the critical point?” when the bias field was applied
along [111], they did not observe a critical point in the [110]
and [100] directions up to the highest applied field of
7.5 kV/cm. In contrast, we here definitely show the exis-
tence of critical points for the bias field along [110] in PMN-
PT. It should also be noted that all electric field induced
transitions occur in PMN at much higher fields than in the
PMN-PT system.

The macroscopic symmetry of the PMN-PT system has
been studied by optical microscopy in the absence of electric
biasing fields by Shuvaeva et al.?®

Here, we relate the observations of the line of critical
points in the electric field-temperature (E-T) phase diagram
of PMN-PT to the polarization rotation mechanism and the
piezoelectric response for fields applied along the [110] and
[111] directions. We show that critical points exist not only
for [111] but also for [110]. We as well compare the observed
critical behavior with the theoretical predictions.

II. EXPERIMENTAL PROCEDURES AND RESULTS

PMN,_,-PT, single crystals with x=0, 0.10, 0.15, 0.25,
and 0.295 have been investigated. In all these cases, electric
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field induced critical points have been found. The necessary
electric fields strongly decreased on going from x=0 to x
=0.295. It is this last case on which we shall focus. The
electric bias field was applied along the [111] and [110] di-
rections. The field cooled (FC) and zero field cooled quasi-
static dielectric (¢) measurements, the measurements of the
pyroelectric current, and the polarization (P) determinations
were performed by electrometer charge accumulation mea-
surements as described by Levstik et al.?® The phase se-
quence was determined by polarized light microscopy. The
ac dielectric spectroscopy measurements were performed be-
tween 1 mHz and 1 GHz. The piezoelectric and elastic coef-
ficients were determined by the resonance response of a
platelet?® poled and excited along its thickness. The radius
of the circular platelet was at least ten times larger than
the thickness d. High resolution ac and relaxation
calorimetry’?3! in electric fields were used to determine the
enthalpy, latent heat, and the critical behavior.

III. THEORY

Let us now discuss the electric field induced critical point
in the phase diagram of PMN-PT within the framework of
the Landau theory.

The thermodynamic potential density can be in the vicin-
ity of the phase transition expanded in powers of the order
parameter P:

b
f:f0+§P2+ZP4+§P6—PE, (1)

where E is the normalized external electric field.

Here, we assumed for sake of simplicity that we deal with
a homogeneous medium and a scalar order parameter. We
also assume that the polarization and the bias field point in
the same direction. The idea is to determine in the simplest
possible case the coordinates of the critical point and the
evolution of the Widom line in the supercritical region. The
treatment of the anisotropic case which is essential for the
complete phase diagram close to the morphotropic phase
boundaries is nontrivial and will be presented in a subse-
quent paper. The coefficient a in expression (1) varies with
temperature as a=ay(T—T,)/Ty=ay7 and changes its sign at
the phase transition.

For second order phase transitions, one has b >0, whereas
b<<0 for first order phase transitions. ¢ is assumed to be
always positive, ¢>0.

For second order phase transitions, the critical exponents
can be defined for the dielectric susceptibility x(0), the order
parameter P, and the specific heat at constant pressure C, as

fro=x(0) |77, (2a)
Po(7<0) = |7?, (2b)

e
cp=_r<07’;)P e | (20)

Here, JE/dP=(df*/ IP?) r,=fPp= x(0)7".
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It is well known that the classical values of vy, 8, and « in
the Landau theory are y=1, 8=1/2, and @=0. For =0, a
tricritical point exists, which separates the line of second
order transitions from the line of first order transitions; here,
B=1/4 and a=1/2.

Let us now look for the critical point where the line of
first order phase transitions terminates. Above the critical
point, the anomalies in the response functions become
rounded and noncritical, with a<<0. The difference between
the two phases disappears in analogy to the liquid-vapor
transition in water.

For a first order (b<<0) phase transition for E=0, the (f
—fo) versus P surface has two minima at P # 0 in addition to
the one at P=0. The two additional minima move downward
with decreasing T and reach the line f—f,=0 at a positive 7
value, i.e., for T->T,. For T<T. these minima have f—f,
<0 so that a discontinuous (first order) transition takes place
from P=0 into one of the two minima with P # 0. The first
order transition takes place when f—f,=0. Solving these
equations, we find the transition temperature for E=0 as

3 b?
ac=——. 3
=162 3)
The temperature (a) dependence of the order parameter
for different applied electric fields and the relation between E
and P are obtained from

3
é:aP+bP3+cP5—E=O, b <0, (4a)

E=aP +bP? +cP°. (4b)

The discontinuity in the temperature dependence of the
order parameter P is maximal for £=0 and vanishes for
(acg,Ecp), i.e., at the critical point. Let us now determine the
T and E coordinates of this point (Fig. 2).

Taking the derivative of expression (4a) with respect to a,
we obtain

dP
(a+3bP*>+5¢PH— +P=0. (5)
da
At the transition point, dP/da diverges so that

(a+3bP*>+5¢P% =0. (6)

At (acg.Ecp), Eq. (6) has a double root so that 95°
—20cacr=0. We thus find the coordinates of the critical point

as
9p°
=—, 7

Aacke 20¢ (7a)
-3b

Plp=——, 7b

= o (7b)

E _6_b2 -3b (7c)

E=25¢ N 10¢ ¢

Beyond (acg, Ecg), the susceptibility y shows a rounded
peak along the Widom line, where dyx/dT=0 and also
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FIG. 2. (a) The schematical E-T phase diagram for the PMN-PT
system. The solid line represents a first order transition line. CP
stands for the critical point, which terminates a line of first order
ferroelectric transitions. The dotted line represents the Widom line,
a locus of supercritical anomalies emanating from the critical point
typically observed in the supercritical region. (b) The calculated
temperature dependence of the order parameter for different bias
fields E above and below the critical one (E¢p).

(dx~'/T)=0. This is in sharp contrast to the tricritical point
beyond which y diverges at the second order transition line.
Beyond (acg, Ecp), we thus find with the help of Eq. (4b) the
coordinates of the Widom line for a given a as

&

X! =(9—Pj;=a+3bP2+5cP4, (8a)

d dP
—(x ") =14+ (6bP+20cP?)— =0. (8b)

da da

These relations thus lead to
a-3bP*-15¢P*=0, (9a)
2_ — b 1 07,2
P"=—+—v9b" +60ac. (9b)
4 10c  30c

Figure 2 shows the schematical E-T phase diagram for the
PMN-PT system, based on the above expressions. The theo-
retical curve agrees rather well with the experimental
results.”” Let us first discuss the [111] case for PMN,_,PT,
with x=0.295. For E=0, the high temperature phase is cubic
and the low T phase rhombohedral. If we apply a bias field
along [111], the symmetry including the field is rhombohe-
dral both at low and high temperatures.

Therefore, the two phases can merge at high fields with-
out a boundary, i.e., there exists a critical point.
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For the [110] case, the situation is similar. According to
Lu et al.,* the high temperature phase is cubic and the low T
phase rhombohedral so that critical points exist in agreement
with our observations.

If, however, the system would be monoclinic at low tem-
peratures and tetragonal at high temperatures and the field
would be applied along [100], there should be some bound-
ary between the two different symmetries. This problem will
be treated as already mentioned in a subsequent paper where
the anisotropy of the order parameters will be taken into
account.

IV. RESULTS AND DISCUSSION

Let us first look into the behavior of pure PMN at
EI[111]. It is known that below a certain temperature, a
sufficiently strong electric field E=E can induce a first or-
der transition from a relaxor state to a ferroelectric state.”
At still higher electric fields, a critical point exists, E=Ey,
=4 kV/cm, above which supercritical behavior is found.?’
Here, we wish to relate the critical response of PMN to its
piezoelectric response.

The temperature dependence of the quasistatic FC polar-
ization P of a PMN single crystal poled along [111] has been
shown in Refs. 27 and 33 for different electric bias fields.
The results can now be compared with the calculated tem-
perature dependence of the order parameter for different
electric fields above and below the critical one. For a zero
field, the system is in a relaxor state with no spontaneous
polarization. For small fields, E<E-<E(;, there is a small
induced polarization which continuously increases with de-
creasing temperature. For E-<E<E(;, there is a jump in
the polarization at the first order transition from the relaxor
to the ferroelectric state. For E=E;, the jump disappears
and P continuously varies with temperature in the supercriti-
cal regime, in agreement with the theoretical predictions. It
should be stressed that it is the continuous supercritical evo-
lution along the Widom line (Fig. 3) which distinguishes the
critical point from a tricritical point where a line of first order
transition meets a line of second order transition. Whereas in
the supercritical case the anomalies in the response functions
become noncritically smeared out and finally disappear,*3>
there are sharp critical anomalies at the line of second order
transition in the tricritical case.3® This is demonstrated in Fig.
4 where the T dependences of the dielectric constant of PMN
are presented for different bias fields and frequencies.

Figure 5 also shows the temperature dependence of the
piezoelectric coefficient d5, for different regions on the Wi-
dom line. In all cases, the piezoelectric coefficient shows a
noncritical maximum at the evolution line (including the Wi-
dom line). The data can be described by

dip=2 2&;;Q0mjkPr (10)
Jk

where Q,,; are the elements of the electrostrictive tensor, Py
are the components of the spontaneous polarization, and &;;
are the elements of the dielectric tensor. The electric field
dependence of the thus obtained maximum values of ds;
shows itself a clear maximum at the critical point E=Ep
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FIG. 3. The electric field-temperature (E-T) phase diagram of a
PMN single crystal poled along [111]. The solid line represents a
first order transition line. CP stands for the critical point, which
terminates a line of first order ferroelectric transitions. The dotted
line represents the Widom line, a locus of supercritical anomalies
emanating from the critical point typically observed in the super-
critical region. Double arrows show the electric bias field values at
which the piezoelectric coefficient d3; shown in Fig. 4 was mea-
sured across the ferroelectric transition and Widom lines.

(Fig. 6). This is mainly a consequence of the fact that re-
sponse functions such as the dielectric constant & are at
maximum at the critical point.

Let us now turn to the PMN-PT system. The points on the
temperature-composition (7-x) phase diagram around which
the measurements were performed are shown in Fig. 1(b).
For PMN, ,sPT,,5 and lower concentrations, the critical be-
havior is similar to that of pure PMN. The discontinuous
jump in P at the ferroelectric-paraelectric transition for E
< E; disappears for E= E; and is replaced by a continuous
decrease in P with increasing 7. The latent heat as well dis-
appears for E=E; so that the values of E; decrease with
increasing x, i.e., with decreasing disorder.

In the E-T phase diagram, the paraelectric-ferroelectric
transition line ends in an isolated critical point above which
the difference between the different phases disappears and a
continuous supercritical evolution of the response function is
observed. The situation gets more complicated with the in-
creasing PT composition toward the morphotropic boundary
(x=0.35) [Fig. 1(b)]. Already for the composition x=0.295
just above the triple point (x=~0.29), at least four different
anomalies have been observed in the temperature depen-
dences of €, P, and the heat capacity even in the zero field.

The temperature dependence of the dielectric constant &
for a crystal with x=0.295 poled along [110] and measured at
a bias field of E=0.03 kV/cm shows [Fig. 7(a)] at least three
additional phases between the R and T ferroelectric states.
The different phases have been identified by polarized light
microscopy as a monoclinic phase (Mp), an orthorhombic
(O) phase, and another monoclinic phase (M). The phase
sequence R—Mp—0O—M—T is similar to what was
found in [111],3% in agreement with previous findings ob-
tained on [111] and [011] crystals.??

The electric field dependence of the transition temperature
between these phases is shown in Fig. 7(b). The T-M tran-
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FIG. 4. The temperature dependence of the dielectric constant at
different frequencies obtained in a PMN single crystal poled along
[111] at three different values of the bias electric field: (a) 0.4Ep,
(b) 0.8Ecp, and (c) 1.5Eqp. Here, Ecp=4.0 kV/cm.

sition around 373 K, in particular, is as well critical. As
shown by the C, data [Fig. 9(a)], it is superimposed on the
C-T critical transition at 390 K.

The transitions among those phases show up also in the T
dependence of the piezoelectric coefficient d5;. The corre-
sponding results are shown in Fig. 8 for bias fields E
=0.03 kV/cm, E=1.35 kV/cm, and E=2 kV/cm. Note that
the our dj; data agree well with the low temperature data
obtained by Sulc and Pokorny.?’
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FIG. 5. The temperature dependence of the piezoelectric coeffi-
cient d3; obtained in a PMN single crystal poled along [111] at four
different values of the bias electric field below and above Ecp
=4.0 kV/cm.

The polarization data for Ell[111] again show?3 that the
ferroelectric to paraelectric transition line ends in an isolated
critical point E;=1.3 kV/cm above which supercritical be-
havior is observed and the difference between the electric
field distorted tetragonal and the electric field distorted cubic
phases disappears.’?

According to polarized light microscopy data, the polar-
ization rotates under the applied [111] field at fixed tempera-
ture from the T [001] direction into the monoclinic [101]
(M) plane and then into the orthorhombic [101] direction
[Fig. 1(a)]. From there, it goes to the rhombohedral [111]
direction via the (101) monoclinic (M) plane. The common
phase for E> E; should thus be pseudorhombohedral for
ElN[111].

The above model is strongly supported by the heat capac-
ity data.’® These are two critical points: one exists for the
C-T and the other for the T-M transition. For the T to C
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FIG. 6. The electric field dependence of the piezoelectric coef-
ficient d3; maximum values along the evolution line of a PMN
[111] crystal. The arrow denotes the critical field value Ecp. The
inset shows the electric field dependence of the piezoelectric coef-
ficient d3; along the C-T phase transformation line of a PMN-PT
[111] crystal with x=0.295.
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FIG. 7. (a) The temperature dependence of the dielectric con-
stant & of a PMN-PT crystal poled along the [110] direction with
x=0.295 and measured at a bias field of £=0.03 kV/cm. Note
minute steps in the dielectric constant at intermediate monoclinic
and orthorhombic phase transitions shown by arrows. (b) The elec-
tric field-temperature phase diagram of a PMN-PT crystal with x
=0.295 poled along the [110] direction and obtained in repeated
temperature scans at different constant bias electric fields.

transition at x=0.295, the critical point is at Ecp
=1.3 kV/cm. The total enthalpy AH exhibits a peak at the
electric field corresponding to the critical point®® [Fig. 9(a)].
The electric field dependence of the enthalpy at the T-M,
transitions is presented in Fig. 9(a) for El[111]. The inset of
Fig. 9(b) shows the electric field dependence of the latent
heat L for the T-M transition. Again, the latent heat van-
ishes at E-p=~1.3 kV/cm. The electric field dependence of
the enthalpy for the Mg-R (for E=0) transition is shown in
Fig. 9(b). The enthalpy changes AH for the Mz-O and O-M,
transitions are always below 1 mJ/g. As P~0.3 C m~? and
AH=E,P, we find that the necessary electric field for the
rotation of the polarization decreases close to the critical
point by nearly a factor of 10:
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FIG. 8. The temperature dependence of the piezoelectric coeffi-
cient d3, obtained in a PMN-PT single crystal poled along [110] at
three different values of the bias electric field. The phase transition
temperatures of intermediate monoclinic and orthorhombic phases
obtained at higher bias field values are indicated by arrows.

MT: E;=14 kV/cm — 1.5 kV/cm.

At the R-Mp, transition, the corresponding electric field nec-
essary to induce the polarization rotation is at E— E; re-
duced to less than 0.4 kV/cm:

R-Mp: E;=2 kV/cm — 0.4 kV/cm.
E (kVem)
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FIG. 9. (a) The total enthalpy AH for the C-T transition (open
circles) and for the T-M_ transition (solid circles) as a function of
the electric bias field applied along the [111] direction. (b) The total
enthalpy AH for Mp-R transition as a function of the electric bias
field. The Arrow indicates the critical value of the electric field. The
inset shows the vanishing of the C-T and T-M( latent heats at the
critical field value of E-p=1.3 kV/cm.
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The electric field dependences of the piezoelectric coeffi-
cient ds; along the C-T phase transformation line are pre-
sented in the inset of Fig. 6. For [111], the maximum value
of d3; is again at the critical point value E.p. For Ell[110],
the situation is more complex, as shown in Fig. 8. Here, it
appears as if d;; exhibits a maximum value already at the
Mj;-R phase transition. Fits to the simple power law ansatz

dy =Ar*+B, (11)

with 1=(T-T¢)/T¢ reveal z=1.09, T-~376-382 K for B
~(0.27-0.57) X 10~ m V~! [Fig. 10(a)], i.e., the critical de-
pendence of d3; observed below the Mg-R phase transition is
actually related to the higher temperature T-M transition.
The critical dependence of d5; is just cut off prior to reaching
the critical temperature.

This is also confirmed by data sets obtained at different
bias electric fields. As shown in Fig. 8, the data sets at dif-
ferent bias fields get slightly suppressed and the cut-off tem-
perature is shifted toward lower temperatures with increasing
bias field. If the critical behavior of d5; would be related to
the Mz-R phase transition, the opposite effect, i.e., enhance-
ment of the data values at given temperature, should be ob-
served. This is due to increasingly lowered Mz-R phase tran-
sition temperature with increasing bias field. The decrease of
the data values is on the other hand in agreement with the
fact that the T-M( transition temperature is increasing with
increasing bias field, thus causing downward rescaling of the
ds, data at a given fixed temperature.

The above critical behavior of d5; is a consequence of the
critical dielectric susceptibility related to the nearby critical
point fluctuations. As suggested already by Eq. (10), the di-
electric constant is the main candidate through which the
fluctuations would enter the temperature dependence of ds;.
As shown in Fig. 10(b), the dielectric constant exhibits in the
same temperature range as dz; a similar critical behavior,
with a similar magnitude of increase (by a factor of ~3.5
when comparing data at 310 K and peak data values), prior
to being cut off due to the onset of the Mz-R phase transi-
tion. Measurements on unpoled samples indeed show that the
dielectric constant below the Mg-R phase transition is actu-
ally composed of two contributions. The first contribution
represents the critical wing of the C-T transition susceptibil-
ity with T¢;~390 K [see dashed line in Fig. 10(b)]. This
contribution does not seem to be affected by the onset of the
Mj;-R phase transition. The second contribution is related to
the low temperature critical wing of the T-M phase transi-
tion and is superimposed on the first contribution [see the
difference between the solid and dashed lines in Fig. 10(b)].
The first contribution is thus effectively playing the role of a
temperature dependent background. If this background is
subtracted, then T,=373 K is obtained from fits to the
simple power law ansatz ¢’ =Ct~Y+D. The thus obtained T,
indeed matches the observed T-M phase transition tempera-
ture. Here, the classical mean-field value obtained for the y
=1.0£0.05 may be due to the fact that the determination is
done relatively far from the critical point, i.e., the fits end
about 15 K before T-,. This suggests that the critical depen-
dence of dj; and its enhancement are a direct consequence of
the fluctuations driven by the nearby critical points. This is
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FIG. 10. (a) The temperature behavior of the adjusted piezoelec-
tric coefficient d3; obtained on a PMN-PT x=0.295 [110] sample.
The straight line indicates that the temperature dependence follows
a power law behavior. (b) The temperature dependence of the di-
electric constant obtained on the same sample at £=0.03 kV/cm.
The solid line represents a fit to the power law (see the text) after
subtraction of the background represented by a dashed line. (c) The
electric field dependence of the amplitude A in the d3; power ansatz
[Eq. (11)], which exhibits a maximum at the critical field value of

Ecp.

also confirmed by the electric field dependence [Fig. 10(c)]
of the amplitude A in the d3; power law ansatz, which ex-
hibits a maximum at the critical field value of Ep
~1.45 kV/cm (slightly larger Eqp in [110]). In fact, the en-
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hancement of d5; in [110] stems from both C-T and T-M,
critical point fluctuations.

V. CONCLUSIONS

The obtained dielectric and piezoelectric data demonstrate
that the electric field induced critical points exist not only for
the [111] but also for the [110] direction of the applied bias
fields. The existence of the critical points in the E dimension
of the T-x-E phase diagram of the PMN-PT system results in
a significant enhancement of the piezoelectric coefficients as
well as a significant decrease of energy costs and electric
fields necessary to induce the R-Mz-O-M-T polarization
rotations (Fig. 1) producing the giant lattice strains. The sys-
tem behaves as being effectively semisoft when E— E;.
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The theoretically evaluated E-T critical line agrees qualita-
tively with the experimental data. The maximum of the pi-
ezoelectric response is not achieved at E=0, but at E=Ey;.
The electric field induced critical points thus provide a dif-
ferent driving force for the giant electromechanical response.
In view of the large electric field dependence of the dielectric
constant near the critical point, these systems may also play
an important role in electric field tunable optoelectric
elements.
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