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The flux-pinning-induced singular stress field near the crack tips of a central crack is investigated. A model
is presented in this paper to estimate the effect of the electromagnetic force on fracture behavior. The model
provides an analytical tool for the investigation of the mechanical failure of superconductors. The stress
intensity factors are computed for two activation processes. Numerical results obtained show that, generally,
the stress intensity factor increases as the applied field becomes large during field descent. It is intended that
the stress intensity factor analysis presented here be useful to researchers interested in cracking and mechanical
failure of superconductors.

DOI: 10.1103/PhysRevB.76.094523 PACS number�s�: 46.25.Cc, 46.15.�x, 46.50.�a

I. INTRODUCTION

Bulk high temperature superconductors have been widely
used in engineering, for example, frictionless bearing, motor
components, etc.1,2 Recent progress in melt processing has
enabled the production of large-grain Y-Ba-Cu-O supercon-
ductors with high critical current density �Jc� values,3 and
trapped fields up to 12.2 T were obtained at 22 K on the
surface of single YBCO disks �with Ag and Zn additions�.4
However, the low tensile strength of these materials limits
their field trapping capability. The mechanical stability can
be threatened by the tensile stress generated during the acti-
vation process.5 Thus, more and more researchers have paid
attention to the mechanical properties of the bulk supercon-
ductors. An unusually large magnetostriction in a signal crys-
tal was reported by Ikuta et al.6 They proposed a quantitative
model which reproduced the observations very well in terms
of internal forces arising from flux pinning. The flux-
pinning-induced stress and strain in a long circular cylindri-
cal superconductor were analyzed by Johasen,7 who dis-
cussed in detail two common magnetization processes: �1� a
full cycle of the applied magnetic field after zero-field cool-
ing and �2� a field reduction to zero after field cooling.

In the preceding articles, the effect of a crack was not
considered when the deformation and stress were investi-
gated. It has been reported that cracking occurs in a large
single-grain bulk superconductor when the applied field was
decreased from 10 to 0 T at 50 K.8 Owing to their brittle-
ness, superconductors have a tendency to develop microc-
racks during fabrication process. When a cracked supercon-
ductor is subjected to a large electromagnetic force, the high
stress concentration may initiate crack growth and eventually
lead to fracture.9 Thus, it would be exceedingly useful to
account for the fracture induced by the electromagnetic
force. The formation and propagation of microcrack in melt-
processed superconductors have been reported.10,11

In this paper, a major effort is made to examine the effect
of the electromagnetic force arising from flux pinning on the
fracture behavior based on the assumption presented in Ref.
12, in which demagnetization effects are negligible and the
slab is isotropic. In the present study, the calculations are
restricted to the Bean model. To make the problem math-

ematically tractable, the total forces exerted on the boundary
replace the body forces. Then, the Fourier transform tech-
nique is used to reduce the problem to the solution of a
singular integral equation, which is solved numerically. In
the subsequent sections, the stress intensity factors are ob-
tained and discussed for decreasing field after zero-field
cooling and field reduction after field-cooling conditions.
The final section presents the conclusions of this paper.

II. PROBLEM STATEMENT AND BASIC
EQUATIONS

Consider a center-situated Griffith crack of length 2a in
an infinitely long slab of width 2h with reference to the rect-
angular coordinate system x ,y ,z �see Fig. 1�. The slab is
placed in a parallel magnetic field oriented parallel to the z
axis and the crack lies in the x-y plane.

In order to calculate the stress intensity factors at crack
tips, a relatively simple model is developed, in which the
slab is isotropic. The slab is assumed to be infinite in the z
direction, and therefore, demagnetization effects are negli-
gible. In this model, the length of the crack is assumed to be
much smaller than the width of the slab, i.e., a�h. There-
fore, the crack exerts negligibly small disturbance to the
shielding currents. Similar to the approach adopted by Jo-
hansen to determine flux density in a slab with rectangular
cross section, the flux penetrates equally to all the edges, and
the shielding currents that flow in loops are equidistant from
the external boundary �see Fig. 2�.13

The electromagnetic forces arising from flux pinning are
body forces. The body forces have been given in the form

fy = −
1

2�0

�

�y
B�y�2. �1�

For a crack problem under body force loading, it is gen-
erally quite difficult to determine the stress intensity factor
and to obtain the effect of the electromagnetic force on the
fracture behavior. Therefore, choose a uniform stress �b as
equivalent to the body forces acting on the x-z plane. Inte-
grating the body forces along the y axis, the uniform total
force is given by
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�b = �
0

h

fy�y�dy =
1

2�0
�B�0�2 − Ba

2� . �2�

Interestingly, the total force only depends on the magnetic
field at y=0 and y=h. In addition, the body forces fx have
little effect near the crack tip and are neglected for the infi-
nite slab. Since the problem is symmetric with respect to the
x axis, it is sufficient to consider the upper plane for y�0.
Through a proper superposition, the problem under consid-
eration becomes finding a solution that satisfies the following
boundary conditions:

�yy�x,h� = �xy�x,h� = 0, − � � x � � , �3�

�xy�x,0� = 0, − � � x � � , �4�

�yy�x,0� = − �b, �x� � a , �5�

v�x,0� = 0, �x� � a . �6�

We will now investigate linear elastic solutions of the
boundary value problem. A plane strain approach from linear
elasticity theory can be applied.14 The governing equations
for the slab may be expressed as

�	 + 1�
�2u

�x2 + �	 − 1�
�2u

�y2 + 2
�2v
�x�y

= 0, �7�

�	 − 1�
�2v
�x2 + �	 + 1�

�2v
�y2 + 2

�2u

�x�y
= 0, �8�

where 	=3−4
.
Using Fourier transforms, we can obtain the following

solutions:

u�x,y� =
1

2�
�

−�

+�

��A1 + A2y�e�s�y + �A3 + A4y�e−�s�y�eisxds ,

�9�

v�x,y� =
1

2�
�

−�

+�

��B1 + B2y�e�s�y + �B3 + B4y�e−�s�y�eisxds .

�10�

In order to solve the unknowns A1−A4 and B1−B4, some
manipulations are used to reduce the problem to a singular
integral equation that can be solved numerically,

4�

�	 + 1��n=1

�

CnUn−1�r� −
1

2�

�

�	 + 1��n=1

� �
−1

1

L�r,u�
CnTn�u�
�1 − u2

du

= − �b, �11�

(a)

(b)

FIG. 1. Sketch of a rectangular slab superconductor placed in a
magnetic field Ba. �a� Coordinate system for slab and flow of Jc in
the slab. �b� Rectangular slab superconductor containing a crack
parallel to the boundary.

(a)

(b)

FIG. 2. Pinning-induced body forces and current in the cross
sectional plane. �a� Body forces acting on the slab. �b� Triangular
part containing body forces.
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where Cn are unknown constants to be determined, and Tn
and Un are the Chebyshev polynomial functions of the first
and second kind, respectively. Equation �11� can be solved
by truncating the series and a collocation technique.15

After solving the unknowns coefficients Cn, the stress in-
tensity factors can be defined and calculated as

KI�a� = lim
x→a

�2�x − a��yy�x,0� = −
4�a�

	 + 1 �
n=1

�

Cn, �12�

KI�− a� = lim
x→−a

�2�− x − a��yy�x,0� =
4�a�

	 + 1 �
n=1

�

Cn.

�13�

To analyze the effects of the electromagnetic force, it is
necessary to know the distribution of the flux density inside
the superconductor. For simplicity, we adopt a relatively
simple model, i.e., the Bean model. Accordingly, the critical
current density Jc is independent of the magnetic field.

So far, major cracking due to pinning-induced compres-
sive stress has not been reported.13 Cracking of samples was
found for the reason that tensile stresses exceed the tensile
strength of materials. Because tensile stresses occur during
field reduction, the stress intensity factors are obtained for
two magnetization processes: �1� a field reduction after zero-
field cooling and �2� a field reduction to zero after field
cooling.7 We define a characteristic field Bp=�0Jch equal to
the full penetration field. The maximum applied field, which

is denoted by B̂a, is chosen to be B̂a�2Bp. For brevity, the
following symbols are used in the following parts of this
paper:

ba = Ba/Bp, b̂a = B̂a/Bp, e =
y

h
, �14�

�0 =
Bp

2

2�0
, K0 = �0

��a . �15�

In the following parts, the solutions of the singular inte-
gral equation have been computed numerically, and the nu-
merical results for the stress intensity factor are presented.
Since the stress intensity factor at crack tip a is equal to that
at crack tip −a for the central crack, we will only present the
numerical results at crack tip a.

III. DECREASING FIELD

A. Case (i): B̂a−2Bp�Ba� B̂a

When the field is increased above the full penetration
value, the critical current fills the entire cylinder. However,
the direction of the critical current is reversed in the outer
part of the slab as the applied field starts to decrease from its

maximum value B̂a. It should be noted that in the outer part,
the body forces are expansive, whereas they are compressive
in the inner part, and therefore, the total forces applied on the
crack faces may be tensile forces.

In this case, the flux density is piecewise linear and can be
expressed as7

b = b̂a + e − 1, 0  e  e0, �16�

b = ba + 1 − e, e0  e  1, �17�

where e0=1− �b̂a−ba� /2.
Figure 3�a� shows the effects of the crack length on the

stress intensity factor as the field decreases from 2Bp to the
remanent state Ba=0. Generally, it is expected that the stress
intensity factor is greater when the crack length is longer for
the same activation process.

Shown in Fig. 3�b� is the plot of the stress intensity factor

while the applied field is reduced from b̂a=2 to ba=0. When
ba=0, the maximum trapped flux is obtained in the remanent
state. It can be found that the stress intensity factor decreases
as ba increases, and the stress intensity factor has a maxi-
mum at ba=0, which implies that the highest cracking prob-
ability occurs at ba=0. Notice that at ba=1, the stress inten-
sity factor is equal to 0. This clearly indicates that the total
forces are expansion for ba�1, decrease, and then become

FIG. 3. �a� The crack length �a /h� dependence of stress intensity

factor as the applied field is decreased from b̂a=2 to ba=0. �b�
Stress intensity factor as the applied field is decreased from b̂a=2 to
ba=0, for the case of a /h=0.05.
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compressive for ba�1. Moreover, while the stress intensity
factor is negative, it implies crack closure.

B. Case (ii): B̂a−2Bp�Ba

To satisfy the condition B̂a−2Bp�Ba, the maximum ap-

plied field B̂a is assumed to be larger than 4Bp. One can see
that the current is reversed in the entire slab as the applied
field is reduced by more than twice the full penetration field.
Therefore, it is important to note that the body forces are all
tensile and the total forces behavior becomes different with
the previous case �i�. The flux density yields the following
expressions:

b = ba + 1 − e, 0 � e � 1. �18�

Figure 4 shows the variations of the stress intensity factor

during field descent after being first raised to B̂a�4Bp. It is
obvious that with the increasing of ba, the stress intensity
factor increases linearly. Since the body forces are all tensile,
the stress intensity factor always has positive value. Com-
pared to Fig. 3�b�, here there is a larger stress intensity factor
for the same ba. Thus, the probability for cracking is greater
in this case. It is worth noticing that the stress intensity factor
at ba=2 is five times as large as that at ba=0. Choosing a
proper field during field reduction is vital.

IV. FIELD COOLING

Compared to the pulsed field activation, the field-cooling
method requires a much weaker field source to accomplish
full activation. The method is cooling a HTS in a fixed mag-
netic field Bfc and then the applied field is removed, and a
large part of the field remains trapped inside the supercon-
ductor. It is assumed that Bfc is also the flux density frozen in
the superconductor when the subsequent field descent starts.
Thus, the flux density can be defined as

b = bfc, 0 � e � e0, �19�

b = ba + 1 − e, e0 � e � 1, �20�

where e0=1−bfc+ba.
The stress intensity factor at the crack tip as the applied

field is reduced from bfc to ba=0 is plotted in Fig. 5. As we
can see from the plot, there are striking differences between
the cases when bfc�1 and bfc1. When bfc1, the stress
intensity factor decreases with the increase of ba. In other
words, the crack growth is most likely to occur for the pro-
cess of ramping down the applied field from bfc to ba=0.
When bfc�1, the maximum stress intensity factor is gener-
ated as the applied field is reduced from bfc to bfc−1. Note
that the stress intensity factor is greater when the applied
field bfc is higher. Thus, it is clear that in order to reach the
goal of a given trapped field, we should use the lowest pos-
sible activation field.

V. CONCLUSION

The relatively simple model is inappropriate for the case
that the length of the crack is not very small compared to the
width of the slab. It is for this reason that the perturbation
brought upon by the crack is no longer negligibly small. For
the convenience of understanding the problem, we only dis-
cuss the central crack problem. However, knowing the length
and location of the crack is imperative in predicting the high-
est cracking probability.

In this paper, the fracture behavior is investigated for a
superconductor slab with a center-situated crack. We assume
that the crack does not grow too large in size and the flow of
the persistent current is only weakly perturbed. In addition,
let the total forces applied on the boundary plane of the slab
replace the body forces. The plane strain approach is used to
find an exact solution. The calculations are carried out based
on the simple Bean model. Several relations between the
stress intensity factor and ba are also presented.

The stress intensity factor behavior is discussed for field
reduction. As expected, the stress intensity factor depends on
the length of the crack. On the other hand, the stress intensity

FIG. 4. Stress intensity factor as the applied field is decreased

from b̂a�4 to ba=0, for the case of a /h=0.05.

FIG. 5. Stress intensity factor profiles during field descent to the
remanent state after field cooling with bfc=0.5,1.0,1.5,2.0.
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factor can be reduced by decreasing the applied field. In
other words, a lower applied field leads to a smaller stress
intensity factor. It is clear that it is necessary to improve the
mechanical strength at the same time when we make efforts
to increase the trapped field.

We study the problem of a central crack in a long rectan-
gular superconductor. However, some researchers have
paid attention to the other topics of research on bulk

superconductors.16,17 We expect that more papers will be de-
voted to the studies of the magnetoelastic effects.
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