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Evidence for a different type of vortex that mediates a continuous fluxoid-state transition
in a mesoscopic superconducting ring
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The magnetic field response of a mesoscopic superconducting ring with an inside hole positioned off-center
is studied by using the multiple-small-tunnel-junction method, by which the strengths of the superconductivity
at the narrowest and the widest parts of the ring are detected separately and simultaneously. We observed
continuous and reversible transitions between adjacent fluxoid states at temperatures close to the onset of

superconductivity. Our findings are in agreement with numerical ones based on the Ginzburg-Landau theory,
and show that in such continuous transitions, a different type of vortex nucleates at the narrowest part of the
ring in the case of a low flux and at the widest part for a larger flux. The former corresponds to a one-
dimensional vortex, which has been predicted theoretically for more than a decade.
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I. INTRODUCTION

In mesoscopic superconductors, which have sizes compa-
rable to the superconducting coherence length ¢ or the mag-
netic penetration depth A, the quantum confinement effect
dramatically modifies the superconducting properties. Recent
development of nanofabrication techniques as well as
progress in the numerical simulation methods allow one to
investigate such new quantum effects both experimentally
and theoretically. For example, in mesoscopic thin films, the
confinement leads to the formation of novel vortex states
such as giant vortex states, multivortex states,'™® and vortex-
antivortex molecules.'®'* Some of them have been con-
firmed experimentally.'>2! For mesoscopic rings, theories
have predicted that the transition between different fluxoid
states may lead to reversible and continuous variation of re-
lated physical quantities, such as magnetization, supercur-
rent, and superconducting order parameter, when the cross
section of the ring varies along the circumference. This is
associated with the nucleation of a novel type of vortices.?>?3
Note that either in bulk hollow cylinders (rings) or in films of
type-II superconductors, transitions between quantum states
with different fluxoid quantum numbers (or vorticities) are
discontinuous and irreversible. In this paper, we focus on the
vortex state which mediates reversible and continuous
fluxoid-state transitions in an asymmetric ring.

The unconventional behavior in mesoscopic rings was
first derived in the one-dimensional (1D) limit.2*-3" In the
1980s, it was found that in a 1D ring with an attached lead,
a magnetic flux @ induces a nonuniform distribution of the
order parameter, and the order parameter vanishes at one
point of the ring when ®=®y/2 (P, is the magnetic flux
quantum).>*-2® Later, Berger and Rubinstein®”-?° found that
in the 1D limit in a ring with nonuniform cross section, there
is a stable superconducting state at the onset of superconduc-
tivity in which a part of the sample is normal, leading to a
singly connected superconducting state. At a lower tempera-
ture, there is a critical point at which the magnetic suscepti-
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bility diverges. Some of us?® pointed out that the phase of the
superconducting order parameter jumps by 7 at the point
where the order parameter vanishes, having the property of a
vortex. They called it a 1D vortex. The analyses were ex-
tended to rings with finite and nonuniform cross section, al-
lowing the variation of the order parameter in the radial di-
rection, and the properties corresponding to the 1D case were
obtained as described below.???3

The present vortex is predicted to have the following
properties:*>23 (i) This vortex is stabilized only in mesos-
copic superconducting rings having diameter smaller than
the coherence length & and nonuniform cross section. Its ex-
istence is irrespective of the type of superconductor (type I or
I0). (ii) Analogous to the Abrikosov vortices in type-II super-
conductors, the superconducting phase changes by 27 when
encircling the core. Besides, the present vortex can be lo-
cated even at the sample boundary. In this case, the vortex
can be identified by the phase change of 7 when going
through the core. This is in contrast to the Abrikosov vortex
that is unstable when the distance to the boundary is too
short. Furthermore, the present vortex can be stabilized in a
thin ring with width smaller than &, where the vortex be-
comes highly anisotropic and the region where the order pa-
rameter W is close to zero extends over the whole width.
This vortex corresponds to a 1D vortex derived in the 1D
limit.?? (iii) The vortex exists only in a narrow range of ap-
plied magnetic flux in the vicinity of a half-integer number
of flux quanta: as the applied flux is increased (decreased), a
vortex core appears at the outer (inner) edge of the ring,
moves continuously toward the inner (outer) edge, and dis-
appears at the inner (outer) edge. Thus, this vortex, also nick-
named a flux-induced vortex in Ref. 22, exists as a stable
intermediate state during a transition between different flux-
oid states. This fluxoid-state transition is reversible and con-
tinuous, in contrast to the usual transitions in rings which
exhibit clear hysteresis and a jump in the current circulating
around the loop.31 Besides, the vortex differs from the usual
Abrikosov vortex in a film: in the latter case, when a vortex
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FIG. 1. A schematic view (left) and a scanning electron micro-
graph (right) of the sample. Two Cu leads are connected to an Al
asymmetric ring through highly resistive small tunnel junctions
(shaded areas). An Al drain is directly connected to the widest part
of the ring. This structure was fabricated using e-beam lithography
followed by double-angle evaporation of Al and Cu. After the Al
film was deposited, its surface was slightly oxidized to provide a
tunnel barrier.

is nucleated at the sample edge, it inevitably jumps deep
inside the sample at the same magnetic field, and it does not
disappear at higher magnetic fluxes. (iv) For a mesoscopic
ring with an off-centered hole, the vortex passes through the
narrowest part of the ring for small magnetic fluxes, and
through the widest part for large fluxes.

Although up to now several experimental studies were
performed on mesoscopic rings and some of them observed a
continuous transition between fluxoid states, there has been
no clear experimental confirmation of this vortex.3>=% In the
present paper, we experimentally demonstrate the penetration
of vortices in asymmetric rings as a stable intermediate state
in fluxoid-state transitions. Our results are confirmed with
theoretical calculations based on the Ginzburg-Landau (GL)
theory.

The paper is organized as follows. In Sec. II, we describe
the experimental setup. In Sec. III, we present the theoretical
formalisms used to obtain the numerical results. The experi-
mental results together with the theoretical ones are de-
scribed in Sec. IV. In Sec. V, we discuss the properties of the
vortex state found in the present experiment in more detail.
Finally, in Sec. VI, we summarize our results.

II. EXPERIMENT

To experimentally detect the properties of vortices ex-
pected for nonuniform mesoscopic rings, we probed the local
strength of superconductivity. Here, we used the multiple-
small-tunnel-junction (MSTJ) method,'® in which several
small tunnel junctions with high tunnel resistance are at-
tached to a mesoscopic superconductor to simultaneously de-
tect small changes in the local density of states (LDOS) un-
der the junctions. Since the LDOS depends on the local
superconducting energy gap A, and hence the Cooper-pair
density |W|?, the MSTJ method allows us to compare the
strength of superconductivity under the different junctions.

Figure 1 shows a schematic view and a scanning electron
microscopy image of the sample. Two normal-metal (Cu)
leads cover the narrowest and the widest parts of a supercon-
ducting Al ring with an off-centered hole (outer radius r,
=0.42 um, inner radius r;=0.18 um, displacement of the in-
ner center a=0.10 wm, and thickness d=30 nm), forming
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small Al/AlO,/Cu tunnel junctions (shaded areas) with
nominal tunnel resistance of several tens of kilohms. The
ring is connected to an Al drain lead at the widest part. The
sample was fabricated using e-beam lithography followed by
double-angle evaporation of Al and Cu in a chamber with a
base pressure of 2 X 1078 Pa. The superconducting coherence
length &T=0) was estimated to be 0.15+0.04 um from the
residual resistance of Al films prepared in the same way. The
superconducting transition temperature at zero magnetic field
was 7.=1.36 K.

The sample was cooled in a dilution refrigerator that was
equipped with low pass noise filters for measurement lines in
the lowest temperature part. In the measurement, we con-
nected a current source to each Cu lead and measured the
current-voltage characteristics of the two junctions simulta-
neously as functions of the perpendicular magnetic field and
the temperature. The sweep rate of the magnetic field was
3 mT/min.

III. THEORETICAL FORMALISM

The numerical study of the experimental results was car-
ried out using the two kinds of theoretical formalism used in
Refs. 22 and 23.

A. Perturbation method

At the onset of superconductivity, the GL equation for the
electromagnetic potential becomes irrelevant and the GL
equation for the order parameter becomes a linear eigenvalue
equation. Moreover, if there is cylindrical symmetry, the de-
pendence on the coordinates (r, §) can be separated and the
possible solutions for the order parameter are

Y (r,0) =R, (r)e L0, (1)

where L is an integer. The functions R;(r) and the tempera-
tures for the onset of superconductivity can be evaluated
analytically.® The most interesting situation is that in which
W@ and WD have the same eigenvalue. Let us denote the
temperature and field at which this happens by 7; and H,
respectively.

Much can be learned by extending perturbatively the ana-
Iytic results to situations in which the temperature is near the
onset of superconductivity and the sample is close to cylin-
drical symmetry. In our experiment, low temperatures were
reached and the sample was very eccentric; therefore, the
perturbative approach gives just a crude approximation and
the numerical method of the following section will be re-
quired. Nevertheless, the qualitative features predicted by the
perturbative approach remain valid.

The perturbative treatment was performed in Ref. 40. In
the following, we review those results that we will use for
comparison with our experimental data. We define an eccen-
tricity parameter

2 2
B= 2f w(0)cos(0)d6‘/ J w(6)do, (2)
0 0

where w(6) is the distance between the inner and outer
boundaries of the sample, measured along the line that forms
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the angle @ with the line where the sample is narrowest. We
also define the quantities

A= 2r;2f (Lr - bLVS)Ridr, (3)
where r; and r, are the inner and outer radii of the unper-
turbed (symmetric) sample, b; =7H; /P,

B, = f " rRdr, )
(ro=r)r,| Too—=T, ( L+1>
C,= N byr, -2
S o, VT,
L
X ero_r_ Ri(r)Rpi(r,), (5)

where T, is the critical temperature at zero magnetic field
and &(0) is the coherence length at zero temperature,

0, = f arR‘;dr (6)

i

and

r()
S,=2 f FRIR:, dr. (7)
Ti
We also define A;,,, B;,,, and Qy,,; these are obtained by
the substitution L— L+1 in the winding number L in Egs.
(3), (4), and (6), while the temperature and the field (and b;)
are left unchanged.

From the perturbation analysis, we obtain that there is a
critical point near (H;,T;), which we denote by (H{™,T;™).
The critical point is located within the superconducting re-
gion. When the passage between the fluxoid states L and L
+1 occurs at a temperature above 79", it is continuous and
mediated by a vortex. If C;>0, then the vortex passes
through the narrowest part of the sample; if C; <0, then it
passes through the widest part. It turns out that C; >0 for
small values of L and becomes negative as L increases;
therefore, the vortex passes through the narrow part of the
sample for small L and through the wide part for large L. The
first value of L for which C; is negative depends on the ratio
ro/r;; the larger this ratio, the smaller the value of L for
which C; becomes negative. For temperatures below 77",
the passage between L and L+1 is discontinuous.

To leading term, the position of the critical point is

2ABCUT 000101 ) AN QL ~ AL O

T(irit — TL
(ALBL+1 - AL+IBL)(\/ QLQL+] ),
(®)
Hcrit 2|:8CL|(I)0(QLQL+1)U4(BL\ QL+1 BL+1 N QL)
L =Hp+

mri(A.B; ., — AL+1BL)(\QLQL+1 S1)
)

Note that, for simplicity, the definitions of the quantities
B, A, ...,S; used here are not entirely identical to those in
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Ref. 40. Note also that these quantities depend on the nor-
malization of R, but 7;"" and H;™ do not.

We point out that for the fluxoid value at which C;
changes sign, C; is expected to be small. In view of Egs. (8)
and (9), it follows that for this fluxoid number, the critical
point is close to (H;,T;). As a consequence, for this value of
L, the vortex-mediated passage occurs only in a particularly
small temperature range.

B. Numerical method

For the numerical method,>® we follow the approach of
Refs. 2 and 3, and numerically solve the two nonlinear GL
equations self-consistently. Here, the demagnetization effect
is fully taken into account. Since d<<&,\, it is allowed to
average the GL equations over the sample thickness. Using

dimensionless variables and the London gauge divA=0 for

the vector potential A, we write the system of GL equations
in the following form:

(= iVap— AW = V(1 - |W]?), (10a)
~AspA= %5(Z)fzu, (10b)

where
Jop = %(W*§2DW — WV, U - [ WA, (10c)

is the density of superconducting current. The superconduct-
ing wave function satisfies the boundary conditions (-iV,p

—A)W|,=0 normal to the sample surface and A=A0=%Bré)0
far away from the superconductor, where B is the applied
field. Here, the distance is measured in units of the coherence
length &, the vector potential in c//2e&, and the magnetic
field in H,,=cf/2e&=xk\2H,. The superconductor is placed
in the (x,y) plane, the external magnetic field is directed
along the z axis, and the indices 2D and 3D refer to two- and
three-dimensional operators, respectively.

By sweeping up and down the magnetic field, we can find
the different (meta-)stable vortex states and their stability
range. By comparing the dimensionless Gibbs free energies
of the different vortex configurations

F= V‘lf [2(A - Ag) - jap — [¥|*1dF, (11)
\%4

where integration is performed over the sample volume V,
we find the ground state.

The temperature is indirectly included in & A, and H,,,
whose temperature dependence is given by

H)
Ay =—9 (13)
V|1 =TT,
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FIG. 2. (Color online) Magnetic field dependence of the junc-
tion voltage (current of 0.3 nA is applied) for the junction at the
narrowest part of the ring at (a) 0.9 K, (b) 1.05 K, and (c) 1.2 K,
and (d) for the junction at the widest part at 1.2 K. The origin and
the scale of the ordinate are shifted for clarity. The arrows [blue
(red) is for sweep up (down)] indicate the sweep direction of the
magnetic field. [(c) and (d)] At 1.2 K, data obtained by sweeping up
and down the magnetic field coincide within the accuracy of the
measurement. (The error is mainly due to the offset shift of the
voltage amplifier.)

HCZ(T) =H62(0)‘ 1- l

Tl (14)

IV. RESULTS
A. Transitions between fluxoid states

Figure 2 shows the magnetic field dependence of the junc-
tion voltages at a fixed small current of 0.3 nA for increasing
and decreasing magnetic fields at several temperatures. The
parabola-shaped voltage change is mainly due to a decrease
of the energy gap as a consequence of the supercurrent flow-
ing underneath the junction.*! Thus, each parabola corre-
sponds to a fluxoid state with a different fluxoid quantum
number L, and the voltage jumps or kinks between adjacent
parabolas are transitions between different fluxoid states. Be-
cause the separation between adjacent parabolas is close to
(I)O/wrgffzS.SS mT, where re=\r;r, is the effective radius
of the ring,*? L changes by +1 at each transition.

Let us examine the fluxoid-state transitions in more detail.
At low temperatures [Fig. 2(a)], clear voltage jumps and hys-
teresis are seen, which become smaller with increasing tem-
perature [Fig. 2(b)]. As predicted in Refs. 22 and 23, at tem-
peratures close to 7., the voltage discontinuities and the
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FIG. 3. (Color online) (a) Fluxoid-state transition fields for sev-
eral temperatures. Open (blue) and closed (red) squares correspond
to transition fields for increasing and decreasing magnetic fields,
respectively, and the diamonds (green) to the transitions without
hysteresis. The solid (red) and dashed (blue) curves correspond to
the theoretical expulsion and penetration fields obtained within the
framework of the nonlinear Ginzburg-Landau theory. The best
agreement with the experimental data was obtained for a system
with dimensions 5% smaller than the experimental sample and for
the coherence length &,,,(0)=120 nm. Contour plots of the calcu-
lated Cooper-pair density in linear scale are shown for the middle of
the (b) first and (d) third continuous transitions. The temperatures
are 1.2 and 1.0 K, respectively. Red (blue) regions correspond to
high (low) Cooper-pair density. At the white region, the Cooper-pair
density is less than 1073 of the B=0 value. (c) A close-up of the
narrow part of the ring in (b) but now in logarithmic scale. The
white and blue regions correspond to Cooper-pair densities which
are less than 107> and 107 of the B=0 value, respectively.

hysteresis disappear [Figs. 2(c) and 2(d)], leading to continu-
ous and reversible transitions. Notice that the voltage of the
narrowest part at applied magnetic fluxes CID:wrgffB
=~ +0.5®, is close to its normal state value (see the voltage
at high magnetic flux, |®|/®,>2.0) [Fig. 2(c)], while that of
the widest part remains large even at ®=+0.5® [Fig. 2(d)].
This indicates that the superconductivity in the ring is weak-
ened in a nonuniform manner.

Figure 3 summarizes the magnetic fields where the
fluxoid-state transitions occur for increasing (open squares)
and decreasing (solid squares) magnetic fields. As tempera-
ture increases, the difference between the transition fields in
increasing and decreasing magnetic fields becomes smaller,
and finally, the transition becomes continuous (diamonds).

In order to get a better understanding of the physics, we
compared our experimental results with theoretical calcula-
tions done within the framework of the GL theory. The
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dashed and solid curves in Fig. 3 indicate the theoretical
transition fields for increasing and decreasing magnetic
fields, obtained from the numerical solution of the nonlinear
GL equations. When comparing theory with experiment, we
found the best agreement, as shown in the figure, when the
sizes of the sample were chosen to be 5% smaller than the
experimental sizes and the coherence length &,,,(0) to be
120 nm.*3 At the widest part of the ring, a drain was added,
&um(0) wide and 10€,,,(0) long. This drain influences the
theoretical results for the 2 <= 3 transition and, to a very small
extent, also the 1+« 2 transition, but not the 0« 1 transition.

By using perturbation theory,*® we estimated theoretically
the position of the critical points (H;™,T;™): For tempera-
tures below (above) these points, the sample jumps discon-
tinuously (continuously) from one fluxoid state to the next
with (without) hysteresis. We obtained the best agreement
between this perturbation approach and experiment by in-
creasing r; by 30 nm, decreasing r, by 50 nm, and the coher-
ence length &yeb(0)=135 nm.* We found the critical point
at  (H™(mT),T{"(K))=(4.1,1.17), (12.2, 1.20), and
(20.4, 0.93), for the first three transitions, which are compa-
rable with the measured values (4.5, 1.2), (13.2, 1.2), and
(20.8, 1.0).

Thus, both theoretical treatments successfully reproduce
the experimental results with appropriate sample sizes as fit-
ting parameters.

These theoretical analyses also predict how the transitions
between fluxoid states occur. In agreement with the previous
theories,?>? our calculations show that the continuous tran-
sitions (without hysteresis) are accompanied by vortices
which appear only during the transitions: as the magnetic
field is increased (decreased), a vortex appears at the outer
(inner) edge of the ring, moves in the radial direction, and
finally disappears at the inner (outer) edge.

In the first continuous transition (L=0+1), the vortex
passes through the narrowest part of the ring. The calculated
Cooper-pair density in the middle of the transition at 1.2 K is
shown in Fig. 3(b) in linear scale. The vortex core where
|W|=0 (white region) extends across the whole width, and
the distribution of the Cooper-pair density around the core is
almost uniform in the radial direction, corresponding to the
1D vortex. On the other hand, for the third continuous tran-
sition (L=2+3), a vortex appears at the widest part. Here,
the width of the widest part (0.34 wm) is comparable to the
temperature-dependent coherence length &, (7T=1.2 K)
=&.um(0)/(1=T/T,)"?=0.35 um, so that the vortex has a 2D
character, i.e., the Cooper-pair density varies in the radial
direction around the core, as shown in Fig. 3(d). In the sec-
ond transition, the place where the vortex passes sensitively
depends on the sizes of the ring. For the best sizes found in
the calculations, the vortex enters through the widest part of
the ring in the numerical analysis, while it passes through the
narrowest part in the perturbation analysis. Nevertheless, in
both analyses, it is common that the temperature range for
the second continuous transition to occur is very small (about
10 mK). These features are confirmed experimentally, as de-
scribed below.

We conclude this section by looking at the Cooper-pair
density at the first vortex penetration in more detail. Figure
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3(c) shows a contour plot of the calculated Cooper-pair den-
sity for the first vortex penetration in logarithmic scale. One
can find the 2D distribution of the Cooper-pair density
around the center of the vortex. Thus, strictly speaking, i.e.,
from a mathematical point of view, the Cooper-pair density
vanishes only at one point in the narrowest part. However, as
shown in the figure, the vortex core is strongly anisotropic
and the Cooper-pair density is almost zero (|W/W|?
< 107*) across the whole width of the narrowest part of the
ring (|Wy|? is the Cooper-pair density at B=0), so that the
coherent superconducting order parameter is practically bro-
ken at the narrowest part. Therefore, such a state can be
called a “quasi-1D” vortex, which is equivalent to the 1D
vortex in 1D rings.?* Notice that this is similar to a time-
dependent phase slip center seen in narrow superconducting
wires,** with the difference that here it is a stable phase slip
center frozen in “time” and “space.” This point will be ex-
plained in more detail in Sec. V.

B. Temperature dependence of the junction resistances

The position of the vortex at the continuous transition
(i.e., whether the vortex passes through the narrowest or the
widest part of the ring) can be inferred from a resistance
measurement. Figures 4(a)—4(d) show the temperature de-
pendence of the junction resistance R normalized by its nor-
mal state value R, for B=0 [Fig. 4(a)] and for magnetic field
values close to those of the fluxoid-state transitions without
hysteresis [Figs. 4(b)-4(d)]. Generally, as superconductivity
develops, the value R/R,, increases due to the smaller density
of states at low energies and is given by a universal function
of the energy gap and the temperature,*

o -1
R_ [22 (- l)mHmAKl(mA)] . (15)
Rn m=1 kBT kBT

within the BCS theory for B=0. Here, K, is the first order
modified Bessel function, A the energy gap, kp the Boltz-
mann constant, and m an integer. This universality is con-
firmed for our junctions as shown in Fig. 4(a), where both
the ratio for the narrowest part, (R/R,)y, and that for the
widest part, (R/R,,)y, have the same temperature dependence
and are in good agreement with Eq. (15) (solid curve) at
temperatures close to T,.*° On the other hand, for the first
transition [Fig. 4(b)], (R/R,)y stays close to 1 between 1.2 K
and T.(4.5 mT)=1.32 K, while (R/R,),, increases as tem-
perature decreases below 7.(4.5 mT). The temperature range
where the increase in (R/R,,)y is suppressed agrees well with
the range where the transitions without hysteresis is observed
(T=1.2 K, see Fig. 3), strongly indicating that a stable vor-
tex exists in the narrowest part of the ring. Similarly, for the
third transition [Fig. 4(d)], the increase in (R/R,)y is sup-
pressed in comparison with (R/R,)y in a wide temperature
range, indicating that a vortex is situated in the widest part of
the ring. On the other hand, for the second transition [Fig.
4(c)], the difference between (R/R,)y and (R/R,)y is rather
small, corresponding to a narrow temperature range for the
existence of the vortex, which is derived in the theoretical
analyses described above. Thus, the position of the vortex
agrees well with the theoretical results.
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FIG. 4. (Color online) [(a)-(d)] Temperature dependence of the
zero-bias junction resistance R normalized by its normal state value
R, for junctions attached to the widest part [closed (red) circle] and
the narrowest part [open (blue) square] of the ring for applied mag-
netic fields of (a) 0, (b) 4.5 mT, (c) 13.4 mT, and (d) 20.0 mT. The
magnetic field values for (b)—(d) are close to those of the fluxoid-
state transitions without hysteresis. The resistance was obtained
from a linear fit of the I-V curve at |V| <50 uV. In (a), the theoret-
ical R/R,, ratio [Eq. (15)] is also shown (solid curve). (¢) Tempera-
ture where the resistance ratio R/R, reaches 1.05 is plotted as a
function of the applied magnetic field.

We repeated similar resistance measurements for many
magnetic field values with a step of 0.5 mT, and obtained
Fig. 4(e), which shows the temperature where R/R,, becomes
1.05 as a function of magnetic field. A steep decrease of the
temperature around ®/®,~ +0.5 for the narrowest part con-
firms the penetration of a vortex, but the width of the dip
(=2.5 mT) is still larger than the theoretical field region for
the existence of the vortex core (=0.3 mT), indicating that
the Cooper-pair density starts decreasing as a precursor of
the vortex penetration. For the third transition, this precursor
is also seen, but now for the widest part of the ring.

V. DISCUSSIONS

We emphasize that the quasi-1D vortex we observed at
the continuous transitions is not due to a thermally activated
process. The present vortex does not move when the mag-
netic field is kept fixed, i.e., the vortex is frozen in time and
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space. The close agreement between our theoretical simula-
tions and the experimental results shows clearly that the fro-
zen vortex state is the ground state. Experimentally, this is
proven in Figs. 2(c) and 4(b), where the superconductivity at
the narrowest part is suppressed in the temperature range
where the hysteresis disappears. Note that during a thermally
activated transition, the order parameter would remain finite
everywhere in the ring,*’ while in our case, it vanishes at
some place along the ring.

It is rather easy to show that the influence of thermally
activated processes is vanishingly small. The ratio E,/kgT is
about 10° at T=1.2 K [E,~ VH>/8 is the condensation en-
ergy in the narrowest part of the ring with length
&T=12K)~0.43 pm, width w=0.14 um, and volume V
~wdé=0.0018 um? in zero magnetic field], and hence, the
probability of the thermofluctuations ~exp(—E,/kgT) is neg-
ligible at this temperature even if the order parameter is con-
siderglbly suppressed at ®=dy/2, which gives E,/kgT
~10%.

Besides, the experimentally observed vortex state is com-
pletely different from what is seen in transitions accompa-
nied by hysteresis. Actually, an earlier theoretical study?!
showed that a transient state with a vortex sitting somewhere
along the superconducting ring is never stabilized when hys-
teresis is present, and our theoretical simulation shows that
this is the case for the present ring. This is also experimen-
tally confirmed in, say, Fig. 2(a), where the junction voltage
at the transition is larger than the normal state value, show-
ing that the narrowest part of the ring does not contain a
normal vortex core as the transient state. Notice that this is
not the case when the hysteresis disappears in Fig. 2(c),
where the junction voltage at the transition is the same as the
normal state value seen at high magnetic fields.

As described in Sec. IV, the position of the vortex at a
continuous transition depends on the magnetic flux. The rea-
son why the vortex passes through the narrowest part of the
ring in the first continuous transition (L=0+1) can be ex-
plained in the following way: At L=0 under magnetic field, a
shielding supercurrent flows along the outer boundary of the
ring. Its nominal decay length, or the effective penetration
depth,** is about 1 wum, which is comparable to the sample
size. Thus, the supercurrent is distributed over the ring. Be-
cause of current conservation, the current density is maximal
in the narrowest place, and hence, the order parameter is
minimal there, resulting in vortex penetration at the narrow-
est place. For L#0, the current from the magnetic flux
trapped in the hole sets in. This current flows along the inner
boundary of the ring and its direction is opposite to the di-
rection of the shielding supercurrent, so that it is possible
that the current compensation leads to the vortex penetration
at the widest part of the ring. This is the simplest explanation
of the phenomenon. The existence of the thin Al drain lead
attached to the widest part of our sample does not cause a
serious change in this discussion; the sample shape and the
spatial current distribution still have mirror symmetry, so that
the position of the vortex penetration is limited to the nar-
rowest and the widest part of the ring.

Here, we comment on the effect of the finite junction area.
In Fig. 5, we calculated the average of the order parameter
over the junction area, | V| average> 10T the magnetic field of the
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FIG. 5. (Color online) The calculated average of the order pa-
rameter over the junction area for the magnetic field of the first
continuous transition. The junctions are placed at the center of the
narrowest part of the ring and at a distance of 0.09 um from the
outer boundary of the widest part. Squares indicate the results for
infinitesimal junction area, and circles for the junction area of 0.1
X 0.1 um?. The insets show the Cooper-pair density at 1.2 K. The
hatched squares in the left inset and the dots in the right inset
indicate the junctions.

first continuous transition. We assume that one junction is
placed at the center of the narrowest part of the ring, and the
other at a distance of 0.09 um from the outer boundary of
the widest part. For a junction with infinitesimal area,
| 4verage Stays almost zero at the narrowest part above 1.2 K
(squares), while for a finite junction area (0.1X0.1 um?),
|\If|average slightly increases while the temperature decreases
to 1.2 K. This means that even if a vortex is situated at the
narrowest part of the ring, the probed Cooper-pair density (or
measured junction resistance) may be slightly different from
the normal state value due to the finite junction area, and
shows a temperature dependence. Thus, the slight change of
(R/R,)y between 1.2 K and T,(4.5 mT)=1.32 K in Fig. 4(b)
is attributed to the effect of the finite width of the junction
area.

Finally, we comment on the possible existence of the
quasi-1D vortex in a previous experiment. Liu et al.?® ob-
served a finite resistance at +0.5®, well below T, in a thin
hollow Al cylinder, which was explained by the global de-
struction of superconductivity due to the Little-Parks effect.
We argue that the result might also arise from the presence of
a 1D vortex due to small variations in the sample width,
which readily explains the observed decrease in the sample
resistance in comparison with the normal state value.
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VI. CONCLUSION

We investigated transitions between different fluxoid
states in a mesoscopic superconducting ring with an off-
centered hole, emphasizing the existence of a different type
of vortex that results in a continuous fluxoid transition. Ex-
perimentally, we used the MSTJ method to compare the
strength of superconductivity at the narrowest and the widest
part of the ring. The experimental results are corroborated by
a theoretical analysis within the framework of the nonlinear
Ginzburg-Landau theory. We observed reversible and con-
tinuous transitions between adjacent fluxoid states at tem-
peratures close to the onset of superconductivity. Our theo-
retical simulations reproduce closely the experimental
transition fields with reasonable values for the fitting param-
eters (i.e., the sizes of the ring and the coherence length).
Besides, it predicted the existence of a different type of vor-
tex at the continuous transitions: as the magnetic field is
increased (decreased), the vortex appears at the outer (inner)
boundary of the ring, moves in the radial direction, and fi-
nally disappears at the inner (outer) boundary. This vortex
passes through the narrowest part of the ring at low magnetic
fields and through the widest part of the ring at high mag-
netic fields, because of the interaction between the shielding
supercurrent and the current around the flux in the hole. In
particular, when the vortex is situated at the narrowest part,
its core becomes highly anisotropic and the Cooper-pair den-
sity is almost zero across the whole width. Thus, the vortex
is analogous to a 1D vortex in the 1D limit, and can be called
a quasi-1D vortex. Experimentally, by comparing the tem-
perature dependences of the junction resistance at the nar-
rowest and the widest part of the ring, we confirmed the
existence of the vortex at the continuous fluxoid-state transi-
tions. We determined the position of the vortex, which agrees
with our theoretical predictions. These results confirm the
existence of a different type of vortex at the continuous
fluxoid-state transitions.
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