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We derive Ginzburg-Landau action by systematically integrating out electronic degrees of freedom in the
framework of the Keldysh nonlinear o-model of disordered superconductors. The resulting Ginzburg-Landau
functional contains a nonlocal A-dependent contribution to the diffusion constant, which leads, for example, to
Maki-Thompson corrections. It also exhibits an anomalous Gor’kov-Eliashberg coupling between A and the
scalar potential, as well as a peculiar nonlocal nonlinear term. The action is gauge invariant and satisfies the
fluctuation-dissipation theorem. It may be employed, e.g., for calculation of higher moments of the current

fluctuations.
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I. INTRODUCTION

Time-dependent Ginzburg-Landau (TDGL) theory has re-
ceived a lot of attention and was a subject of controversy
over many years."”!3 Gor’kov and Eliashberg* (GE) were
probably among the first who realized that the thermody-
namic Ginzburg-Landau equation may be generalized for the
time-dependent phenomena in the case of gapless supercon-
ductivity (see also earlier publications'3). The latter occurs
either in the presence of magnetic impurities or in the fluc-
tuating regime at 7> T,.. Notably the GE equation contained
an anomalous nonlocal coupling between the order param-
eter A and the scalar potential: the fact that was frequently
overlooked in many subsequent treatments.

Extension of the TDGL theory to a gapped phase turns out
to be a very demanding problem. As noted by Gor’kov and
Eliashberg, the difficulty stems from the singularity of the
BCS density of states at the gap edge. The latter leads to a
slowly decaying oscillatory response at frequency 2A/# in
the time domain. As a result, the expansion in powers of the
small parameter A/T, fails. In principle, it may be aug-
mented by an expansion in A/(Aw), in case the external
fields are high-frequency ones. To describe low-frequency
responses in the gapped phase, one needs a time nonlocal
version of the TDGL theory. The analysis is greatly simpli-
fied in the presence of a pair-breaking mechanism, such as
magnetic impurities or energy relaxation. Such a mechanism
may eliminate singularity in the density of states, leading to
a gapless phase in the presence of finite A. Under these con-
ditions, an expansion in powers of A7,/% and w7y is justi-
fied and thus a time-local TDGL equation may be derived
(here 7, is the pair-breaking time). In the present work, we
restrict ourselves to the fluctuating regime 7> T,, where the
spectrum is gapless automatically and there is no need in an
explicit pair-breaking mechanism.

Soon after the GE work, Aslamazov-Larkin (AL)' and
Maki-Thompson (MT)!'7!® corrections to conductivity of
fluctuating superconductors were discovered in the diagram-
matic linear response framework. While AL terms had natu-
rally followed from TDGL theory (see, e.g., books?*2?), MT
phenomena were seemingly absent in TDGL formalism.
Based on the work,’ it was proposed’ that in order to include
MT terms into the set of TDGL equations, one has to substi-
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tute the renormalized conductivity o— o+ o™ in the expres-
sion for the current, supplementing TDGL equations. While
leading to the correct static average current (by construc-
tion), this way of handling the problem fails to satisfy the
fluctuation-dissipation theorem (FDT). Indeed, it does not
provide any prescription for calculating higher moments of
the current (even in equilibrium). Another drawback of the
approach of Ref. 9 is that it fails to incorporate a peculiar
frequency dependence of MT phenomena, stemming from
the time nonlocality of MT terms. The procedure introduced
phenomenologically in Ref. 9 was later elegantly derived in
Ref. 19 using a nonequilibrium Green functions technique.
Let us also mention few other works where a combined set
of TDGL and kinetic equations was suggested.'>!'* An
imaginary-time action of fluctuating superconductors was
discussed in Ref. 15.

In the present publication, we derive a set of coupled
stochastic TDGL and Maxwell equations, which are suitable
for calculation of both average current and its higher mo-
ments. This set of equations is an immediate consequence of
the effective Keldysh action written in terms of the fluctuat-
ing order parameter and electromagnetic potentials. Techni-
cally, we employ the nonlinear o-model in the Keldysh
representation’>>* to perform disorder averaging. We then
systematically integrate out the electronic degrees of free-
dom, neglecting Anderson localization effects. The resulting
effective action, written in terms of the order parameter and
electromagnetic potentials, naturally and unmistakably con-
tains both MT terms and anomalous GE coupling between
the order parameter and electric field.

We restrict ourselves with the fluctuating regime 7>T.
only, leaving the case T<T, (and magnetic impurities) for
future studies. As always, the Ginzburg-Landau treatment re-
quires the condition

T-T.<T., (1)

which is central to our consideration. We also assume that
both the order parameter and the electromagnetic fields vary
on the spatial scale which is much larger than &=VD/T,
(here D is the diffusion constant) and the time scale which is
much slower than 1/7. (hereafter we adopt units, where %
=c=1). Moreover, we shall rely on the fact that the elec-
tronic system is always in a local thermal equilibrium. This
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in turn implies that the external fields are not too large. More
precisely, the electric field E is such that eE&y << T, while the
magnetic field H is restricted by the condition eH&y<<1/&,.
Notice that these conditions do not restrict our treatment to
the linear response regime. Nonlinear phenomena may be
included, as long as a characteristic scale of nonlinear effects
satisfies the inequalities given above.

The restrictions on spatial and temporal scales of the ex-
ternal fields along with the fact that electrons are in local
equilibrium considerably simplify the theory. In particular,
most of the terms in the effective action acquire a local form
in space and time. Nevertheless, the effective theory does not
take a completely local form. The diffusion constant obtains
a A-dependent contribution, with essentially nonlocal cou-
pling to the order parameter. If averaged over the fluctuations
of the order parameter, this nonlocal term yields MT correc-
tion to conductivity. We note, however, that an average cur-
rent is not the only manifestation of the nonlocal term. The
latter also contributes to the current noise as well as to its
higher moments. Another nonlocal effect in the effective ac-
tion is the way the order parameter interacts with the time-
dependent electric field. This is the anomalous GE term.
There is one special gauge (KC-gauge), where an anomalous
term takes an especially simple form. In what follows, we
shall explain the K-gauge and perform all the calculations in
it. The resulting action may be then transformed back into an
arbitrary gauge.

The use of the Keldysh formalism is important in several
respects. First, it allows one to augment the replica trick to
perform the quenched disorder averaging procedure. Second
and more important, it is the only consistent way to derive
real-time dynamics. The use of the imaginary-time formal-
ism, although possible, requires performing the analytical
continuation procedure. The latter is known to be exceed-
ingly demanding for MT as well as time nonlocal nonlinear
terms. Working directly in real time allows one to make all
the expressions physically transparent, unobscured by the pe-
culiarities of the analytical continuation. Finally, the Keldysh
formalism naturally allows one to extend the treatment to the
situations where the assumption of local equilibrium is not
applicable. Although not considered in the present work, a
treatment of a nonequilibrium fluctuating superconductivity
is a subject of great interest.

The rest of the paper is organized as follows. In the next
section, we present our main results in the form of the set of
coupled stochastic equations for the order parameter and
electromagnetic potentials. In Sec. III, we introduce the basic
elements of the Keldysh nonlinear o-model and explain the
way the effective action is derived by integrating out diffu-
son and Cooperon degrees of freedom. Technical details of
this procedure are delegated to a number of appendixes. Fi-
nally, in Sec. IV, we summarize our findings and briefly dis-
cuss their possible applications.

II. SET OF STOCHASTIC EQUATIONS

The most compact way to present our results is in the
form of the effective Keldysh action which is a functional of
the fluctuating order parameter and electromagnetic poten-
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tials. Since it requires introducing some notations, we post-
pone discussion of the action until Sec. III. Here, we present
an equivalent way to display the same information using the
set of stochastic TDGL and Maxwell equations.

In the presence of the scalar ®(r,s) and vector A(r,r)
potentials the complex order parameter A(r,) obeys the fol-
lowing TDGL equation:

(6, 2iedC)A =[D(V-2ieA)* - 7 JA+ &,  (2)

where D is the diffusion constant, e is the electron charge,
and

™

6L = S(T—T) (3)

is the Ginzburg-Landau relaxation time. The field /C(r, ) sat-
isfies the following equation:

(d,— DVHK(r,1) = ®(r,1) — D div A(r,1). (4)

The complex Gaussian noise &,(r,7) has the correlator

. 167>
(Ealr,)EA(r" 1)) = —— 61 6y, (5)
Vv

where v is the density of states. Unlike TDGL equations
frequently found in the literature,”#20-22 the lhs of Eq. (2)
contains GE anomalous term* 4,/C(r, ) instead of the scalar
potential ®(r,7). The two coincide in the limit of spatially
uniform potentials, cf. Eq. (4). In a generic case, they are
rather distinct and /C(r,7) is a nonlocal functional of the sca-
lar and the longitudinal vector potentials. The standard mo-
tivation behind writing the scalar potential ®(r,7) in the lhs
of TDGL is the gauge invariance. Notice, however, that a
local gauge transformation

A— Ae%eX, d—D-gy,

A—-A-Vy, C—=K-x (6)
leaves Eq. (2) unchanged and therefore this form of TDGL
equation is perfectly gauge invariant. The last expression in
Eq. (6) is an immediate consequence of Eq. (4) and the rules
of transformation for ®(r,r) and A(r,?).

We have suppressed the nonlinear terms in Eq. (2), since
they are of lesser importance for 7>T,. A detailed discus-
sion of the nonlinear terms is presented in Sec. I D. We
note, however, that in addition to the conventional |A|*A
local term, there is other essentially nonlocal and time-
dependent nonlinear term in TDGL equations.

TDGL equation (2) takes an especially simple form in the
K-gauge, which is obtained by choosing x(r,f)=/K(r,7) in
Eq. (6). In other words, the gauge is specified by the relation

CD}C—DdiVA}CZO, (7)

where @ =P-7/C and Ax=A-VK. In such a gauge, the
anomalous term in the lhs of TDGL is absent and the latter
obtains the form
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Gl = [D(V-2ieAy)? - 75 Ak + &y, (8)

where A=Ae 2K Employing Eq. (7) along with the ex-
pression for the electric field E=9,A—V®y, one finds for
the vector potential A (r,?) in the rhs of TDGL equation (8),

Ap(r.) =A (r,0) +Ayc(r,0). )

Here, A | is the gauge invariant fransverse part of the vector
potential and the longitudinal part in the [C-gauge is given by

A“,C(r,t) = f dl‘,dl,Dr,r,EH(l‘,,t,), (10)

1t

where E; is the longitudinal part of the electric field. The
kernel D}, ~ 6(r—1') is the retarded Green function of the
diffusion operator

(9, -~ DVH)D™ = 6_,1 6. .. (11)

'

In addition to the equation for the order parameter, the
complete theory must provide two material equations for the
current j(r,r) and charge p(r,7) densities. The first of these
equations is the continuity relation

divj+d,p=0. (12)
As for the second one, we found the following expression for

the current density:

j(r,f) = f dt'[D6,_ i+ SDM! [e*vE(r,t’) — Vp(r,1')]

r,nt’

mevD

4T

+ Im[A;C(r,t)(V— 2ieA,C)A,C(r,t)] + fj(r,t) .

(13)

The nonlocal part of the diffusion coefficient is the func-
tional of the order parameter (as well as the electromagnetic
potentials) and is given by the expression

D ’ % "
5DMT,[A,<]=Z—T f dr' d"Cr A (r!, DA, C T

.t Ttt! AN
(14)

with 7=(t+1')/2. The retarded C""

7,1t

~ @(t—1") and advanced

C:,r .+~ 6(t' —t) Cooperon propagators are Green functions of

the following equations:
[(9, - ie(I),C(r, 7'+) + ie@,c(r, T_)

— D[V—ieAx(r,7,) — ieA(r,7) FIC™"

(ARG

=8 101, (15a)
[- 9, +ieDi(r,7,) —iePy(r,7)
- D[V-ieAi(r,7,) —ieAj(r, T_)]Z]Ei:;;,
=8 Oy, (15b)

where 7,=7+¢/2. Note that the MT term obeys causality,

since 5D1rWtTt, ~ 6(t—1"), and gauge invariant in view of Eq.
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(6). Being averaged over the fluctuations of the order param-
eter (6DYT),, it leads to the (frequency-dependent) Maki-
Thompson correction to the conductivity. Equation (13) is
more general, however, as it allows one to calculate the
higher moments of the current as well. The current fluctua-
tions are induced by the stochastic term in the TDGL equa-
tion £, as well as by the current noise &(r,?) given by the
Gaussian vector process with the correlator

(E 0" 1) = 8, T V(2D S, + 6DV, + DY) ) Sy,
(16)

guaranteeing validity of FDT, where «,B=x,y,z. Equations
(8), (12), and (13) must be supplemented by Maxwell equa-
tions for the electromagnetic fields. In the next section, we
show how these results may be derived from the microscopic
model.

III. KELDYSH SIGMA-MODEL FORMALISM
A. Notations and the o-model action

We employ the Keldysh technique,? which allows us to
go beyond the linear response and is formulated directly in
real time. The formalism considers the evolution along the
closed contour in the time direction. It thus deals with the
two “replicas” of each field, one encoding the evolution in
the forward and another in the backward time direction. It is
convenient to introduce half-sum and half-difference of these
fields to which we shall refer as classical and quantum com-
ponents correspondingly.”® As a result, all the fields acquire

the vector structure, e.g., the scalar potential ®=(d, ®Y),
the vector potential A=(A“,A%) and the complex order pa-
rameter A=(A,A%). Tt is also convenient to introduce 4

X4 matrix notations for these fields in the space which is a
direct product of Keldysh and Nambu spaces

b =[®0y+ Do ] ® 7, A=[A%y+A% ]® 7,
(17a)

A=[A%y+ Ao ]® 7, - [A oy + Ao ] ® 7,
(17b)

where o, and 7, are sets of Pauli matrices in Keldysh and
Nambu spaces correspondingly (a=0,x,y,z) and 7,
=(7xiT)/2.

Our starting point is the nonlinear o-model,>?* which
systematically takes care of the elastic disorder averaging. In
the framework of this formalism, the electron dynamics is

described by the field Q(r;t,t’) which is a matrix in the 4
X 4 Keldysh-Nambu space as well as an infinite matrix (in-
tegral kernel) with respect to its two time indices. For a
short-range correlated disorder (the only case considered
here) the Q matrix is a local function of the spatial variable
r. The Q matrix obeys the local nonlinear constraint
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QX(r) =1, (18)

where Q2 is understood as the matrix multiplication in 4
X4 as well as in the time space and the rhs is the unit
operator in this space.

It is very convenient>»?*?7 to single out the gauge degree
of freedom of the Q-matrix field by expressing it in the fol-
lowing form:

Qv(l';l‘,l‘,) - eieEK(r,t)QK(r;t’tr)e—ieK(r,t’)E_ (19)

Here Ié(r,t) is a scalar gauge field in the matrix representa-
tion analogous to Eq. (17a), E=0,® 7,, and Oy is the new
Q-matrix field free from the gauge ambiguity. Obviously, the
field QK also satisfies the nonlinear constraint Q%: 1. In
what follows, we shall use the freedom of choosing the
gauge field K to adjust a saddle point on the Q-manifold, Eq.
(18), according to local scalar and vector potentials. There-
fore, the /C field should be understood as a certain functional
of the electromagnetic potentials ® and A which fixes a spe-
cial gauge.

The Keldysh nonlinear o-model we employ here was for-
mulated for normal metals by Kamenev and Andreev? and
extended for superconductors by Feigelman et al.?* Its action
takes the following form:

S[Q7A,A’¢)]=SA+S(D+SU’ (203)

14 voovov €2V v vy
SA =- ﬁ Tr[AKYAK], Sq) = 7 TF[Q)KY(D/C],

(20b)

iy v X P A O
Sa'= ? Tr[D((?rQ}C)z - :ﬁtQK: + 4l€q)]CQ}C + 41AKQ/C]7

(20¢)

where A is superconductive coupling constant, Y=ox® 70
and the covariant spatial derivative is defined according to

3 Qx = Vi Ox. — ie A, Orcl. (21)
The subscript K denotes gauge transformed fields

be=0-9K, Ac=A-VK, (22a)

Ag(r,1) = e EREIN(r, p)ele 0=, (22b)

The trace operation in Eq. (20) Tr[---] implies integration
over the space and time indices as well as matrix trace in the
4 X4 Keldysh-Nambu space. The action written above
should be supplemented by the standard Maxwell term S,
=T{EYE+HYH]/167.

Our eventual goal is to integrate out fluctuations of the
electronic degrees of freedom represented by the field QV,C to
end up with an effective action in terms of the electromag-
netic potentials and the order parameter only. To this end,
one needs a parametrization of the QK field which explicitly
resolves the nonlinear constraint (18). Following Refs. 23
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and 24, we adopt the exponential parametrization

QK(r) — e—W(r)/Zﬂev{/(r)D’ (23)

where the matrix multiplication in the time space is implic-

itly assumed. The matrix A represents the normal metal
saddle point (hereafter we work at 7>T,) in the absence of
external fields,

v 5z—t' 2Ft—t’ NG
A= ® T, =UAU", (24)
' 0 - 5z—t'
where /§0=0'z® 7, and
v . Oy Fop
Uy =1, =( o ) ® 7). (25)
0 = O

The function F,_,s is the Fourier transform of the equilibrium
distribution function F,=tanh(e/27), i.e.,

iT =T

l 4
" sinh(Ty) - 5"5 ® (26)

The last expression is an approximation applicable for
slowly varying external fields. Note that choosing the param-
etrization in the form [Eq. (23)] does not imply that the elec-
trons are in the state of the global thermal equilibrium.
Indeed, the actual distribution function is given by
. el . xocl ’

e oK) of Eq. (19), and includes local varia-
tions (e.g., chemical potential) due to the presence of elec-
tromagnetic potentials. The field K is to be chosen (see be-
low) to achieve this goal in an optimal way.

The matrix field Wt’,r(r) in Eq. (23) represents fluctua-
tions of the electronic degrees of freedom and is to be inte-
grated out. To avoid redundancy of the parametrization, one
needs to ensure that the matrix W does not commute with A.
This is achieved by requiring that WA +AW=0. This condi-
tion is resolved by introducing four real fields wr, (r),w;;,(r)
with =0,z representing diffuson degrees of freedom and
two complex fields w,,(r),w, (r) for Cooperon degrees of
freedom. (The bar symbol denotes an independent field, not a
complex conjugation.) These fields are built into the matrix>*
v v v . WT, =W T WoTy+W,T,
W=, =< ' . Z) (27)

WoTp+W,T, WT,—W T_
where the asterisk stays for complex conjugation and the

matrix I is defined in Eq. (25).

B. Diffuson modes, /C-gauge, and normal action

In this subsection, we shall disregard the fluctuations of

the order parameter A. Since we are not interested in the
weak-localization effects, we can disregard the Cooperon de-
grees of freedom w,,(r),w,(r) in the matrix (27) as well.
We then substitute the matrix W, Eq. (27), written in terms of
the diffusion fields wj;,(r),w;,(r) («=0,z) into the sigma-
model action (20c) and expand it to the linear order in the
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diffuson fields. We focus first on the z-components w*, w=.
Demanding that the terms linear in w*, w*® vanish, one obtains
the condition? (for details see Appendix A)

[D, A]+D(EVAr-AZVAA)=0. (28)

This matrix equation may be resolved by a proper choice of
the gauge doublet IC=(K,K9), thus fixing the K-gauge.
Employing Egs. (22a) and (24), one may rewrite Eq. (28) as
an explicit gauge-fixing condition

" 1 -2B, .
Dp(r,m) = (O ) )D div A(r,w), (29)
with
w<T
B, = coth(w/2T) — 2T/ w (30)

being the equilibrium bosonic distribution function. In the
absence of the quantum components of the fields (used to
generate observables), Eq. (29) is reduced to the gauge con-
dition (7) written for the classical field components. It is
important, however, to fix the gauge for both quantum and
classical components.

Equation (29) completes the task of finding the gauge
field and combined with Egs. (19) and (24) provides the
approximate saddle point, which is determined for any given

realization of the fields ®(r,7) and A(r,7). This general
scheme guarantees that in the expansion over W-fluctuations,

terms such as Tr[®; W] and Tr[A,W] do not appear in the
action.

This procedure does not completely eliminate terms linear
in the diffuson generators. Indeed, contributions of the form

TH{AAxAWA,] come from the diamagnetic term of the
o-model action (20c).2 Such terms are linear in the diffuson
fields w®,w" and quadratic in the electromagnetic potentials.
Integrating out diffusons w°,w" in the Gaussian approxima-
tion yields a nonlocal vertex guartic in the electromagnetic
potentials. It is exactly this quartic vertex which is respon-
sible for Altshuler-Aronov correction to the conductivity of
normal metals?® (for details see Ref. 23). Since Altshuler-
Aronov corrections do not exhibit a singular temperature de-
pendence in the vicinity of T,, we shall ignore these terms
hereafter. It is an interesting and open question to investigate
other possible implications of these nonlinear terms.

Once the terms linear in diffuson generators are elimi-
nated by a choice of the proper gauge, one may substitute the

metallic saddle point Qv,c=[§ into the sigma-model action
[Eq. (20)] to obtain the effective action in terms of the elec-
tromagnetic potentials (for details see Appendix A). Such a
procedure neglects nonlinear interactions of the diffuson
modes and thus amounts to disregarding the Anderson local-
ization effects. The resulting action takes the form

SN=€2VTI'[(£7C(TXCI-;K+AICIZA—DA}C], (31)

where the operator 7, p 1s defined as
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, 0 -4D
TD = N .
-Dg, 4TD

The arrows < on top of the time derivative imply that the
differentiation is performed to the left/right, respectively.
Employing gauge-fixing condition [Eq. (29)], the action may
be rewritten as

(32)

<

0 DV? -4,

DVi—g 4T )A’C' (33)

Sy=e*vD Tr 1&}%(

This action may now be employed to determine (fluctuat-
ing) charge and current densities. To this end, one needs to
introduce an auxiliary vector Hubbard-Stratonovich field
&(r,1), to decouple the term quadratic in the quantum com-
ponent of the vector potential Ay

- 42uDT THALP _ f D[ fj]e_(482VDT)7l Tr sz—zi Tr Afg (34)

The resulting action is now linear in both ®% and A{ fields,
allowing us to define the charge and current densities as

1 6S[®,A]
p(r,1) = 2 ()’ (35a)
. 18S[®,A]
i) = 2 AN (35b)

It is important to note that the differentiation here has to be
performed over the bare electromagnetic potentials, while
the action is written in terms of the gauged ones. The con-

nection between those {(f),z;}:{(f),c,g,g} is provided by the
functional K[®,A], which is implicit in Eq. (29) and in the
explicit form is presented in Appendix A. A simple algebra

then leads to a set of the continuity equation (12) and the
expression for the normal current density

§(6,0) = D[vE(r,1) - Vp(r.0]+ &(rr).  (36)

The Hubbard-Stratonovich field &(r, ) has a meaning of the
Gaussian Langevin noise source? with the correlation func-
tion given by [cf. Eq. (34)]

(Gx.nE(x' 1) =2Te*vD8, 3,1 Syp- (37)

Notice that because of assumed local equilibrium of elec-
tronic degrees of freedom, Egs. (36) and (37) do not lead to
any excess noise beyond the one prescribed by equilibrium
FDT. This is not the case for fluctuating superconductors.
Indeed, the order parameter may be driven out of equilib-
rium, while the electrons are still in the state of the local
equilibrium.

C. Cooperon modes and superconducting action

Having taken care of the diffuson modes with the help of
the /C-gauge, we turn now to the fluctuations of the Coop-
eron modes w,w. The latter are induced by the fluctuating

order parameter A(r,7). To eliminate the Cooperon degrees
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of freedom of the electronic system, we substitute parametri-
zation (27) into the action (20c) and expand it to the second
order in w,w. Once again, neglecting the higher order terms
in the expansion amounts to disregarding the localization
effects. As a result, one obtains the following quadratic ac-
tion (for details, see Appendix B):

S [W A/C’CI)K:’AIC] = l_ TI‘[QH

(1)€,120,,(r)

! '

—2iV! (02, (r) + 200, (r) V,r,(0)],
(38)

where we have introduced vector Qﬁ,,r(r)=[wt,r(r),vT/,,r(r)]T,
defined in the two-dimensional space of the complex Coop-
eron fields and the vector \;,,r(r)=[V,,r(r),—\_/,tr(r)]T, with
the elements

iy ,
V(1) = 8,_p A (r,0) + Eﬁl_t,A%(r,t ),

Vi (r) = 8_p Af (r 1) - ,_;rAyc(r 7). (39)
The factor i8'(r—t")/(2T) multiplying the quantum compo-
nent of the order parameter is nothing but the long time
approximation for the fermionic distribution function F,_,
Eq. (26). This approximation is adopted throughout the sub-
sequent calculations. The electromagnetic field-dependent
Cooperon matrix propagator has the following structure:

Ct_t’ 0 Mt’ Mlt'
+ , (40)

C[Ac]= _
. ’C 0 C;} Mtt’ A/tt’

with the matrix elements

Cor == d,+ Oy + e[ DL(x,1) — DY, )]

— D[V—ieA{(r,1) — ieA§(r,t")]?, (41a)
Cor = d,— Oy — e[ DL(x,1) — DY, )]
— D[V—ieA(r,1) — ieA§(r,t")]?, (41b)
N,y=- 5H,2eTD [% div A(r,t) + Af(r,0)[V- ZieA%(r,t)]} ,
(41c¢)

My =— ZeZD{A%(r,t) + %&IA%(r,t)}A%(r,t')
(41d)

We show below that the diagonal elements of the ¢!
operator are responsible for the conventional part of the
TDGL theory in the form derived by GE.* More precisely,

the terms C~' and C~' yield the TDGL equation for the order
parameter, while the additional diagonal terms N (propor-
tional to the quantum component of the vector potential) lead
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to the superconductive part of the current. Interestingly, this

is not the entire story yet. Indeed, the operator ¢! contain
also the off-diagonal elements M, which induce cross corre-
lations between w and w Cooperon generators (i.e., they in-
duce correlations between rotations of retarded and advanced
sectors of the Q-matrix in the Keldysh space). It is very
difficult (if not impossible) to capture such terms within the
analytical continuation technique of GE. It is exactly these
off-diagonal terms which are responsible for the MT contri-
bution to the average current. We shall derive the corre-
sponding part of the effective TDGL action, which allows
one to include the MT effect in the higher moments of the
current as well.

The next step is conceptually simple. It involves the
Gaussian integration over the Cooperon degrees of freedom

(i.e., vector Qﬁ) in Eq. (38). The result may be schematically

represented as S ~Tr[‘7ké[1§,C]V], which is an action qua-
dratic in the order parameter A. One needs thus a way to

invert the operator ¢! given by Egs. (40) and (41). To this
end, we notice that the second term in the rhs of Eq. (40)
contains the quantum component of the vector potential and
thus may be regarded as small. Taking advantage of this fact,
we first find the saddle point of the action (38) without the
last term in the rhs of Eq. (40) and then substitute this ap-
proximate saddle point into the N and M terms. Taking
variation with respect to w and w, one finds for the approxi-
mate saddle point

2
Wt (12), (i) (F) = f dr'dy Cﬂ; o Vos(n2).o-(12)(T'),

(42a)

W7+(77/2),7—(77/2)(r) =2i f dl”d’l] C:—l;? 7' _'r+( '12) 7'—(77’/2)(r )

(42b)

and similar expressions for conjugated Cooperon generators
w" and w". The retarded (%> 7') and advanced (7<7%')
Cooperon propagators are determined by Egs. (15).

We now substitute the saddle point Eq. (42) back into the
action (38), to obtain the effective action of a fluctuating
superconductor (details are presented in Appendix B)

Seﬂ{A_)K’(f)IC’;K] = SGL[A_)}C’AIC] + SSC[&K,AK]
+ SMT[A_)/C#&IC] + SN[(I_;IC’/;)C]' (43)

The last term here Sy is the normal action (31), or equiva-
lently (33), originating from the diffuson degrees of freedom.
The other three terms originate from the Cooperon action
(38) in the way outlined above. Specifically, the Ginzburg-

Landau action Sg; comes from the C', C!' terms in the
action, the supercurrent action Sg- from the A terms and
Maki-Thompson action Sy, originates from the off-diagonal
M terms. The diagrammatic representation of these terms is
given in Fig. 1.
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@) ®)
A1) (&)
A(r,0) SA%(r. ) A€(r,0) AY(r,0)
NS IR NN
@

A(rD)

FIG. 1. (Color online) Diagrammatic representation of the effec-
tive action, Eq. (43). (a) Conventional Ginzburg-Landau functional
Scr- (b) Anomalous GE coupling between the scalar potential and
the order parameter. (c) Gradient part of supercurrent action Sgc. (d)
Diamagnetic component of the supercurrent. (e) Nonlocal MT term
[here 7=(t+¢")/2 and there are two possibilities: one vector poten-
tial classical and another quantum, which is part of the current, or
two quantum, which is the FDT counterpart].

The TDGL part of the action SGL[&K,A%] has a local
form standard for the Keldysh formalism. It comes from

Tr[\j'rCI;] and Tr[\}@&] terms, Fig. 1(a)

SeL= ;—;Tr[&;c(r,z)i-lﬁ,c(r,z)], (44)

where the fluctuation propagator L has a typical bosonic
form in the Keldysh space

. 0o L
L 1=< o )
Ly 4iT

Here, retarded and/or advanced components of the fluctua-
tion propagator are given by

(45)

x = F 0= g + D[V-2ieAf(r,n) 1, (46)
while the Keldysh component of the propagator satisfies the
FDT in equilibrium Lg' =B, (L' ~L,") —4iT if ®<T. Note
that the scalar potential ®¢, although present in the action
(38) through the operators (41a) and (41b), does not show up
in the Ginzburg-Landau action (44). This happens because
upon substitution of the Cooperon generators by their saddle
point values (42) the terms ®¢(r,7) and ®¢(r,¢') in Egs.
(41a) and (41b) cancel each other. [To be precise there is a
small residual term ~(?,(I),CC’/ T, which we do not keep, since it
exceeds the accuracy of our calculations. For the same rea-
son, terms with P are not kept in the A operator Eq. (41¢)].
As a result, the effective TDGL action depends only on the
vector potential, but not on the scalar potential, if written in
the K-gauge. In any other gauge there is a linear coupling
between the scalar potential and the z-diffuson mode
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~FOpe+ 4w, cf. Eq. (28). Taken together with the terms
Aww® and Aww* (see next subsection) and being averaged
over the diffuson fluctuations, these terms lead to a nonlocal
coupling between the scalar potential ® and the order param-
eter |A|?, see Fig. 1(b). This is the anomalous GE term.
Thanks to the condition (28) the anomalous term is absent in
the K-gauge, making this gauge especially convenient to
work in.

The supercurrent action S SC[&K,AK] comes from the di-
agonal terms in Eq. (38) Tr{wANw] and Ti[wANw], where
Cooperon generators w and w are given by Eq. (42). It is also
local and given by

See= Wzr THAYL Im[AL(V=2ieADALT.  (47)

The gradient part of the supercurrent originates from

3 d1V AJ-+A$V terms in the rhs of Eq. (41c), while the dia-

magnenc current originates from the 2ieA%A§ term, see
Figs. 1(c) and 1(d).

Time locality of the Ginzburg-Landau and the supercur-

rent actions stems from their diagonal nature. Indeed, they
both involve products such as w,,w, . According to Egs.
(39) and (42), w,,» ~ 6(r—1"), where 6(7) is the step function
smeared at the scale 1/7. Therefore, the time variables in
w, Wy, are compatible only in the narrow vicinity of r=¢,
i.e., [t—1'|=<1/T, hence the time locality. This argument does
not apply to the off-diagonal MT term. Indeed, the latter
involves the product of retarded and advanced generators
w, Wy, Whose time variables are compatible for any r>1¢'.

The Maki-Thompson action SM{A%,A,C], coming from

the off-diagonal blocks of the ¢! operator, has essentially
time nonlocal form as explained above, Fig. 1(e),

Syr= 2 THAL(r. ) Tap(t.1) A ()], (48)
where the operator Tg,(z,7) is given by [cf. Eq. (32)]
. 0 ~ 4,607
Top= . (49)

MT
— D" .5, 2iT(3DY), + 8Dy )

rtt

where the SDM[A{] functional is given by Eq. (14). Note
that the MT action has exactly the same structure as the
second term in the normal action (31). It therefore amounts
to the time nonlocal renormalization of the normal diffuson
constant Dé,_,— D6,_ ,,+5D”t,

Finally, we comment on the so called density of states
(DOS) contributions.?? They originate from the subleading
terms (in characteristic frequency over temperature) in the
diagonal operator N [not written explicitly in Eq. (41c)], see
Appendix B 3 for details. Accounting for them leads to a
local renormalization of the density of states prefactor in the
normal action, Eq. (31), or Eq. (33),

7§(3)

(50)

vy, =y 1=

where {(x) is the Riemann zeta function. This is a small
effect in the regime we are working in.

094518-7



ALEX LEVCHENKO AND ALEX KAMENEV

A (r.0) A ()

A (r1) A(r,t)

W]

A (r 1)

Ael (r ',t')

FIG. 2. (Color online) Nonlinear contributions to Ginzburg-
Landau functional. (a) Diagram for the local nonlinear term of the
action Eq. (52). (b) Renormalization of the diffusion constant in the
TDGL equation—shaded square is the Hikami box. [(c¢) and (d)]
Terms involving diffuson channel, leading to a nonlocal renormal-
ization of the dynamic part in TDGL equation.

D. Nonlinear terms in the Ginzburg-Landau functional

The nonlinear in A terms of the TDGL equation are not
very significant at 7>T.. Nevertheless, we shall discuss
them here for completeness. There are several ways “|A[*”
terms appear in the effective TDGL action. We shall keep
track of A™A|A|?> terms which directly contribute to the
TDGL equation for A, discussing other combinations only
briefly. The most important way such terms appear is through

the third order expansion of the Tr[AV,CQV,C] term of the

o-model action (20c) in powers of W. Keeping only the
Cooperon generators and employing Tr[ 7.7, 7- 7.7 |= + 1,
one obtains

SNL—l—Tr[A dw ww" —www) +c.c. (51)

Similar terms coming with the Af. component of the order
parameter eventually cancel out between w and w contribu-
tions and thus are omitted in Eq. (51). Next, one substitutes
the saddle point value of the Cooperon generators [Eq. (42)]
into the action (51), and performs traces over the time indi-
ces. In doing so, one should keep only the first power of the
quantum component of the order parameter [coming from
Eq. (39)]. The diagrammatic representation of the corre-
sponding terms is shown in Fig. 2(a). After straightforward
algebra (see Appendix C for details), one finds

703)v
S == 8§22

Tr{ A4 (r, ) AL (r, 1) | AL (r, ) > + c.c.].
(52)

This term is to be added to the retarded and advanced (but
not Keldysh) parts of the Ginzburg-Landau action (44). It
leads to the standard nonlinear term of the Ginzburg-Landau
equation,?®?? which is (a) local and (b) disorder independent,
in agreement with the Anderson theorem.
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Interestingly, this is not the only way the nonlinear terms
appear in the effective action. Let us mention two other ven-

ues. (i) One may expand the D Tr[VQV,C]2 term of the nonlin-
ear o model action (20c) to the fourth order in the Cooperon
fields, generating the so-called Hikami box, see Fig. 2(b).
One then substitutes the saddle point value of the Cooperon
generators (42) in such a term to obtain a contribution quar-
tic in the order parameter. This term leads to a local renor-
malization of the diffusion constant in the TDGL equation
D, ,~ D|A“(r,1)|*/T*. There is no MT nonlocal renormal-
ization of the diffusion constant in the superconductive part
of the action (as opposed to the normal one where both MT
and DOS renormalizations take place). (ii) There is yet an-
other source of nonlinear terms (we are not aware if it had
been discussed previously in the literature). It originates as a
result of mixing between Cooperon and diffuson channels.

To see it, one expands the T{AxOy] term of the o-model
action (20c) to the second order in W. This way one gener-
ates interaction vertices of the following structure
T Apw (W= w%)]+c.c. with @=0,z and corresponding
terms with w. We then perform Gaussian integration over the
diffuson fields w®,w® to obtain a nonlocal vertex
Tr[wn,A,C .1 ) (wy w n)AK(r ,Dwy3], where (w*w®) is the
diffuson propagator, Eq. (11). There is a similar vertex with
w,w generators. Such a nonlocal vertex is effectively a
renormalization of the diagonal part of the (‘j;} operator in
Eq. (38). It is important to stress that the diffuson admixture
does not generate the off-diagonal terms in the (’;l, operator,

thus not affecting directly the MT channel. We then substi-
tute the saddle point values of the Cooperon generators, Eq.
(42), in this nonlocal vertex and find

751(3)2 T A(r,) AY (r,t)Dtr;,

+c.c.]. (53)

Shi A 1) A )

This term is formally of the same order of magnitude as the
conventional one, Eq. (52). Indeed, the diffuson propagator
Dtrf, is not cut by the temperature [unlike the Cooperon

propagators in Fig. 2(b)].

E. Equations of motion and Coulomb interactions

To derive the stochastic equations of motion presented in
Sec. II, one needs to get rid of terms quadratic in quantum
components of the fields: Af in S, and A¢- in Sy+ Sy, This
is achieved with the Hubbard-Stratonovich transformation
similar to Eq. (34) for A} and

e—wv/2Tr|A%\2= J D[§A] e—m//STFr[(|§A\2/4T)—i§ZA%—i§AA;9]

(54)

for Af. As a result, the effective action (43) acquires the
form linear in quantum components of the fields. Integration
over the latter leads to the functional delta functions impos-
ing the stochastic equations of motion. This way the TDGL
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equation (8), which we present here including the nonlinear
terms

[& + TGL—D[V RieAy(r,0)]* + —|A,C(r |?

b
det dr' A(r' 1), Ay (x! t)D”, Ay (r,1)

= gA(r’ t) (55)

with b=7{(3)/ 7, the continuity equation (12), and expres-
sion for the current (13) are obtained for the classical com-
ponents of the fields (we have omitted the subscript ¢/ for
brevity). The correlators of the Gaussian noise sources may
be directly read out from the Hubbard-Stratonovich proce-
dure and are given by Egs. (5) and (16).

We discuss briefly the role of the last nonlinear term in the
lhs of TDGL equation (55). On the mean-field level, i.e.,
being averaged over the fluctuations of the order parameter
(A, A (x" 1))y < Li(r—rx' ,t—1"), this term leads to a
renormalization of the coefficient in front of the time deriva-
tive (8),

(&)
VD§(2,
where &=\D/T, and &T)=+D/(T-T,). The dimensionality
dependent coefficient c¢; appears as the result of the convo-

lution between the diffuson and the Keldysh components of
the fluctuation propagator and reads as

(56)

é)tA/C_) (] —Cy )é’l‘AK’

743 d% 1
SRCOY s
Qm*(k*+1)(k=+1/2)
here is ¢;=0.044, ¢,=0.012, and c¢3=0.005. Note that

disorder-dependent renormalization of the d,Ax term does
not violate the Anderson theorem. The down renormalization
of the coefficient in front of the first time derivative is a
precursor of the oscillatory Carlson-Goldman?! modes, ap-
pearing below T..

Finally, the TDGL equation (8), written in the K-gauge
may be transformed to an arbitrary gauge by the substitution
Ax=Ae K Such a substitution brings the vector potential
A to the covariant spatial derivative, while the time deriva-
tive acquires the anomalous GE term d,— d,—2ied,K. This
way TDGL equation (2) is obtained.

The set of equations is simplified in the limit of the strong
Coulomb interactions.* The latter impose the condition of
local instantaneous charge neutrality p(r,7)=0 and therefore
div j=0. Applying this condition to the expression for the
current (13) and neglecting for simplicity the MT and super-
current contributions, one finds e¢2vD div E=div §j. As a re-
sult, the longitudinal component of the electric field E is a
fluctuating Gaussian field. Employing Egs. (10) and (16),
one may translate it to the Gaussian correlator for the longi-
tudinal component of the vector Ayx(r,r)=Af(2)

+A[(r,1), where A{{(r) is an externally applied diver-
genceless field and the fluctuation component has the cor-
relator
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2T 1 (58)

2vD (D@?)? + w*
Exactly the same expression may be, of course, directly read
out from the normal action (33) (the Maxwell part of the
action is absent in the strong Coulomb limit). To this end,
one needs to perform the Gaussian integration over the Af-
component leading to the quadratic action for the A% with
the correlator given by Eq. (58). It is this fluctuating vector
potential which is responsible for dephasing of the Cooperon
propagators.3°

(AfE(= q,- 0)AfE(q.0)) =

F. Effective action versus diagrammatic technique

Given that there is an existing microscopic formalism for
the Aslamazov-Larkin, Maki-Thompson, and density of
states diagrams, it is important that the results from the
Keldysh effective action, formulated in the previous sections,
be compared with well established results for the corrections
to the conductivity. This comparison is the necessary check
for the validity of our approach.

We start from the density of states contribution to the
conductivity. For that purpose, one uses Eq. (50) and writes
the conductivity correction in the form

7¢(3)e*vD

S0 pos=e*D(Sve %)y =~ PRy

(A, D)a. (59)

The averaging over the order parameter fluctuations is
done easily in the momentum space {|A%(r,7)|)a

=87T—T;EquK(q,w). Using then the explicit form of the
Keldysh component for the fluctuation propagator (45), one

finds
28¢(3) A 1
80 pos=— —462DE dwﬁ.
T q Je D+t

(60)

Further analysis of the formula (60) depends essentially on
the system effective dimensionality. As an example, let us
concentrate on the quasi-two-dimensional geometry—metal
film with the thickness d, which is much smaller than the
superconductive coherence length d<<&(T). In this case, the
momentum sum can be wrjtten as the integral according to
the substitution Eq—>$ I ‘%. Performing remaining integra-
tions, with the logarithmic accuracy one finds

7¢(3)e? ( T, )
7 In .
m'd T-T.

Deriving Eq. (61), the momentum integration was cut at the
upper limit Dq?_ ~T.. Recall that the effective action was
derived under the constraint Dq*>~ w<T,, thus such a regu-
larization is self-consistent.

We proceed with the Maki-Thompson correction to the
conductivity In this case, one starts from the formula Soyr
=e V<5D A, uses the explicit form of the 5D ., given by
Eq. (14), and rewrites the average over A in the momentum
space. This way one obtains

00pos=— (61)
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e (62)
Dq’[(Dq* + 7'&L)2 +w?]

5O'MT__62D2 fdw
q

Again in the case of the two-dimensional geometry, after
momentum and frequency integrations, Eq. (62) reduces to

2
i) @

where infrared divergency in the momentum integration was
cut here by hand introducing dephasing time qunin~rj¢'.
This spurious divergency is a very well known feature of the
Maki-Thompson diagram. It was regularized by Thompson
introducing magnetic impurities, and in that case inelastic
scattering time 7, is nothing else but the spin flip time 7.

Finally, we summarize with few additional remarks.
Equations (60) and (62) can be recovered from the traditional
Matsubara diagrammatic techniques after one expands all
fluctuation propagators at small frequencies and momenta,
integrates fast fermionic energies, and keeps only the contri-
bution from zero Matsubara frequency [in our language, the
latter condition strictly speaking corresponds to the long time
approximation for the distribution function Eq. (26)]. To this
extent, the effective action approach contains the most diver-
gent temperature part of the conductivity corrections, thus
allowing us to reproduce known results.

oo MT =

IV. DISCUSSION

We have presented a systematic way to integrate out the
fermionic degrees of freedom in a fluctuating supercon-
ductor. The underlying assumptions for this procedure are (i)
spatial and temporal scales of all bosonic fields are slow in
comparison with & and 1/7, correspondingly (but not nec-
essarily slow in comparison with &7)=§)\T,./(T—T.) and
7). (ii) The external electromagnetic fields are sufficiently
small (see Sec. I for the details), such that the fermionic
degrees of freedom are in local equilibrium. The result is the
dynamic Keldysh action written in terms of the fluctuating
order parameter and electromagnetic potentials. This action
naturally incorporates (time nonlocal) MT terms as well as
anomalous GE terms, effectively closing the discussion
whether or not TDGL theory includes the MT effect. We
have also uncovered certain nonlocal nonlinear terms of
TDGL equations (passed previously unnoticed, to the best of
our knowledge). The nonlinear coupling of the electromag-
netic fields, leading to the Altshuler-Aronov effect, may be
also directly incorporated into the scheme.

Although we did not evaluate any physical observable
here, the derived action opens the way to describe a number
of phenomena. To name a few, we mention, e.g., nonequilib-
rium current noise in proximity to the critical temperature,
especially the MT contribution to noise, which would be
very difficult to calculate by any other means. Another pos-
sible application is evaluation of the MT dephasing time.
Extension of the theory for 7<T. to describe, e.g., the col-
lective modes®! and analysis of the dynamical regimes far
from the equilibrium, are yet other fascinating directions.
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APPENDIX A: DIFFUSON EXPANSION AND NORMAL
ACTION

We first focus on the part of the action (20) which is linear
in the electromagnetic potentials. There are two such terms:
Sg originating from the trace Tr[® Q] and Sy coming from
the covariant derivative (21). We then expand Q,C matrix to
the linear order in deviations from the saddle point Q,C

2[A, W]+---, and use the cyclic property of the trace
operation to obtain Sq)——MTr([(I),C,A]W) and S,
=7ﬁ—VDTr(AVMEVAK,A]) which after the integration by
parts translates into S,=-"22Tr(Z VAr—AEVAA)W.
Requiring that terms linear in variation W (and linear in po-
tentials) vanish, one arrives at Eq. (28).

Expanding action (20) to the second order in W and keep-
ing track of the diffusons only, one finds quadratic action of
the diffuson degrees of freedom

[-DV2+d,+d,0wi}, (A1)

. T
iSp[w®,wi] = TTr{wn,

where @=0,z. This action leads to the following propagator:

2 2m)?s, -

q)>:__v Dq*—i(e;—¢€,)

&4 82 €3

W o, (@WE , ( (A2)
Substituting the saddle point A in the o-model action (20),
one finds

2
SN = %/TI'{CIS}CYVCISK}

.2
ime“vD v vv v v vv vy
- 4 Tr{EAAEALA - EA,CEA,C}.

The traces are evaluated using the following matrix identity:

+00
f deTHY Y3 Y oK Yy, 1= 80(01) 5 (Ad)

(0 5)
® "\l 2B,

and \71=00® T, Y2 0,®7, €=€xw/2. The identity is
based on the relation between the bosonic and fermionic dis-
tribution functions:

+o0
f de(F,

where

(AS)

~F.)=20, (A6a)
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+00
f de(1-F F.)=2wB,, (A6b)

—00

Combining Egs. (A3)-(A6), we arrive at normal metal action
(31). Finally, to find the macroscopic equations (12) and
(36), one needs to express gauged electromagnetic potentials
@y, Ay in terms of bare ones @, A. Using Eq. (29), one may
find the relation between those

A’C(q’ (J)) = Al(q’ (1)) - lqﬁg)]j;l [(I; + w(qgll)/qz]’

(A7a)
Dy(q.0) = DPDYo [D + w(qA)/q2],  (ATb)
where
. 1 2iwB,  iw+Dq?
Dg): 212 2( . 2 a ) (AB)
(DQ°)"+ o™ \—iw+ Dq 0

APPENDIX B: COOPERON EXPANSION
AND EFFECTIVE ACTION

Carrying out the Cooperon expansion, it is convenient to
distinguish several contributions into the o-model action
(20):

SO’[W7 A_)IC7(1;]C5‘&}C] = SZ-[W] + SZ-[W’ &K]

+ SSIW,A ]+ SUW, Akl (BI)

The S¢[W] part corresponds to the free Cooperons which
are uncoupled from both Ax(r,7) and Ax(r,7). This contri-
bution arises after one expands trace of the gradient

term Tr(VO)*=Tr(AVWAVW)=TrOVV>W) and trace of
the time term  Ti[E9,0]= %Tr[EV&,/iWZ]
= %Tr[Evﬁ,Lv{AOWVVZ:{]. Multiplying matrices, and tracing
them over Keldysh-Nambu space, one finds

derivative

SUW] = 2 Tefw’

1 =DV =0, + 3w+ (w — )}

(B2)

The SZ[W,AK] part corresponds to the coupling term be-
tween Cooperons and the order parameter. This contribution

arises from the trace Tr[AV,CQVK] after one expands QK to the
first order in W: Tr[AcQx]=Ti[ A AW]=Tt{UAUA].
After evaluation of traces, which is done with the help of the
identity Try[ 7.7,7+]= + 1, one finds

Qnt’t_ QBT Vt’t]’

'

(B3)

- avr -
SPIW,Ax] = ?Tr[V;,
where we have used vectors 20 and V in the notations of Eq.
(38).

The ¢ and d parts of the action are the terms which pro-
vide the interaction vertices between the Cooperons W and
the vector potential Ax. The SS[W,A ] part is linear in the
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vector potential and arises from the square of the covariant
derivative, keeping terms linear in A contribution

86 = TP THVO[EA . O]t = "2 Te{A V WEA ., AW}
= D THE A UV, WL
After a straightforward algebra, one finds

TevD "
TF{A”H[W",

SZ’[W’AK] =- \Y Wiyr g — VW;’Wt’t”]

+ ,,Zl,,n[v? \Y wfrtrr - VWZ,W,r,n] - C.C.}, (B4)

Ed
'
where we have introduced notations

i
A (r) = 6y Al (r,0) + Z—Tél,_tA%(r,t), (B5a)

_ i , ,
A, (r) = 6,y Al(r,1) - Eﬁr,_tAj?C(r,t ). (B5b)

The quadratic in vector potential part of the action comes
from the diamagnetic term, which has the form S‘i[Q il

je? S48 =S4 et .
=T TH{EA OxEA(Q}. One possibility is to expand
one of the Oy matrices up to the second order in W, while
leaving the other to be Ji; the other is to expand both of them
to the first order

ime*vD

SUW,A]=- TSIV + SWEW],  (B6)
where
S0 =UEA,_ Uy Ay
AL+ F AL AL(L - F.F,) +Af(F, - F,)
Y — AL+ FAL ’
(B7)

and all vector potentials have e—¢’ as an argument. Com-
bining it with all the contributions, given by Egs. (B2)-(B4),
the full action may be conveniently presented using matrix
notations as Eq. (38).

We turn now to the derivation of the effective action, Eq.
(43). To this end, we transform Eq. (42) into the energy-
momentum representation, then using the explicit form of the

V vector, given by the formula (39), we find for the Coop-

eron generators

Alq.e—€")+ F,AL(q.e—¢")

Wss’(q) =-2i N2 . ,
D(q-2eAf) —i(e+¢&')

, (B8a)

B .A%(q,s—s’)—F£,A7C(q,8—s’)
Wss’(q) =2i N2 . - B
D(q-2eAi) +i(e+¢')

(B8b)

Note that the scale for the energy center of mass e=(e
+&')/2 is set by the temperature e~ T. Then in most of the
cases Dq*>~ w~ T—-T, can be ignored as compared to € (the
exception is the MT term), thus one may write instead of Eq.
(B8) the approximations

094518-11



ALEX LEVCHENKO AND ALEX KAMENEV

A%(q,s -&')+F,A}(q,e—¢")
s+e’ +i0

Wss’(q) ~2 s (B9a)

_ A%(q’s_gl)_Fs’A%(qss_sl)
Wsa’(q) =2 ’ . 5
e+¢e' —i0

(B9b)

and similar equations for the conjugated fields. After the in-
verse Fourier transform, one finds

Wir(r) = — i0(t — ')A (r, 7) + AL(r, DY (1= '),

(B10a)

W (r) =00t — NAL(r,7) = Af(r, DY (1 —1),
(B10b)

where 7=(t+1")/2 and

e—iet 2
Y(f) = f — tanh = = arctanh[e~™711].

€+i0  m

(B11)

1. SGL[&K,A%] part of the effective action

Let us concentrate first on the part of the action which

corresponds to the diagonal blocks C~! and C~'. These two
give identical contributions to the action (38), thus account-
ing for an additional factor of 2. We find

(A, + F AL A + F Ay ]}

SJ[Ax]==2mivT
oAl my D(q-2eA{)? - 2ie

(B12)
where we have introduced energy integration variables as
2e=e+e’, w=c—¢', e,=€xw/2, and A,qi:A,C(iq,iw).
We point out here that contribution to the iS [Ay] with two
classical fields ~A{A is identically zero. This is a mani-
festation of the normalization condition within the Keldysh
formalism. Adding the term -27v Tr{A,q N ﬁ /[D(q

—2eA{)2-2ie]}=0 (due to energy 1ntegrat1on of the re-

tarded propagator), we obtain for S(,[A,C,A,C]+SA[A,C]
=Sci[Ax. A{] [cf. Eq. (20b)],
SGL[A,C,A%]=VTr[A LA, + ALY AL,

B(L_ -L; 1)Am] (B13)

where we have introduced the superconductive fluctuation
propagator in the form of the integral

Jde Fezun
D(q - 2eA{)? - 2i

(B14)

In what follows, we show that the latter can be reduced to the
standard form given by Eq. (46). Indeed, changing s=¢€
—w/2, adding and subtracting terms at zero frequency and
momentum, we write
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E, F,
X : - —+— |, (B15)
{D(q —2eAN)? —iw-2ie 28:|

where the logarithmically divergent integral in the above for-
mula was cut in the standard way by the Debye frequency
wp. Introducing dimensionless variable x=¢g/27, integrating
the second term in the right hand side of Eq. (B15) by parts
with the help of identity [{dx In(x)sech?(x)=~In4y/m,
where y:eC with C=0.577 being the Euler constant, and
using the definition of the metal-superconductor transition
temperature 7,=2yw;,/me""\", we have for Eq. (B15),

» T, i(*™ tanh(x) tanh(x)
Li=m=<-=| dx |,
T 2J_. D(q-2eAf)" —iw . ix
AT ’x
(B16)

Using series expansion

o2
tanh(x) = >, z—xz, x,=m(n+1/2), (B17)
n=0 X + X

n

interchanging the order of summation and integration, inte-
grating over x with the help of

fw dx _m fx xdx
e xS, D(q-2eA{)’—iw
[x*+ —ix
4T
3 im
" D(q-2eAY)’—iw
4T

: (B18)

+ X,

and recalling the definition of the digamma function

w(x>=—c—2{ S ]
n=0

(B19)
n+x n+1

one finds

oy T, (D(q 2eAY)? —iw 1) (1)
=ln— - +- ]+l - .
® =0y 4T AT

(B20)

Finally, expanding the digamma function, using #'(1/2)
=72/2, and transforming back to the real space and time
representation D(q—2eA§)?—iw——D(V-2ieA{)*+d,, one
derives the Keldysh version of the Ginzburg-Landau action
in the form (44) with the fluctuation propagator given by Eq.
(46).

2.8 SC[A%,A;C] and S MT[A%,AK] parts of the effective action

Now we concentrate on the contributions to the effective
action (43), coming from the N terms of the matrix (40),
proportional to the quantum component of the vector poten-
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tial. These contributions translate to the action of the form

SSC[ALI’AIC] = TI‘[W”,./\/;,/W, nt th/M,/W, -

(B21)

One uses the explicit form of A given by Eq. (41) and makes
use of approximations (B10). As soon as NV, « §,_,/, one may
integrate over ' using regularization [dt'8(t—1")60(t' 1)
=1/2. Note that deriving Eq. (47) from Eq. (B21), we kept
only classical components of the field A in the Cooperons
(B10). The quantum components generate interaction verti-
ces like trA4ALV A, having more than one quantum
field, are smaller than Eq. (47) by the parameter 1/T7g,
< 1. Indeed, one sees from Eq. (B8) that A} comes in the
combination with the fermionic distribution function F,
which according to the approximation (26) brings additional
smallness by one extra power of temperature in the denomi-
nator, which is in contrast with the term having A%.

In the similar fashion, one derives the S,,; part of the
action. We start from

- my * *
SMT[A;C’AIC] =- TTr[th’Mn’Wt’t + Wn'Mtl/Wt’t]'

(B22)

At this point, we again make use of approximation (B10).
Observe that in contrast to Eq. (B21), where we had the
product of either two retarded or two advanced Cooperon
fields, which restricted integration over one of the time vari-
ables, in the case of MT contribution (B22), we end up with
the product between one retarded and one advanced Coop-
eron and the time integration running over the entire range
t>1'. Precisely, this difference between Egs. (B21) and
(B22) makes contribution S to be local, while S,;; nonlo-
cal. Finally, in each of the Cooperon fields w, Eq. (42), one
keeps only the contribution with the classical component of
the order parameter. The quantum component is again
smaller by the factor of 1/T75,<1.

3. Density of states contributions to the Ginzburg-Landau
action SDOS[A%:’ATC]

There are two ways subleading DOS contributions appear
in the effective Ginzburg-Landau action. The first one, not
written explicitly in Eq. (38), is

Sy W, Ax, e, Ax]
05
SN0

. vl awos [T |

"

(B23a)
NP = 2e2D{A?C(r,t)[A%(r,t) —AL(e,")]F

+Jdl‘mA%(I’,t)Ft_frrA?C(r,tl,,)Flrrr_trr . (B23b)

Note that in order to reproduce correctly DOS contributions
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one cannot use the approximate form of the fermionic distri-
bution function. In what follows, we deal with the part of the
action (B23) having one classical and one quantum compo-
nents of the vector potential. The other one, having two
quantum fields, can be restored using FDT. To this end, we
substitute Cooperon generators in the form (B10) into the
action (B23). We keep only classical components of A (the
quantum one produce insignificant contributions) and ac-
count for an additional factor of 2 due to identical contribu-
tions from w and w Cooperons. Changing time integration
variables r—#"=7 and r+¢"=27, one finds

SQOS = ime*vD Tr{A?C(r, n+ T/2)[A%(I‘, 7+ 72)
— A, p— 112)F,0(n+ 72 —1)6(t' — p+ 7/2)
N /2 —t' 72—t
XA cl( L)A%(F,L)} .
2 2
(B24)

Note that due to the step functions, integration over t’ is
restricted to be in the range n+7/2>1t'> 5p—7/2. Since F s
a rapidly decreasing function of its argument, the main con-
tribution to the 7 integral comes from the range 7~ 1/T
< 7. Keeping this in mind, one makes use of the following
approximations: A7C(r n+ 1/ 2)[ALr, p+7/2)-AL(r,
—T/2)]~TA7C(1‘ 77)&,,A I(r, ) and AE (e, p+7/2
—t'12)AL(x, p—1/2-1'12) =|A¢(r, 7)|>, which allows one
to integrate over t’ explicitly [dt’ 0( n+7/2-1")0(t' -7
+7/2)=76(7). Using fermionic distribution function (26) and
collecting all factors, we find

SPOS = e*uDT Tr{AY(r,1)3,A%(r,1)]
f * Pdr
>< .—7
o sinh(7T7)

where we set 7— f. Performing remaining integration over 7
and restoring Spos~ AfA¢ via FDT, we arrive at

Af(r,n]

(B25)

SPOS = 2 Te{ SUPOAfu(r, ) TpA e (r,1) T},

supos __ TEB)

ST 47T |A

(B26)

with 7, given by Eq. (32). The other source of the DOS
contributions is the matrix element N itself, where one has to
restore the fermionic distribution function, relaxing on the
approximation (26). Then in the term OCTr[w,,r/\f,,/wZ,], after
one uses Eq. (B8), we need to keep momentum Dq? depen-
dence of the Cooperon and expand over Dq?/e<1. This
produces subleading  contributions  such as S
xe?vD/T?> T{ALDV?AL| AP}, As a result, the effective ac-
tion accounting for the density of states suppression may be
cast exactly into the form of Eq. (33), where one makes the
substitution v— v+ 51}2 s,
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APPENDIX C: NONLINEAR ACTION Sy, [Ax]

In this section, we show how one proceed from Eq. (51)
to Eq. (52). As was pointed out above, one needs to keep
only contributions having one quantum component of the
order parameter field. Overall, there are three possibilities to
do that in each of the Cooperon sectors w and w. Moreover,
it turns out that contributions coming from the w and w are
identical, thus accounting for the factor of 6. We thus obtain

*

TV ¥
SNL = TTI‘[AK l(r,t)w,,,(r)w’,f,,(r)w,//l(r) + C.C.]. (Cl)

We next substitute the approximate form of the Cooperon
generators, Eq. (B10), into this formula. In the case of w", we
keep quantum components of the order parameter and in the
other w the classical ones,

PHYSICAL REVIEW B 76, 094518 (2007)

Sy =— %”Tr[ Ot — 1) 0" = )Y (&' — )AL (e, 1)

t+t\ . t'+1 t+1"
XA%(I‘,T>A;€<LT>A%(I’,T) + C.C.] .
(C2)

We change now integration variables as ¢’—t=7 and r+1"
=27 and observe that the integration over 7 is restricted to be
in the range 7+ 7/2>1t> n—7/2. Recall that according to the
definition (B11), the function Y(7) is rapidly falling on the
scale 7~ 1/T<< 7. Thus, the major contribution to the above
trace comes from the small 7. Thus, everywhere except the
theta functions, one may set =t =~¢"= 7 and integrate over
t explicitly getting 76(7). Finally, using the integral

fo drrarctanh[e”™ 7] = 875522’ (C3)

and collecting all factors, one recovers Eq. (52).
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