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A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum
phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is
a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we
are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of
a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the
standard approximation in order to capture the zero-temperature correction which results purely from the
�dynamic� quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature
quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total,
thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical
and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one,
two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected
cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A
window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter
is swept.
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I. INTRODUCTION

The study of quantum phase transitions1,2 has consistently
been one of the frontier fields in condensed matter physics
for the last decades. The steady growth in the possibility of
simultaneously accessing lower temperatures and higher val-
ues of tuning parameters such as pressure and magnetic field,
together with the possibility of operating old and new experi-
mental techniques under such extreme conditions, has pro-
vided the necessary thrust. Discovery of new materials and
physical systems has been another key factor. Not only has it
maintained the freshness and novelty of the field but it has
also helped to identify the universal features. Complex ma-
terials usually go hand in hand with complex phase diagrams
with many competing or coexisting orders, given the multi-
tude of energy scales that they have. Although this accounts
for a rich body of physics, it also makes it harder to unmask
the universal features and to systematically explore the
neighborhood of the quantum phase transitions in the system.

Technological advances in relatively recent years have
made it possible to make precisely designed and controllable
bulk, mesoscopic, and nanoscale systems, consisting of cold
atoms and quantum dots, for example. These have not only
opened other avenues for studying quantum phase transitions
but also served as model systems where theoretical predic-
tions can be verified with the help of tunable parameters.
This, in turn, can act as a starting point for understanding
complex materials which are not as easy to control.

By now, there is a large body of theoretical work devoted
to studying quantum phase transitions in a whole range of
systems ranging from heavy fermion compounds, high-
temperature superconductors, manganites, and organic mate-

rials to quantum dot and cold atomic systems. Transitions
between and out of different correlated states of matter rang-
ing from magnetic, superconducting, and charge-ordered
states to more exotic, fractional, and topological states have
been the subject of research. In spite of active interest, many
questions still remain unanswered.

To date, superconductivity remains one of the most strik-
ing examples of emergent many-body states and quantum
phase transitions involving a superconducting state are ubiq-
uitous in a whole variety of materials. In many cases, it ap-
pears as one of the multiple phases in a complex phase dia-
gram, with its mechanism not always clearly understood.
However, there is another set of materials consisting of
single elements or simple compounds with relatively simple
phase diagrams which too display superconductivity.

The BCS theory that was put forward exactly 50 years
ago was able to explain the basic mechanism of supercon-
ductivity which, in turn, was discovered for the first time
almost another 50 years earlier. This theory is one of the
crowning glories of condensed matter physics and a proto-
type of an ideal many-body theory, which is successful in
explaining the experimentally observed thermodynamic and
electrodynamic behavior in a large class of materials which
is commonly labeled as conventional or BCS
superconductors.3,4

The point of view we want to take in this paper is to study
the physics of quantum phase transitions in such a BCS su-
perconductor for which the theory is well understood and
experimental properties well characterized. The theory could
then be cleanly tested by taking a conventional supercon-
ductor with a simple phase diagram. Such a study would
exemplify the physics of a superconducting quantum phase
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transition which is not only of fundamental and technologi-
cal interest but also a prototype for quantum phase transi-
tions in other correlated systems.

The key characteristic of the BCS theory is the pairing of
electrons with their time-reversed partners to form a conden-
sate of Cooper pairs that superconducts. As the temperature
is increased, more and more quasiparticles are formed by
exciting electrons out of the condensate by breaking the
pairs, until superconductivity is destroyed at a mean-field
transition temperature. The experimental transition tempera-
ture is well defined and the transition is mean-field-like in
most conventional bulk superconductors. Superconducting
fluctuations, however, do exist even beyond the transition
temperature and the fluctuations become stronger as the di-
mensionality of the sample is reduced. The effect of fluctu-
ating Cooper pairs on different physical properties such as
diamagnetism, specific heat, and conductivity was actively
studied—both theoretically and experimentally—about a de-
cade after the BCS theory was put forward; see the review on
fluctuation effects in Ref. 5 which was already written three
decades ago. The interest in studying fluctuation effects saw
a revival after the discovery of high-temperature supercon-
ductivity and corresponding theoretical results can be found
in a more recent review article.6

What is the way to start from a superconducting state at
the absolute zero of the temperature and destroy it at a finite
value of some tuning parameter via a second order phase
transition? One has to think of a way of breaking the pairs
without the help of thermal fluctuations. It turns out that all
one has to do is to turn on a perturbation that breaks the
time-reversal symmetry. Pair-breaking perturbations result-
ing in a suppression of the transition temperature have been
well understood and it has been known for a long time that
superconductivity is destroyed even at zero temperature once
the pair-breaking parameter reaches a critical strength. We
recognize such pair-breaking quantum phase transitions
�with dynamic critical exponent z=2� out of a superconduct-
ing state as an important class of quantum phase transitions
and make it the subject of our study.

In spite of the long history of superconducting fluctuation
effects near the classical transition, there has been no system-
atic theoretical analysis of such effects in the vicinity of a
pair-breaking quantum phase transition. In this paper, we
have used the finite-temperature Matsubara diagrammatic
method to evaluate the fluctuation corrections to the electri-
cal conductivity which is one of the key physical quantities
capable of diagnosing and showcasing the role of supercon-
ducting fluctuations. We have incorporated the �dynamic�
quantum fluctuations by going beyond the standard approxi-
mations and mapped out the fluctuation regimes near the
transition. Such a study is timely given the progress in fab-
ricating ultranarrow superconducting nanowires and doubly
connected cylinders in addition to thin-film samples. Not
only will it allow identifying the universal features near su-
perconducting quantum phase transitions in complex materi-
als but it will also play a crucial role in enhancing our un-
derstanding of mesoscopic superconductivity. The
microscopic approach we use allows us to treat the fluctua-
tion corrections involving the interaction between the elec-
trons and the fluctuating Cooper pairs and identify the re-

gimes in which they dominate. Our analysis can then serve
as a guideline for the construction and validation of an ef-
fective bosonic theory or a time-dependent Ginzburg-Landau
formalism which does not incorporate the electrons. Such a
bosonic theory can then be used for further analysis of the
quantum critical point especially in one and two dimensions,
given that the upper critical dimension in our case is 2.

The outline of the paper is as follows: In Sec. II, we lay
the foundation for the remainder of the paper by clearly de-
fining the meaning of a pair-breaking perturbation and intro-
ducing the class of pair-breaking quantum phase transitions
that are of interest to us. We present the framework based on
Usadel equations as a systematic and general method for
obtaining the expression for the pair-breaking parameter in a
given situation and illustrate it by considering some ex-
amples which are simple yet relevant to our analysis.

In Sec. III, we present the calculation of the fluctuation
corrections to the normal state conductivity in the vicinity of
the pair-breaking phase transition. We introduce the key
building blocks of the temperature diagrammatic perturba-
tion theory that we need, show how they are modified in the
presence of a pair-breaking perturbation, and present their
limiting forms. A fairly detailed account of the actual evalu-
ation of diagrams corresponding to the fluctuation correc-
tions is then given, focusing on the careful considerations
required in order to incorporate the quantum �dynamic� fluc-
tuations correctly. The results of this section are applicable
near the entire phase transition line, starting from the classi-
cal finite-temperature transition in the absence of pair-
breaking perturbation to the quantum phase transition driven
by tuning the pair-breaking parameter at zero temperature.

The evaluation of these general expressions in the vicinity
of the quantum phase transition is done in Sec. IV. Once the
dominant corrections are identified, we present the different
fluctuation regimes that come out of our analysis. There are
three regimes—quantum, intermediate, and classical—and
the behavior of the conductivity depends on the path of ap-
proach to the quantum phase transition. We demonstrate how
these results vary based on the effective dimensionality of
the problem and provide predictions of our theory that
should be applicable to experiments on nanowires or doubly
connected cylinders, thin films, and bulk systems. The result
we obtain by evaluating the “Aslamazov-Larkin” correction
in the vicinity of the classical transition is given as a bench-
mark to compare with the well-established results in the lit-
erature and also with its behavior near the quantum phase
transition.

In the final section, we place our work in a bigger picture
by discussing related theoretical and experimental work. Dif-
ferent theoretical approaches for the same problem as well as
slightly different physical configurations studied using a for-
malism similar to ours are both included. An attempt to in-
terpret all the experiments on superconducting quantum
phase transition in thin films would clearly be outside the
scope of this paper. We have hence focused mainly on those
that have analyzed the data in terms of quantum corrections,
including the fluctuation corrections. Relevant experiments
on superconducting nanowires and doubly connected cylin-
ders are relatively scant so far. However, we discuss the cur-
rent status to support our belief that given the technological
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advances in the recent years, the predictions of our theory
should not only be accessible but also important from the
point of view of using ultranarrow wires in superconducting
electronic circuits.

II. PAIR-BREAKING PARAMETER „�…

A. Definition and physical meaning

A pair-breaking perturbation is any perturbation that
breaks the time-reversal degeneracy of a superconducting
paired state. Anderson’s theorem7 asserts that in the absence
of such a perturbation, the superconducting critical tempera-
ture Tc and the BCS density of states remain the same even
after alloying the superconductor with impurities. However,
if the impurities are magnetic, Abrikosov and Gor’kov8

found that the Tc is suppressed and the density of states is
modified as well �giving a gapless regime�. They param-
etrized the strength of the pair-breaking perturbation by a
pair-breaking parameter � and obtained

ln� Tc

Tc0
� = ��1

2
� − ��1

2
+

�

2�Tc
� , �1�

where � is the digamma function and Tc0�Tc��=0�. The
parameter � was shown to be inverse of the spin-flip scatter-
ing time which is proportional to the density of magnetic
impurities.

Following this classic work, it was recognized that the
above equation for Tc suppression �as well as gapless super-
conductivity� can be transcribed for a whole class of pair-
breaking perturbations for which the transition to the normal
state in the presence of � is of second order, once the appro-
priate � is used for each case.3,4 What is essential is the
presence of a rapid scattering mechanism that modulates
over time the pair-breaking perturbation seen by a given
Cooper pair of electrons, assuring an ergodic behavior of
electrons. Then, � can be interpreted as the depairing energy
�energy splitting� of a pair of time-reversed electrons, aver-
aged over a time interval �K it takes for their relative phase to
be randomized by the perturbation; one thus has 2��� /�K.

This generalization of the concept of pair-breaking offers
the possibility of defining a pair-breaking parameter not only
for bulk systems but also for mesoscopic and nonhomoge-
neous systems and for situations in which multiple pair-
breaking mechanisms might be operative. However, the deri-
vation of � might not be straightforward in such cases.
Below, we will describe the Usadel equation formalism as a
general method to derive � for a given configuration.

B. Derivation using Usadel equations

In this paper, we are interested in focusing on dirty super-
conductors for which the Usadel equation formalism9,10 is
well suited. Writing the Heisenberg equation of motion start-
ing from the BCS Hamiltonian, one gets the microscopic
Gorkov equations for the normal and anomalous Green func-
tions. Using the fact that the characteristic length scale for
the normal state is smaller than the length scale for the su-
perconducting order parameter variation, one can make the
quasiclassical approximation

�/pF

�0
�

	

EF
� 1 �2�

�which is quite accurate for most classic low-temperature
superconductors and less so for high-temperature supercon-
ductors� to exclude the fast oscillations of the Green func-
tions associated with variations of the relative coordinate on
a scale � / pF and rewrite the Gorkov equations in terms of
the quasiclassical Green functions with only a slow depen-
dence on the center-of-mass coordinate varying on the scale
�0. The Eilenberger equations so derived can be further sim-
plified in the dirty limit

l

�0
�

�

�/Tc
� 1 �3�

�where l is the mean free path and � is the mean free impu-
rity scattering time�, in which the strong scattering by impu-
rities produces averaging over momentum directions, to ob-
tain the Usadel equations9

− iD�g��−
2ie

c
A�2

f − f�2g� = 2	g − 2i
nf , �4�

− iD�g�� +
2ie

c
A�2

f† − f†�2g� = 2	*g − 2i
nf†, �5�

where D=vF
2� /3 is the three-dimensional diffusion constant.

Note that g and f , the quasiclassical Green functions aver-
aged over momentum directions, get expressed as function-
als of the fluctuating order parameter field 	�x ,��. Below, we
outline the precise recipe for deriving the pair-breaking pa-
rameter, starting from these equations.

To identify the pair-breaking parameter, it is enough to
consider the Usadel equations for the f function to the lowest
order in 	, so as to obtain

− iDg0��−
2ie

c
A�2

f = − 2i
f + 2	g0, �6�

with g0=sign 
. One could interpret the depairing parameter
as the lowest eigenvalue of the operator �in the transverse
direction�

−
D

2
��� −

2ie

c
A�2

f = �f �7�

obtained by appropriately choosing the gauge and the bound-
ary conditions �to ensure absence of current perpendicular to
a wire or film surface, for example�. Alternatively, one can
solve Eq. �6� for f and read out the expression for � from it.
In the remaining part of this subsection, we illustrate the
procedure for some examples of interest. The formalism is
general enough and can be appropriately adapted to compli-
cated situations involving the simultaneous occurrence of
multiple pair-breaking perturbations.

Although the pair-breaking parameter for the classic ex-
ample of magnetic impurities can be derived within the
Eilenberger-Usadel formalism, we refer the reader to the
original paper8 and proceed to discuss some other specific
examples.
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1. Thin film

Consider a thin film with thickness s smaller than the
superconducting coherence length � such that the supercon-
ducting fluctuations are effectively two dimensional �d=2�.
Let us focus on the orbital pair-breaking effect of a magnetic
field H applied parallel to the film. We consider s to be
smaller than the penetration depth � so that one can assume
the field to be uniform inside the sample. If the film is placed
in the xy plane and H is parallel to the y axis, we choose the
gauge such that Ax=Hz, Ay =Az=0, where z is measured from
the midplane of the film. Now, Eq. �6� takes the form

− i
D

2
� �2

�z2 + �2ie

c
Hz�2� f = − i	
	f + 	 , �8�

which on integrating over the transverse direction �i.e., over
z� leads to

iD� eH

c
�2s3

6
f = − i	
	fs + s	 �9�

on using the appropriate boundary conditions that require the
transverse derivative of f to vanish on the surface of the film.
We thus have

f =
− i	

	
	 + �
, �10�

with

� =
D

6
� eHs

c
�2

, �11�

identified as the pair-breaking parameter.

2. Nanowire

Consider a wire of radius R such that the diameter is
smaller than � and � and the effective dimensionality of the
problem is d=1 as far as the superconducting fluctuations are
concerned. To obtain the expression for the pair-breaking
parameter coming from the orbital effect of a magnetic field
H applied parallel to the wire, we use the cylindrical coordi-
nates and choose the gauge such that A�=H /2, A=Az=0.
For the sake of illustration, this time we start with Eq. �7�
which takes the form

D

2
�−

1



�

�
�

�

�
� + � eH

c
�2� f = �f , �12�

and on integrating in the transverse direction �i.e., over �
gives

D

2
f


0

R

d� eH

c
�2

= �f

0

R

d �13�

using the boundary conditions that require �f /� to vanish at
=R. The expression for the pair-breaking parameter,

� =
D

4
� eHR

c
�2

, �14�

is then immediately evident.

If one considers a magnetic field applied perpendicular to
the wire, the pair-breaking parameter is given by

� =
D

2
� eHR

c
�2

�15�

instead and the calculation follows on the lines similar to that
for a field applied parallel to a film.

3. Doubly connected cylinder

Consider a doubly connected �hollow� cylinder with inner
radius r1 and outer radius r2 such that the wall of the cylinder
is thinner than � and � and the effective dimensionality is
d=1 as for the case of a nanowire. Due to the single-
valuedness of 	 and f , their � dependence is given by ein�,
where n is an arbitrary integer. Choosing the cylindrical
gauge

A =
1

2
h � r =

1

2
�̂h , �16�

as we did also for the nanowire, Eq. �7� becomes

D

2
�−

1



d

d
�

d

d
� + �m


−

eh

c
�2� f = �f . �17�

Integrating over the radial direction �from r1 to r2�, we obtain
the expression

� = D� eH

4c
�− 4n +

eH

c
�r1

2 + r2
2�� + n2 ln�r2/r1�

r2
2 − r1

2 � , �18�

where n is an arbitrary integer �note that for r1=0, we cor-
rectly recover the result for the nanowire�. For a thin cylinder
�r1r2r�, the pair-breaking parameter reduces to

� = �D/2r2���/�0 − n�2, �19�

where � is the flux enclosed by the cylinder, thereby render-
ing the classic Little-Park oscillations3 of Tc as can be seen
from Eq. �1�. Interestingly, for a cylinder with small enough
radius, r�rc=�D� /4�Tc0, it is possible to push the Tc down
to zero at magnetic fields corresponding to half-integer
fluxes �=�0�1/2+n�.

C. Pair-breaking phase transition

By substituting Eq. �10� for f in the presence of � into the
self-consistency equation for the order parameter, one can
obtain the transition temperature in the same way as it is
obtained in the absence of a pair-breaking parameter. The
boundary between the superconducting and normal states in
the �-T plane is given by

ln� T

Tc0
� = ��1

2
� − ��1

2
+

�

2�T
� , �20�

as is shown in Fig. 1. At a given pair-breaking strength �,
superconductivity is destroyed at T=Tc��� and at a given
temperature T, at �=�c�T�, obtained by solving Eq. �20� for
T and for �, respectively. In the absence of a pair-breaking
perturbation ��=0�, the system undergoes the classical tran-
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sition at Tc�0��Tc0. In the neighborhood of this classical
transition, for ��Tc0 we can define the quantity

�T��,T� �
T − Tc���

Tc���
�21�

that measures the relative distance from the critical tempera-
ture Tc���.

On the other hand, if the pair-breaking effect is suffi-
ciently strong, superconductivity is destroyed even at T=0,
thereby yielding a second order quantum phase transition.
The critical value of � at zero temperature,

�c0 � �c�T = 0� =
�Tc0

2�
,

can be obtained by using the first term in the asymptotic
form of the digamma function for large arguments ���z�
=ln z�. Here, ln �0.577 is the Euler constant and one can
immediately see that 2�c0=1.76Tc=	0, the BCS gap at zero
temperature. Expanding the right hand side of Eq. �20� to
next order in small T, one finds that the transition curve close
to �c0 is given by

�c�T � �c0� = �c0 −
�2T2

6�c0
. �22�

In the vicinity of the pair-breaking quantum phase transition,
we will define the quantity

����,T� �
� − �c�T�

�c�T�
, �23�

which can be interpreted as the relative distance from the
critical pair-breaking strength �c�T� at a given T��c0.

In the following section, we will be interested in evaluat-
ing the fluctuation corrections to the normal state conductiv-
ity in the vicinity of a pair-breaking transition. The effective
quasiclassical approach based on the Usadel equations that
we have discussed in the previous subsection is quite accu-
rate in the dirty limit and has no applicability restrictions in
terms of the temperature range. To evaluate the fluctuation
corrections, one could imagine using the functional formal-
ism based on this approach. However, we have chosen to use
the standard diagrammatic method instead.

III. SUPERCONDUCTING FLUCTUATION CORRECTIONS
TO CONDUCTIVITY

We will carry out a microscopic calculation within the
standard framework of temperature diagrammatic technique
for a disordered electron system11,12 in the diffusive limit
��−1�T ,��. This technique has been extensively used in
studying the weak localization13 and electron-electron
interaction14 corrections to the conductivity in low-
dimensional systems. In the same way as these corrections
were studied also using alternative formalisms including the
nonlinear sigma model,15 it seems plausible to have an alter-
native derivation of the superconducting fluctuation correc-
tions to the conductivity, which falls in the same league.
Here, we will restrict ourselves solely to diagrammatic per-
turbation theory.

A. Basic ingredients

Although the framework we use is standard, we will
briefly discuss all the ingredients we need mainly for two
reasons. First, we want to precisely demonstrate the way in
which the presence of a pair-breaking parameter modifies
these ingredients �see Refs. 6 and 12�. Second, we want to
catalog all the expressions we need, including their limiting
forms in the vicinity of the quantum phase transition.

1. Green’s function

As is standard, we assume a random disorder potential
V�r� drawn from a Gaussian white noise ��-correlated� dis-
tribution such that �V�r��=0 and �V�r�V�r���= �V2���r−r��.
In the diagrams, a dashed line denotes

�V2� =
1

2���
, �24�

where � is the density of states at the Fermi level and �−1, as
defined earlier, is the frequency of elastic collisions. The
single-electron Green function—denoted by a full line in the
diagrams of Fig. 2—is given by

G�
n,p� =
1

i�
n +
sign�
n�

2�
� − �p

, �25�

where �p is the single particle excitation spectrum measured
from the chemical potential.

0 0.2 0.4 0.6 0.8 1

α / T
c0

0

0.2

0.4

0.6

0.8

1

T
/T

c0
Pair-breaking phase transition

Superconding phase

QCP

Normal phase

nanowire
thin film

bulk

doubly-connected
cylinder

FIG. 1. �Color online� Phase diagram showing the pair-breaking
transition from superconducting to normal state with the boundary
given by Eq. �20�. A superconducting quantum critical point �QCP�
is seen to be realized when the pair-breaking parameter reaches a
critical strength �c0 /Tc0=0.889. Different systems of interest are
also illustrated.
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2. Cooperon

Diffuson and Cooperon are the key correlators, repre-
sented by a sum over ladder diagrams involving coherent
scattering by impurities, in the particle-hole and particle-
particle channel, respectively, the latter being of interest to us
in the context of superconducting fluctuations. The expres-
sion for Cooperon—represented by a shaded rectangular
block in the diagrams—in the presence of a pair-breaking
parameter � is given by

C�
n,
m,q� =
2����− 
n
m�
	
n − 
m	 + 2�q

, �26�

where ��x� is the Heaviside theta function and

�q � � + Dq2/2. �27�

Here, 
n is a fermionic Matsubara frequency and q is the
momentum in the effective dimension as far as the supercon-
ducting fluctuations are concerned �note that D is the diffu-
sion constant in three dimensions as long as the diffusion is
still three dimensional�.

Coherent scattering on the same impurity, by both the
electrons forming a fluctuating Cooper pair, leads to renor-
malization of the vertex part in the particle-particle channel,
given by

��
n,
m,q� =
C�
n,
m,q�

2���
. �28�

In the diagrams shown in Fig. 2, we denote � by a shaded
triangle.

3. Fluctuation propagator

The main building block of the diagrammatic technique
that encodes the BCS superconducting interaction is the so-
called fluctuation propagator �represented by a wavy line in
the diagrams�. It is the impurity-averaged sum over the lad-
der diagrams corresponding to the electron-electron interac-
tion in the Cooper channel. The expression in the presence of
�, obtained using Eq. �26� in a standard way, is given by

K−1�	��	,q� = ln� T

Tc0
� − ��1

2
� + ��1

2
+

�q + 	��	/2
2�T

� ,

�29�

where �� is a bosonic Matsubara frequency.
The pole of Eq. �29� for q, ��=0 traces the boundary

between the superconducting and normal phases �see Sec.
II C�. In the limit of zero pair-breaking strength ��=0� and
near the classical transition, T�Tc0, one can show that the
expression for the fluctuation propagator reduces to

K−1�	��	,q� = �T�0,T� +
Dq2 + 	��	

4�T
���1

2
� , �30�

where ���1/2�=�2 /2 and �T�� ,T� is defined earlier by Eq.
�21�.

On the other hand, at low temperatures, T��c0, the fluc-
tuation propagator can be reduced to the form

K−1�	��	,q� = ln��q + 	��	/2
�c�T� � , �31�

which correctly reproduces the transition curve �=�c�T�. In
certain regimes �see below�, it is legitimate to expand the
logarithm and get an even simpler expression,

K�	��	,q� =
1

����,T� +
Dq2 + 	��	

2�c�T�

, �32�

where ���� ,T� is given by Eq. �23�.

B. Evaluation of the diagrams

The boundary between the superconducting and normal
regions in the �-T phase diagram is given by Eq. �20� �see
Fig. 1�. Even while superconductivity is destroyed, super-
conducting fluctuations continue to persist in the normal
state region and modify the normal state conductivity. We
will evaluate the corrections to the conductivity coming from
superconducting fluctuations using the standard Kubo for-
malism for linear response.11 The electromagnetic response
operator Q���� is evaluated and the external frequency is
analytically continued into the upper half-plane of the com-
plex frequency �i��→��. The fluctuation conductivity can
then be obtained using

����� = lim
�→0

Q�− i��
− i�

�33�

once the appropriate Q���� has been evaluated.
In what follows, we will evaluate Q���� using a standard

set of diagrams.6 As shown in Fig. 2, these diagrams can be
divided into three groups based on their physical interpreta-
tion. Of these, the Aslamazov-Larkin �AL� type of
correction16 is the most intuitive. It is a positive contribution

FIG. 2. Diagrams for the fluctuation conductivity divided into
three groups. There is one diagram corresponding to the positive
“Aslamazov-Larkin” correction. Three diagrams correspond to the
negative “density-of-states” corrections, and each of them has two
possible ways of putting arrows on the electron Green functions.
There are two diagrams corresponding to the “Maki-Thompson”
interference correction with no prescribed sign, the second of which
has two ways of putting the arrows. Full lines stand for the disorder
averaged normal state Green’s function, wavy lines for the fluctua-
tion propagator K, the shaded rectangles for the Cooperon C, and
shaded triangles for the vertex C /2���.
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coming from additional charge transfer via fluctuating Coo-
per pairs. The negative “density-of-states” �DOS� correction
results from the reduction of the normal single-electron den-
sity of states at the Fermi level after accounting for the elec-
trons participating in fluctuating Cooper pairs. The corre-
sponding diagrams have only one electron line affected by
the fluctuation propagator. The third, and the more indirect,
correction is given by the “Maki-Thompson” �MT�17–19 dia-
grams which could be thought to be originating from coher-
ent Andreev scattering off the fluctuating pairs. One can see
in Fig. 2 that the fluctuation propagator brings about inter-
ference between the electron lines.

Let us start by considering evaluation of the Aslamazov-
Larkin diagram. The effective triangular vertex on either side
�both yield the same final expression� is given by

���1�,��,q� = eT �

n,p

px��− 
n + �1�,
n − ��,q�

�G�− 
n + �1�,− p + q�G�
n − ��,p�

�G�
n,p���
n,− 
n + �1�,q� �34�

�having chosen the x direction for concreteness�. The pres-
ence of Heaviside � functions in the expression for the vertex
renormalizations �, defined by Eqs. �26� and �28�, dictates
the possible signs and ranges of different frequencies. Taking
these into account and by making simplifications valid in the
small q and 
n, �1�, ����−1 limit of interest to us, we find
a rather compact expression,

���1�,��,q� = vDqxB��1�,��� , �35�

with

B��1�,��� = ��̃�	�1�	,��� + �̃�	�� − �1�	,���� �36�

and

�̃�w,z� �
1

z
���1

2
+

�q + w+z
2

2�T
� − ��1

2
+

�q + w
2

2�T
�� ,

�37�

where ��z� is the digamma function.
To evaluate the entire AL diagram, let us consider the

summation over the internal bosonic frequency,

I���� � T�
�1�

B��1�,���2K�	�1�	�K�	�1� − ��	� , �38�

and write it as contour integration in a standard way �note
that we have temporarily suppressed the q dependence in the
fluctuation propagator K for the sake of compactness�. By
taking into account the analyticity of the integrand, the
evaluation of I is reduced to an integration across two branch
cuts �see Ref. 6�. After combining terms and analytically
continuing the external frequency to the upper half-plane
�i��→��, one finds that

I � Ia + Ib, �39�

with

Ia = −
1

4�i

�

2T

 d�1

sinh2 �1

2T

K�− i�1�K�i�1�

���̃�− i�1,− i�� + �̃�i�1,− i���2 �40�

and

Ib =
2

4�i

 d�1 coth

�1

2T
K�− i�1 − i��K�− i�1�

���̃�− i�1 − i�,− i�� + �̃�− i�1,− i���2. �41�

Since the contribution to the conductivity �Eq. �33�� goes
as I /�, we need only consider the terms in I that are linear in
� since we are interested in the �→0 limit; terms that are
zeroth order in � will be canceled by analogous terms in the
remaining diagrams to ensure the absence of anomalous dia-
magnetism in the normal state. Carrying out an expansion in
�, we can write

�̃�− i�1,− i�� →
1

4�T
���1

2
+

�q − i�1/2

2�T
�

−
1

2

i�

�4�T�2���1

2
+

�q − i�1/2

2�T
� .

�42�

Since Ia is already linear in �, in it we need only keep the
zeroth order term from this expansion. On the other hand,

using the expansion for both K and �̃, we have

Ib =
− �

2�

 d�1 coth

�1

2T
�4�̃�− i�1�2K��− i�1�K�− i�1�

+ ���1

2
+

�q −
i�1

2

2�T
����1

2
+

�q −
i�1

2

2�T
�K�− i�1�2

�2�T�3 � .

�43�

We can integrate the first term by parts, combine similar
terms from Ia and Ib, and after some manipulation get a final
expression for I. One can then immediately write down the
Aslamazov-Larkin fluctuation correction to conductivity as a
sum of two terms:

��AL = ��sh
AL + ��cth

AL , �44�

where

��sh
AL =

D2e2

2�Td

 ddq

�2��d

d�1

sinh2 �1

2T

���Im�K�− i�1,q���− i�1,q���2

+ Im�K�− i�1,q���− i�1,q�2�Im�K�− i�1,q���
�45�

and
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��cth
AL =

D2e2i

8�4T3 
 ddqd�1

�2��d coth
�1

2T
qx

2K2�− i�1,q�

� ���1

2
+

�q − i�1/2

2�T
����1

2
+

�q − i�1/2

2�T
� ,

�46�

with

��− i�1,q� =
q

2�T
���1

2
+

�q − i�1/2

2�T
� . �47�

Going through the derivation, the reader can readily con-
vince herself or himself that the contribution ��cth

AL would be
missed if one were to make the so-called static approxima-
tion in the effective vertex and use ���1�=0,�� ,q� in the
evaluation of the Aslamazov-Larkin diagram. As long as one
is interested in obtaining the corrections near the classical
transition, the approximation is justified and ��sh

AL is indeed
the dominant contribution. We will show below that in this
limit, the result we obtain is in agreement with the existing
literature.6 In the ��T�Tc0 limit, we can expand

��− i�1,q� →
q

2�T
���1

2
� +

�q − i�1/2

2�T
���1

2
� , �48�

where we have used �1�T, in addition. Keeping the zeroth
order term amounts to making the static approximation ��1

=0� and Eq. �45� reduces to

��sh
AL =

2

d

D2e2

�2�T�3���1

2
�2
 ddq

�2��d

d�1

sinh2 �1

2T

q2

��Im K�− i�1,q��2. �49�

Using Eq. �30� for the fluctuation propagator in the limit
under consideration, we have

Im K�− i�1,q� =
4�T

���1/2�
�1

��̃T + Dq2�2 + �1
2

, �50�

where

�̃T = �T�0,T�
4�T

���1/2�
. �51�

Further, using sinh x→x for small x, we can write the final
expression as

��sh
AL =

16TD2e2

�d

 ddqd�1

�2��d

q2

���̃T + Dq2�2 + �1
2�2

=
D2e2

T2 
 ddq

d�2��d

q2

��5T +
Dq2

2T
�3 , �52�

where we have redefined

�5T =
4�T�0,T�

�
=

�̃T

2T
�53�

to put the integral in a form similar to what we will find in
one of the regimes near the quantum phase transition. The
presentation of the results for different dimensions will ac-
cordingly be deferred to Sec. IV in order to facilitate the
comparison.

Now, we move on to the other two corrections given by
the density-of-states and the Maki-Thompson diagrams, as
shown in Fig. 2. The calculation follows on lines similar to
what we have outlined for the case of the Aslamazov-Larkin
diagram in detail above. We find that the density-of-state
fluctuation correction can be expressed as

��DOS = ��sh
DOS + ��cth

DOS, �54�

where

��sh
DOS =

D2e2

4�T

 ddqd
d�

�2��d tanh



2T

iK�− i�,q�

sinh2 �

2T

��− Re
1

��q − i
+�2 + Re
qx

2

��q − i
+�3� �55�

and

��cth
DOS = − A +

3

2
B , �56�

with

A = −
De2

2�

 ddqd
d�

�2��d tanh



2T
coth

�

2T

�� 1

��q − i
+�3K�− i�,q�� �57�

and

B = −
De2

2�

 ddqd
d�

�2��d tanh



2T
coth

�

2T

�� qx
2

��q − i
+�4K�− i�,q�� . �58�

Here,


+ � 
 + �/2, �59�

and A and B are introduced for future convenience. The first
term in each of ��sh

DOS and ��cth
DOS comes from the evaluation

of the first two density-of-states diagrams, while the second
term comes from the density-of-states diagram that contains
an extra Cooperon.

The Maki-Thompson correction can be expressed as

��MT = ��sh
MT + ��cth

MT, �60�

where
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��sh
MT =

D2e2

4�T

 ddqd
d�

�2��d tanh



2T

iK�− i�,q�

sinh2 �

2T

� 1

�q
2 + 
+

2� ,

�61�

while

��cth
MT = − A + 3B , �62�

with A and B defined above. The contribution ��sh
MT as well

as the first term in ��cth
MT are obtained by evaluating the first

of the two Maki-Thompson diagrams. The evaluation of the
second diagram with an extra Cooperon yields the second
term in ��cth

MT which is of the same order at low temperatures
and of lower order at higher temperatures.

IV. TRANSPORT NEAR THE QUANTUM PHASE
TRANSITION

In the previous section, we have derived the expressions
for the different fluctuation corrections to the conductivity
that are valid in the vicinity of the entire boundary �Eq. �20��
between the superconducting and normal phases in the �-T
phase diagram. As the pair-breaking strength is increased,
superconductivity breaks down even at T=0 once � becomes
equal to �c0��c�T=0�=�Tc0 /2�. In this section, we want to
map out the superconducting fluctuation regimes and obtain
the finite-temperature crossovers that would appear in the
region

T � �c�T� ,

� − �c�T� � �c�T� , �63�

near the pair-breaking quantum phase transition. Note, how-
ever, that the validity of our zero-temperature results will not
be restricted to the immediate neighborhood of �c0.

A. Dominant fluctuation corrections

Since in this section we are interested in the region delin-
eated by Eq. �63�, we will use the asymptotic form of the
digamma function

��1

2
+

�q − i�1/2

2�T
� → ln��q − i�1/2

2�T
� �64�

in the forthcoming treatment. Let us begin by analyzing the
Aslamazov-Larkin correction. Using Eq. �64� inside the ex-
pression for � as defined by Eq. �47�, we obtain a reduced
form

��− i�1,q� →
q

�q − i�1/2
→

q

�c�T�
, �65�

where the second limit is justified a posteriori by the behav-
ior of the integral below. We have

��sh
AL =

D2e2

�Td�c
2 
 ddq

�2��d

d�1

sinh2 �1

2T

q2�Im K�− i�1,q��2,

�66�

where

Im K�− i�1,q� =
�1/�2�c�T��

�����,T� +
Dq2

2�c�T��2

+ � �1

2�c�T��2

�67�

is obtained using Eq. �32�. Indeed, the integral is dominated
by small values of q and �1 and ��sh

AL is critical in the vicin-
ity of �c�T�. That is also the reason why it was legitimate to
use the reduced form for K.

At this point, the reader should observe that to analyti-
cally analyze ��sh

AL any further, we need to order the energy
scales, T and �−�c�T�. The frequency integral can then be
carried out to get the limiting form

���,sh
AL =

2�

3

D2e2T2

�c
4 
 ddq

d�2��d

q2

�����,T� +
Dq2

2�c�T��4

�68�

for T��−�c�T� and

���,sh
AL =

D2e2T

�c
3 
 ddq

d�2��d

q2

�����,T� +
Dq2

2�c�T��3 �69�

for T��−�c�T�. Observe that the integrand in Eq. �69� has
exactly the same form as the integrand in Eq. �52� corre-
sponding to the Aslamazov-Larkin correction in the tempera-
ture vicinity above the classical transition at Tc0 in the ab-
sence of any pair-breaking perturbation. Whereas �T�0,T�
and T were the parameters in that integrand, here they are
���� ,T� and �c�T� instead.

To be able to access the crossover between the two limit-
ing forms, ���,sh

AL and ���,sh
AL , we recast Eq. �66� in terms of

dimensionless variables to obtain

��sh
AL =

2D2e2

�dT2 �2T

D
��2+d�/2

F��� , �70�

where

F��� =
 ddq

�2��d

d�1

sinh2 �1

q2�1
2

��� + q2�2 + �1
2�2 �71�

is a scaling function of the dimensionless parameter

� �
� − �c�T�

T
. �72�

In the ��1 limit, ��sh
AL reduces to Eq. �68�, while in the �

�1 limit, it reduces to Eq. �69�. The numerical evaluation of
F��� gives the behavior ��sh

AL over the entire range of �.
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Now, let us proceed to analyze the ��cth
AL part of the

Aslamazov-Larkin correction. After using the asymptotic
form of the digamma function given by Eq. �64� to get a
simplified expression, we express ��cth

AL as a sum of two
terms:

��cth
AL =

D2e2

�i

 ddqd�1

�2��d

qx
2K2�− i�1,q�

��q − i�1/2�3

���coth
�1

2T
− sign

�1

2T
� + sign

�1

2T
� . �73�

At any finite temperature, the first �difference� term can be
shown to be subdominant as compared to ��sh

AL while for T
=0, it vanishes identically. Thus, we need evaluate only the
second term which is independent of temperature. To this
end, we carry out a bunch of manipulations and do the fre-
quency integration by parts to obtain a neat expression which
we denote by

��0,cth
AL =

4De2

�d�d + 2� 
 ddq

�2��d

�Dq2�2K2�0,q�
�q

3 . �74�

As for the Maki-Thompson and the density-of-states cor-
rections, we find that ��sh

DOS+��sh
MT is subdominant as com-

pared to the Aslamazov-Larkin correction ��sh
AL. On the other

hand, the same way as we did in Eq. �73�, we can express
��cth

DOS and ��cth
MT as a sum of a temperature-dependent term

that vanishes at T=0 and a second temperature-independent
term. The temperature-dependent term is again subdominant
as compared to ��sh

AL, and after some manipulation, we find
the temperature-independent part of A and B �see Eqs. �57�
and �58�� to be given by

A0 =
2De2

�

 ddq

d�2��d

Dq2K�0,q�
�q

2 �75�

and

B0 =
4De2

3�

 ddq

d�d + 2��2��d

�Dq2�2K�0,q�
�q

3 . �76�

We can reexpress B0 as

B0 =
A0

3
− B̃0, �77�

B̃0 =
2De2

3�d�d + 2� 
 ddq

�2��d

�Dq2�2K2�0,q�
�q

3 �78�

such that we have

��0,cth
AL = 6B̃0, �79�

��0,cth
DOS = −

A0 + 3B̃0

2
, �80�

��0,cth
MT = − 3B̃0 �81�

to yield

��0,cth � ��0,cth
AL + ��0,cth

DOS + ��0,cth
MT

= −
A0 − 3B̃0

2
= −

3B0

2

=
− 2De2

�

 ddq

d�d + 2��2��d

�Dq2�2K�0,q�
�q

3 , �82�

where A0, B0, and B̃0 are all positive quantities defined
above. The expression for K�0,q� is given by Eq. �31� which
is appropriate for T��c0.

B. Fluctuation regimes in the �-T plane

In the previous subsection, we have identified and ana-
lyzed the dominant fluctuation corrections to the normal state
conductivity in the vicinity of a pair-breaking quantum phase
transition out of a superconducting state. Based on this
analysis, the fluctuation conductivity is

����,T� = ��0,cth��� + ��sh
AL��,T� , �83�

where ��0,cth��� is given by Eq. �82� and ��sh
AL�� ,T� is given

by Eq. �66�. At the absolute zero of the temperature, the
correction to the conductivity is given by

����,0� = ��0,cth��� , �84�

and it continues to be the dominant correction up to a tem-
perature scale T0��� at which ��sh

AL�� ,T� becomes compa-
rable. This regime with a negative fluctuation correction
which turns out to be almost noncritical is the “quantum
regime” with thermal fluctuations playing no role whatso-
ever. In this regime, the Maki-Thompson correction turns out
to be negative and is half the magnitude of the positive
Aslamazov-Larkin correction; the negative density-of-states
correction too is of the same order, and the total is negative.
The presence of the superconducting fluctuations thus im-
pedes the flow of current, contrary to the naive expectation.
It is important to note that the quantum regime is outside the
scope of any theoretical approach that does not take into
account the electron degrees of freedom in addition to the
superconducting fluctuations.

On the other hand, the regime defined by T��−�c�T� is
dominated by the Aslamazov-Larkin correction ��sh

AL in its
limiting form ���,sh

AL given by Eq. �69�; this is the “classical
regime.” The “intermediate regime” in between the classical
and quantum regimes is dominated by ���,sh

DOS, which is the
limiting form of the Aslamazov-Larkin correction appropri-
ate for T��−�c�T�, and is given by Eq. �68�. The fluctua-
tion conductivity in both the classical and the intermediate
regime enhances the normal state conductivity due to the
additional channel of transport via the fluctuating Cooper
pairs and is more critical than that in the quantum regime.

The presence of these three regimes �see Fig. 3� means
that the conductivity behavior depends on how the quantum
phase transition or the low-temperature transition is ap-
proached. If the quantum critical point is approached by low-
ering the temperature at a fixed value of �=�c0, then the
measurement trajectory sweeps exclusively across the classi-
cal regime and diverges as the temperature tends to zero. On
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the other hand, if �c0 is approached by tuning the pair-
breaking parameter at a fixed value of T=0, then the path lies
entirely in the quantum regime showing the characteristic
increase in resistance. On the contrary, going away from �c0
results in a decrease in the resistance as � is increased; if the
pair-breaking strength were to be tuned by a parallel mag-
netic field, a negative magnetoresistance is observed. The
intermediate regime is swept only while the measurement
trajectory crosses over from the quantum to the classical re-
gime or vice versa. A trajectory in which the temperature is
varied at a fixed value of ���c0 or � is tuned at a nonzero
temperature results in a nontrivial conductivity with a non-
monotonic behavior.

1. Nanowire or doubly connected cylinder „d=1…

Consider a pair-breaking quantum phase transition in a
superconducting nanowire driven by tuning a magnetic field,
the concentration of magnetic impurities, or yet another pair-
breaking perturbation. As long as the diameter of the wire is
smaller than the superconducting coherence length, the sys-
tem is effectively one dimensional as far as superconducting
fluctuations are concerned. One could also consider a doubly
connected cylinder instead of a wire, as discussed in Sec. II.

For d=1, the fluctuation conductivity in the classical re-
gime �T��−�c�T��, given by Eq. �69�, can be written in
terms of a dimensionless integral to obtain

���,sh
AL ��,T� =

�De2T

2��c
3/2


−�

�

dx
x2

�����,T� + x2/2�3

=
�De2

4�2

T

�� − �c�T��3/2 . �85�

The temperature dependence is more revealing if one uses
�c�T���c0−�2T2 / �6�c0� in the vicinity of �c0 �see Eq.

�22��. In particular, if the quantum critical point at �c0 is
approached by lowering the temperature, then

���,sh
AL ��c0,T� =

3�3�De2

2�3

�c0
3/2

T2 �86�

shows a quantum critical divergence with the power T−2

when T→0.
It is instructive to compare the result in Eq. �85� in the

classical regime with the fluctuation conductivity

��sh
AL�0,T� =

����De2

32�2

Tc0

�T − Tc0�3/2 �87�

in the temperature vicinity above the classical transition at
Tc0 in the absence of any pair-breaking perturbation. Deriva-
tion of this result requires evaluating Eq. �52� which contains
the same dimensionless integral as in the classical regime
near the quantum phase transition.

By using Eq. �68�, we have

���,sh
AL ��,T� =

�DT2e2

3�c
5/2 


−�

�

dx
x2

�����,T� + x2/2�4

=
��De2

12�2

T2

�� − �c�T��5/2 �88�

in the intermediate regime between the classical and quan-
tum regimes. The fluctuation conductivity contains an addi-
tional power of T / ��−�c�T�� as compared to the classical
regime.

Expressed in terms on the scaling function that we intro-
duced in Eq. �70�, we have

��sh
AL��,T� =

4�2�De2

��T
F��� , �89�

with

F��� = �
�

32
�−3/2, � � 1

�2

96
�−5/2, � � 1,� �90�

where � is defined in Eq. �72�. The full scaling function
given by Eq. �71� and the negative temperature-independent
term ��0,cth���, as discussed below, can be evaluated numeri-
cally. In this way, we are able to get the behavior of the
fluctuation conductivity as a function of temperature and
pair-breaking parameter, in the entire neighborhood of the
superconducting quantum critical point. The exact boundary
of the quantum regime in the �-T phase diagram can then be
identified by tracing the curve on which the fluctuation con-
ductivity becomes zero while changing sign from positive to
negative.

The temperature-independent fluctuation correction which
dominates the quantum regime is given by evaluating Eq.
�82� to obtain

0.6 0.7 0.8 0.9 1 1.1 1.2

α / T
c0

0

0.1

0.2

T
/T

c0

Classical

Intermediate

Quantum

Superconducting
phase

regime

regime

regime

FIG. 3. �Color online� Phase diagram showing the vicinity of the
superconducting quantum critical point realized via a pair-breaking
quantum phase transition as illustrated in Fig. 1. The boundary be-
tween the classical and the intermediate regime is given by T=�
−�c�T�. The analytical estimate for the boundary between quantum
and intermediate regimes is given by Eqs. �94�, �104�, and �113� for
the case of a nanowire or doubly connected cylinder, a thin film,
and a bulk superconductor, respectively. For clarity, only the case of
d=1 is shown. The quantum regime extends to higher temperatures
as the effective dimensionality of the system is increased.
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��0,cth��� = −
�De2

3�2��c0



−�

�

dx
x4

h��x�3 ln h��x�
, �91�

where

h��x� � 1 + ����,0� + x2/2. �92�

The correction has no critical divergence at �=�c0 �i.e.,
���� ,0�=0� and even the first derivative is noncritical. The
second derivative diverges as ��−�c0�−1/2, thereby giving the
first nonanalytic term in the expansion �obtained by integrat-
ing twice� around �c0. We thus obtain

��0,cth��� − ��0,cth��c0�

=
e2�D
��c0

�a1����,0� + b1����,0�3/2 + ¯ � , �93�

with a1=0.386 and b1=−4�2/ �3��. By using the first term in
the expansion, one can analytically estimate the boundary
between the intermediate and the quantum regimes to be

T0���
Tc0

� �� − �c0

�c0
�7/4

. �94�

In Figs. 4 and 5, we display the plots for the fluctuation
conductivity when the vicinity of the pair-breaking quantum
phase transition is explored by sweeping either the tempera-
ture or the pair-breaking parameter �see the figure captions
for details�. As discussed above, a quantum critical diver-
gence is expected as temperature is lowered by sitting at �
=�c0 and is not shown in the figure. If � is increased starting
from �c0 at a fixed value of T=0, the conductivity increases

monotonically, correspondingly giving a decrease in resis-
tance, i.e., a negative magnetoresistance if � is tuned by a
magnetic field. The conductivity shows a nonmonotonic be-
havior as � is varied at a fixed T�0 or T is varied at a fixed
���c0, the behavior being more distinct for smaller values
of T and �−�c0, respectively.

2. Thin film „d=2…

Consider a pair-breaking quantum phase transition in a
superconducting thin film whose thickness is smaller than
the coherence length which makes the system effectively two
dimensional as far as superconducting fluctuations are con-
cerned. The transition can be driven, e.g., by tuning a pair-
breaking perturbation such as a parallel magnetic field or the
concentration of magnetic impurities as discussed in Sec. II.

The remarkable fact about the fluctuation conductivity in
two dimensions is that it is a universal quantity, independent
of the properties of the material under consideration. The
fluctuation conductivity in the classical regime �T��
−�c�T��, given by Eq. �69�, can be evaluated for d=2 to
obtain

���,sh
AL ��,T� =

Te2

4��c



0

�

dx
x3

�����,T� + x2/2�3 =
e2

4�

T

� − �c�T�
,

�95�

with �c�T���c0−�2T2 / �6�c0� in the vicinity of �c0 �see Eq.
�22��. If the quantum critical point is approached by lowering
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FIG. 4. �Color online� Temperature dependence of the fluctua-
tion correction to the conductivity �in units of �De2� in the vicinity
of a pair-breaking quantum phase transition at �=�c0=0.889Tc0 for
d=1 �nanowire or doubly connected cylinder�. Plots are shown for
different values of ��−�c0� /Tc0. When the superconducting QCP is
approached by lowering the temperature at �=�c0, the quantum
critical divergence of the conductivity is given by Eq. �86� �not
included in the figure�. The lower panel clearly displays the tem-
peratures T0��� �analytically estimated by Eq. �94��, at which the
correction becomes negative, thereby signaling the entry into the
quantum regime at a given value of �.
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FIG. 5. �Color online� Fluctuation correction to the conductivity
�in units of �De2� in the vicinity of a pair-breaking quantum phase
transition at �c0=0.889Tc0 for d=1 �nanowire or doubly connected
cylinder�. Plots show the behavior of �� as one sweeps ��
−�c0� /Tc0 at a given value of T /Tc0. The lower panel shows the
negative correction at T=0 and a clear upturn of the conductivity
which is characteristic of the quantum regime. This would corre-
spond to a decrease in resistance �a negative magnetoresistance, if �
is tuned by a magnetic field� as � is increased at T=0 and a clearly
visible nonmonotonic behavior at low temperatures.
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the temperature at a fixed �=�c0, then we have

���,sh
AL ��c0,T� =

3e2

2�3

�c0

T
, �96�

which shows a quantum critical divergence T−1 when T→0.
The fluctuation conductivity �Eq. �52�� in the temperature

vicinity above the classical transition at Tc0 in the absence of
any pair-breaking perturbation contains the same form of the
integrand as in the classical regime near the quantum phase
transition, therefore giving a result

��sh
AL�0,T� =

e2

16

Tc0

T − Tc0
, �97�

analogous to Eq. �95� and consistent with the classic
literature.6

By using Eq. �68�, the fluctuation conductivity in the in-
termediate regime is given by

���,sh
AL ��,T� =

T2e2

12�c
2


0

�

dx
x3

�����,T� + x/2�4

=
e2

18

T2

�� − �c�T��2 . �98�

It contains an additional power of T / ��−�c�T�� as compared
to the classical regime, just as we found for d=1. Expressed
in terms on the scaling function that we introduced in Eq.
�70�, we have

��sh
AL��,T� =

4e2

�
F��� , �99�

with

F��� = �
1

16
�−1, � � 1

�

72
�−2, � � 1,� �100�

and the full form of F��� can be evaluated by doing the
integrals in Eq. �71� numerically.

The temperature-independent quantum correction which
dictates the behavior in the quantum regime can be obtained
by using Eq. �82� to have

��0,cth��� = −
e2

8�2

0

�

dx
x5

h��x�3 ln h��x�
, �101�

where h��x� is defined by Eq. �92�. For large x, the integrand
goes as 1/ �x ln x� and the integral has a very weak ultraviolet
divergence which can be isolated by evaluating the integral
analytically by parts �� is the cutoff�. Indeed, at �=�c0 we
find

��0,cth��c0� = −
e2

2�2 ln�ln
�

2
� +

e2

4�2

0

�

dx
x ln�ln�1 + x/2��

�1 + x/2�3

= −
e2

2�2 ln�ln
�

2b
� , �102�

where b=1.122 92. We can thus consider the difference

��0,cth���−��0,cth��c0� that has a convergent integral to be
evaluated numerically.

Here again as in the d=1 case, ��0,cth��� as well as the
first derivative have no critical divergence at �=�c0. From
the divergence in the second derivative, we can get the first
nonanalytic term in the expansion around �c0. We thus have

��0,cth��� − ��0,cth��c0�

= e2�a2����,0� + b2����,0�2 ln ����,0� + ¯ � ,

�103�

with a2=0.070 and b2=1/ �2�2�. By using the first term in
the expansion, one can analytically estimate the boundary
between the intermediate and the quantum regimes to be

T0���
Tc0

� �� − �c0

�c0
�3/2

. �104�

In Figs. 6 and 7, we display the plots for the fluctuation
conductivity when the vicinity of the pair-breaking quantum
phase transition is explored by sweeping either the tempera-
ture or the pair-breaking parameter �see figure captions for
more details�. The behavior of the fluctuation conductivity is
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FIG. 6. �Color online� Temperature dependence of the fluctua-
tion correction to the conductivity �in units of e2� in the vicinity of
a pair-breaking quantum phase transition at �=�c0=0.889Tc0, for
the case of a thin film �d=2�. Plots are shown for different values of
��−�c0� /Tc0. When the superconducting QCP is approached by
lowering the temperature at �=�c0, the quantum critical divergence
of the conductivity is given by Eq. �96� �not included in the figure�.
Note that we have plotted the difference ���� ,T�−����c0 ,0�
which is always positive given that ���� ,0� is most negative at �
=�c0 �see Fig. 7�.
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qualitatively similar to the case of d=1. However, the critical
divergences are weaker and the ratio of the fluctuation cor-
rection to the normal state conductivity is expected to be
lower as well.

3. Bulk „d=3…

Although the pair-breaking quantum phase transition out
of a superconducting state in low-dimensional disordered
systems attracts more attention, we will now consider such a
transition in a three-dimensional bulk superconductor mainly
for the sake of comparison and completeness. One could
imagine superconductivity at low temperatures being de-
stroyed by magnetic impurities, for example. The discussion
below parallels the preceding analysis for d=1,2.

The fluctuation conductivity in the classical regime �Eq.
�69�� is given by

���,sh
AL ��,T� =

Te2

6�2�D��c



0

�

dx
x4

�����,T� + x2/2�3

=
e2

4��2�D

T
�� − �c�T�

�105�

and at �=�c0 reduces to

���,sh
AL ��c0,T� =

�3e2��c0

�D4�2
, �106�

which is independent of temperature. This is in stark contrast
to a quantum critical divergence found in the case of one and
two dimensions on approaching the quantum phase transition
by lowering the temperature. It illustrates the fact that fluc-
tuations are stronger and consequently play a more crucial
role in reduced dimensions.

Same as for a nanowire and a thin film, note that the
fluctuation conductivity �Eq. �52�� near the classical transi-
tion at Tc0 in the absence of any pair-breaking perturbation is
analogous in form to that in the classical regime and is given
by

��sh
AL�0,T� =

e2

8�2��D

Tc0

�T − Tc0

. �107�

Although it is critical, the divergence is weaker by one
power of �T−Tc0�−1/2 as compared to that in two dimensions,
which in turn is weaker than that in one dimension by the
same power.

By using Eq. �68�, the fluctuation conductivity in the in-
termediate regime is given by

���,sh
AL ��,T� =

T2e2

9��D�c
3/2


0

�

dx
x4

�����,T� + x2/2�4

=
e2

36�2�D

T2

�� − �c�T��3/2 . �108�

It contains an additional power of T / ��−�c�T�� as compared
to the classical regime, just as we found for d=1,2. Alterna-
tively, expressing ��sh

AL�� ,T� in terms on the scaling function
that we introduced in Eq. �70�, we have

��sh
AL��,T� =

8�2e2�T

3��D
F��� , �109�

with

F��� = �
3

64
�−1/2, � � 1

�

192
�−3/2, � � 1,� �110�

and the full form of F��� can be evaluated by doing the
integrals in Eq. �71� numerically.

The temperature-independent quantum correction which
dictates the behavior in the quantum regime can be obtained
by using Eq. �82� to have

��0,cth��� = −
e2��c0

15�3�D



0

�

dx
x6

h��x�3 ln h��x�
, �111�

where h��x� is defined by Eq. �92�. The integral can again be
regulated by considering the difference ��0,cth���
−��0,cth��c0� as we did in the case of d=2, and can then be
subjected to numerical evaluation.

By following the same procedure in one and two dimen-
sions, we get the expansion
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FIG. 7. �Color online� Fluctuation correction to the conductivity
�in units of e2� in the vicinity of a pair-breaking quantum phase
transition at �c0=0.889Tc0 for d=2 �thin films�. Plots show the
behavior of ���� ,T�−����c0 ,0� as one sweeps ��−�c0� /Tc0 at a
given value of T /Tc0. The lower panel shows the correction at T
=0 and a clear upturn of the conductivity which is characteristic of
the quantum regime. This would correspond to a decrease in resis-
tance �negative magnetoresistance� as � is increased at T=0 and a
clearly visible nonmonotonic behavior at low temperatures.
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��0,cth��� − ��0,cth��c0�

=
e2��c0

�D
�a3����,0� + b3����,0�2 + c3����,0�5/2 + ¯ � ,

�112�

with a3=0.023, b3=−0.061, and c3=4�2/ �15�2�. Note that
the critical divergence shows up for the first time in the third
derivative to give the first nonanalytic term in the expansion.
By using the first term in the expansion, one can make a
rough estimate of the boundary between the intermediate and
the quantum regimes to be

T0���
Tc0

� �� − �c0

�c0
�5/4

. �113�

The quantum regime is thus expected to extend up to higher
temperatures as compared to the case of d=1,2. The fluctua-
tion conductivity, however, has a weaker critical divergence
as compared to lower dimensions as was found above also
for the classical and intermediate regimes.

In Figs. 8 and 9, we display the plots for the fluctuation
conductivity when the vicinity of the pair-breaking quantum
phase transition is explored by sweeping either the tempera-
ture or the pair-breaking parameter. The qualitative behavior
is similar to that discussed for the case of one and two di-
mensions, but the critical divergences are clearly much
weaker. The biggest difference in the behavior can be seen if
the quantum phase transition at �c0 is approached by lower-

ing the temperature: as shown above, there is absolutely no
quantum critical divergence and the correction is indepen-
dent of temperature.

V. RELATED WORK, EXPERIMENTS, AND CONCLUSION

In our work, we have studied the superconducting fluc-
tuation corrections to the normal state conductivity in the
entire �-T plane, where � parametrizes the strength of a
pair-breaking perturbation, caused by the presence of mag-
netic impurities or a magnetic field, for example. We have
been particularly interested in mapping out the fluctuation
regimes in the neighborhood of the pair-breaking quantum
phase transition from superconducting to normal state. Our
entire analysis has been carried out within the framework of
temperature diagrammatic perturbation theory suitable for
dirty superconductors and disordered systems.

There have been two previous works which have used an
approach different from ours. Ramazashvili and Coleman20

have used an effective action for the pairing field and evalu-
ated the Aslamazov-Larkin correction to the conductivity us-
ing a renormalization group analysis.21 They have focused on
the quantum phase transition driven by magnetic impurities
in two and three dimensions for weak �BCS� as well as
strong coupling superconductors and derived the behavior of
the conductivity when the quantum critical point is ap-
proached by lowering the temperature. The temperature de-
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FIG. 8. �Color online� Temperature dependence of the fluctua-
tion correction to the conductivity �in units of e2 /�D� in the vicinity
of a pair-breaking quantum phase transition at �c0=0.889Tc0, for
the case of a bulk system �d=3�. Plots are shown for different
values of ��−�c0� /Tc0. When the superconducting QCP is ap-
proached by lowering the temperature at �=�c0, there is no quan-
tum critical divergence of the conductivity, in contrast to what is
found for d=1,2 and, in fact, the conductivity is temperature inde-
pendent �see Eq. �106��. Note that we have plotted the difference
���� ,T�−����c0 ,0� which is always positive given that ���� ,0� is
most negative at �=�c0 �see Fig. 9�.
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FIG. 9. �Color online� Fluctuation correction to the conductivity
�in units of e2 /�D� in the vicinity of a pair-breaking quantum phase
transition at �c0=0.889Tc0 for d=3 �bulk superconductors�. Plots
show the behavior of ���� ,T�−����c0 ,0� as one sweeps ��
−�c0� /Tc0 at a given value of T /Tc0. The lower panel shows the
correction at T=0 and a clear upturn of the conductivity which is
characteristic of the quantum regime. This would correspond to a
decrease in resistance �negative magnetoresistance� as � is in-
creased at T=0 and a clearly visible nonmonotonic behavior at low
temperatures.
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pendence matches with what we obtain is two dimensions
�see Eq. �96��, but in three dimensions our answers do not
match. While they have considered only the “classical renor-
malization region,” Mineev and Sigrist22 have investigated
the entire region around the quantum phase transition using
an analogous starting point based on the time-dependent
Ginzburg-Landau equations �justifying the use based on ar-
guments by Herbut23�. They suggest pressure as a tuning
parameter, consider weak coupling superconductors in one,
two, and three dimensions, and obtain the conductivity cor-
rections in what they call “classical” and “quantum” regimes.
Their classical regime is identical to ours, while the answers
they find in their quantum regime correspond to our interme-
diate regime.

The above-mentioned approaches based on using the
time-dependent Ginzburg-Landau equations with a linear
dissipative time derivative or the corresponding effective ac-
tion are quite powerful and analogous approaches have
proved extremely useful in the study of quantum critical
phenomena.2,21,24 However, the Maki-Thompson and the
density-of-states corrections that require the electrons to be
present in the theory are outside the scope of these ap-
proaches and a microscopic calculation, as we have carried
out here, becomes essential to analyze the role of these cor-
rections. Even the zero-temperature Aslamazov-Larkin cor-
rection that we find is missed in the effective approaches. On
the other hand, our analysis is able to identify the regimes
where the contributions involving the interplay between the
fluctuating Cooper pairs and the electrons are subdominant,
thereby validating the use of the aforementioned effective
approaches in those regimes.

We want to mention now some works which also follow a
microscopic approach, but for physical configurations differ-
ent from ours. Beloborodov et al.25,26 have proposed the
negative magnetoresistance observed in granular metals in a
strong magnetic field and low temperatures to be originating
from superconducting fluctuation corrections to the conduc-
tivity. Galitski and Larkin27 have considered two-
dimensional superconductors in the presence of a perpen-
dicular magnetic field and again carried out a microscopic
analysis of fluctuation corrections taking into account all the
diagrams; they too find zero-temperature negative magne-
toresistance. As we have discussed in Ref. 28, negative mag-
netoresistance is found also for a thin film in a parallel in-
stead of perpendicular magnetic field. We think that it is
quite a remarkable fact that a negative magnetoresistance at
zero temperature is a common feature of all these theories:
the Aslamazov-Larkin correction which is always positive,
the density-of states correction which is always negative, and
the Maki-Thompson correction which has no prescribed sign
conspire in all three theories to add up into a total negative
correction. Although there might be different reasons for get-
ting a negative correction and a corresponding negative mag-
netoresistance, it raises the question of whether this is a uni-
versal feature of at least a certain class of disordered systems
in the presence of a magnetic field and/or pair-breaking per-
turbation, with fundamental reasons at its heart.

In our work, we have considered the corrections to the
conductivity coming into effect due to the proximity of a
superconducting state in the low-temperature phase diagram

of disordered systems. It is important for our analysis that the
disordered conductors under consideration are assumed to be
in the metallic �as against insulating� conduction domain.
The fact that quantum corrections coming from weak local-
ization effects13 and electron-electron interactions �the so-
called Altshuler-Aronov14 corrections� significantly modify
the conductivity from its Drude-like behavior, even in this
domain, does not invalidate our analysis. However, in com-
paring our theory with experiments, these corrections should
be simultaneously taken into account. The weak localization
of electron waves is a result of an enhanced backscattering
originating from the interference between forward and back-
ward electron trajectories tracing the same path during the
course of multiple scattering events. It gives rise to a nega-
tive quantum correction to the conductivity, given by the
expression13

��WL = −
2e2D

�

 ddq

�2��dC�0,q� . �114�

As is evident from the presence of a Cooperon propagator
�Eq. �26��, the interference effects are strongly diminished by
the presence of time-reversal symmetry breaking perturba-
tions, thereby yielding a decrease in resistance �a negative
magnetoresistance, yet again�. On the other hand, the
Altshuler-Aronov correction is determined by the diagrams
that include only the diffuson propagators and are not sensi-
tive to the magnetic field or other time-reversal symmetry
breaking perturbations. Thus, the inclusion of additional
quantum corrections will not affect the predicted negative
sign of the magnetoresistance �or the decrease of resistance
with increasing pair-breaking strength, in the general case� at
low temperatures.

The experimental effort in superconducting thin films has
so far been motivated to a large extent by interest in the
so-called superconductor-insulator transition �SIT�,29 driven
by tuning either the disorder �achieved by varying the film
thickness� or a perpendicular magnetic field. Questions
raised by recent experiments about the mechanism and inter-
pretation of the transition have revived interest also from the
theoretical side. Experiments on thin films, observing a sup-
pression of superconductivity in the presence of a perpen-
dicular magnetic field at low temperatures, have convention-
ally been interpreted within the framework of the field-
induced dual-SIT �acronym we will use to refer to a theory
based on the boson-vortex duality in a “dirty boson”
model,30 although in the literature such a theory is implicitly
implied whenever the acronym SIT is used� mainly based on
the negative temperature derivative of the resistance above
the critical field and finite size scaling analysis of the data.
Gantmakher et al.31 have made the case that a stringent
analysis of many of these data sets might point toward inad-
equacies in such an interpretation. For instance, the phase
interpreted as insulating could very well be a metal with
quantum corrections, and existence of scaling in a limited
region might not be sufficient. To address these points, they
have made measurements on NdCeCuO films and found that
the microscopic theory based on quantum corrections includ-
ing the superconducting fluctuation corrections as obtained
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by Galitski and Larkin27 could qualitatively describe the
main features of their experiment including the negative
magnetoresistance �see the discussion in preceding para-
graphs�. A possible crossover between the two interpretations
is also suggested. Subsequently, Baturina et al.32 have made
measurements of magnetic-field-dependent resistance of ul-
trathin superconducting TiN films with different degrees of
disorder and again concluded that the scaling analysis previ-
ously regarded as the main evidence of field-induced dual-
SIT can, in fact, be observed also for transition from a su-
perconductor to a normal metal with quantum corrections.

The natural question to ask is what happens when super-
conductivity at very low temperatures is destroyed by apply-
ing not a perpendicular but instead a parallel magnetic field
for which the field-tuned dual-SIT scenario does not apply.
Although there is an interesting set of experiments studying
the first order spin paramagnetic transition �e.g., Ref. 33�, the
case of relevance to us is that of a second order transition.
Based on their measurements on InO films with variable
oxygen content, Gantmakher et al.34 concluded that the be-
havior in the parallel and in the perpendicular field-tuned
case are very similar. The nonmonotonic magnetoresistance
they find in both cases is interesting given that we theoreti-
cally find a similar behavior in the case of a parallel mag-
netic field, as presented in the previous section. Parendo et
al.35 have carried out an experiment on ultrathin bismuth
films to study the thickness-tuned SIT but in the presence of
a parallel magnetic field. In the immediate vicinity of the
transition, what they find is a negative magnetoresistance
behavior. Based on the analysis of their data, they argue that
perhaps its origin could be found in the negative fluctuation
corrections to the conductivity that we find in our calcula-
tion. It does seem plausible that the conductivity behavior
near the superconducting transition tuned by varying the
thickness at a fixed value of parallel magnetic field might be
closely related to that tuned by varying the parallel magnetic
field at a fixed value of film thickness. However, a definitive
calculation catering to the former case still remains to be
done. As is evident from the expression in Eq. �11�, the pair-
breaking parameter depends not only on the magnetic field
but also on the thickness of the film. If the only effect of
changing the thickness were to tune the pair-breaking
strength, then the two cases would, in fact, be identical. The
complication arises because tuning the thickness results also
in tuning the disorder strength. Tuning the magnetic field
offers a way of isolating the pair-breaking effect. More re-
cently, Aubin et al.36 have done measurements of field-tuned
SIT on NbSi thin films and interpreted the data to conclude
that in their experiment, the case of perpendicular field is
different from that of parallel, based on the presence or ab-
sence of a kink in the temperature profile of the critical field,
respectively.

It is desirable to have a systematic experimental study
aimed specifically at exploring the physics of a pair-breaking
quantum phase transition in superconducting films. There
have been few works using a parallel field, but they have had
a limited goal focusing on the SIT, as mentioned in the pre-
ceding paragraph. Amorphous �nongranular� superconduct-
ing films that are thinner than �, but not too thin—and are
weakly disordered, with as low a sheet resistance as

possible—would be necessary to assure that the quantum
corrections are small enough. To begin with, it will be useful
to observe the finite-temperature classical transition and
verify the predictions of the fluctuation conductivity in its
vicinity. By slowly increasing the pair-breaking strength and
lowering the temperature, one could approach the quantum
phase transition. Having identified the right films, measure-
ments of the temperature and pair-breaking parameter �tuned
by a parallel field, for example� dependence of the conduc-
tivity would afford an exciting possibility of discovering dif-
ferent regimes in the vicinity of the pair-breaking quantum
phase transition. The increase in normal state resistance due
to the presence of superconducting fluctuations that we find
is in stark contrast to the intuitive expectation and is a purely
quantum effect. A clear experimental signature of such a
characteristically quantum behavior in the quantum regime,
changing over into an increase in conductivity in the classi-
cal regime, would be an important step forward in the study
of quantum phase transitions and low-temperature supercon-
ductivity. The manifestation to be expected in the plots for
conductivity as a function of temperature and pair-breaking
strength can be found in the previous section. The next re-
vealing experiment would be to measure the evolution of the
conductivity behavior with the change of angle made by the
magnetic field with the film, ranging from parallel to perpen-
dicular case.

Though most experiments on thin films have focused on
perpendicular magnetic field and disorder-tuned transitions,
recently Parker et al.37 have performed measurements on ho-
mogeneously disordered ultrathin a-Pb films to study the
magnetic-impurity-tuned transition in addition. They have
compared the conductivity behavior near quantum phase
transitions tuned by all three mechanisms. They have con-
cluded that the disorder-tuned and the magnetic-impurity-
tuned cases show similar behavior, which seems to be con-
sistent with a fermionic nature of the transition to a weakly
insulating normal state. Their experiment is of relevance to
us since they have successfully traced the transition line and
shown that it satisfies the Abrikosov-Gorkov suppression of
Tc given by Eq. �1�. However, the dependence of the con-
ductivity on the magnetic impurity concentration has not
been presented and the temperature dependence has been
shown only for one concentration value that is above the
critical concentration corresponding to �c0. It will be very
interesting to carry out a detailed comparison of this experi-
ment with our theory.

Systematic experiments exploring the pair-breaking quan-
tum phase transition tuned by magnetic impurities in three-
dimensional superconductors would provide a good check of
our theory, given that in this case we are above the upper
critical dimension. For example, verifying the lack of quan-
tum critical divergence as the critical impurity concentration
is approached by lowering the temperature and finding the
temperature-independent behavior instead would provide a
contrast to the critical divergence expected in the case of
one- and two-dimensional superconductors. Finding a weak
nonmonotonic behavior and the presence of a quantum re-
gime would be interesting in its own right. In addition, the
analysis of the transition in a relatively simple material
would provide useful insights in interpreting the behavior
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near the superconducting quantum phase transitions in more
complex materials.

As far as superconducting quantum phase transition and
quantum corrections are concerned, a lot of theoretical as
well as experimental work on disordered thin films has been
carried out over the period of the last two decades. Relatively
less work on similar lines has been done on superconducting
wires. However, the technological advance allowing for the
fabrication of superconducting nanowires that are uniform
and ultrathin ��10 nm� �see, e.g., Ref. 38� has invigorated
the field and opened up different possibilities. By coating
carbon nanotubes or DNA molecules suspended over a
trench with a superconducting alloy such as MoGe or Nb,
one essentially obtains superconducting wires connected on
two sides to thin-film electrodes of the same material. So far,
most experiments done on this setup have focused on unrav-
eling the physics of phase-slip fluctuations that result in a
nonzero resistance below the superconducting transition. In
one recent experiment, Rogachev et al.39 have looked at the
effect of magnetic fields. They were able to explain the sup-
pression of the transition temperature in terms of the pair-
breaking theory �Eq. �20�� if the Zeeman pair-breaking effect
in the presence of spin-orbit coupling was taken into account
in addition to the orbital effect of the magnetic field applied
perpendicular to the wire �see Eq. �15��. Although the fluc-
tuation effects above the transition were not explored until
now, we believe that the experimental setup is appropriately
geared to be able to test the predictions of our theory. Sys-
tematic study of low-temperature fluctuations both below
and above the transition would be essential not only to un-
derstand the nature of mesoscopic superconductivity but also
to be able to successfully control superconducting electronic
circuits involving ultranarrow wires.

The parallel-magnetic-field-tuned quantum phase transi-
tion in doubly connected superconducting cylinders that we
discuss in Sec. II—with the pair-breaking parameter given
by Eq. �19�—has been motivated by its experimental realiza-
tion by Liu et al.40 They clearly seem to have observed the
enhancement of the conductivity resulting from the positive
fluctuation contribution in the classical regime. However, so
far there has been no experimental evidence of the correc-
tions expected in the intermediate and quantum regimes. Fur-
ther experiments in this direction would be very interesting.

In conclusion, we have evaluated the fluctuation correc-
tions to the electrical conductivity in the vicinity of the pair-
breaking quantum phase transition using diagrammatic per-
turbation theory in disordered systems by correctly

incorporating the quantum fluctuations within the formalism.
Among the three distinct superconducting fluctuation re-
gimes that we find, the quantum regime is the one in which
the contributions to the conductivity coming from the inter-
action between the fluctuating pairs and normal electrons are
important, while the behavior in the classical �or quantum
critical� and the intermediate regime is dominated by direct
transport via the fluctuating pairs. Our theory thus seems to
indicate that the effective bosonic action formalism should
be applicable outside the quantum regime.41 It should be
noted that even at zero temperature, our theory is expected to
be valid only outside the quantum Ginzburg region for sys-
tems below or at the upper critical dimension. One important
open problem is to understand in what way the zero-
temperature conductivity above the transition connects with
that below the transition.

Within our microscopic theory, we have been able to ex-
tract the finite-temperature crossovers to be expected near the
superconducting quantum critical point. We have used the
electrical conductivity as a means of probing the effects of
superconducting fluctuations; however, a similar analysis
could also be carried out for the diamagnetism and other
thermodynamic quantities. Extension to the case of aniso-
tropic superconductors such as high-temperature supercon-
ductors would also be interesting. In d-wave superconduct-
ors, disorder acts as a pair breaker and the behavior near the
corresponding pair-breaking quantum phase transition is
likely to have some resemblance to our findings.

We believe that pair-breaking quantum phase transitions
form an important class of quantum phase transitions that not
only allow for a systematic, well-controlled experimental ex-
ploration but also provide the possibility of a thorough and
comprehensive theoretical analysis. We hope that our work
has amply demonstrated the latter and will, in turn, motivate
the former. In the end, we expect that the microscopic theory
of the superconducting quantum critical point and the corre-
sponding experimental analysis would serve as a useful pro-
totype for understanding quantum phase transitions also in
other classes of correlated systems.
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