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For a long time the crystal structure of the high-pressure � phase of solid oxygen was a mystery. The results
of recent experiments have solved this riddle showing that the magnetic and crystal structures of this phase can
be explained by strong exchange interactions of antiferromagnetic nature. The singlet state implemented on
quaters of O2 molecules has minimal exchange energy if compared to other possible singlet states �dimers,
trimers�. Magnetoelastic forces that arise from the space dependence of the exchange integral give rise to
transformation of 4�O2� rhombuses into almost regular quadrates. The antiferromagnetic character of exchange
interactions stabilizes the distortion of the crystal lattice in the � phase and impedes such a distortion in the
long-range � and � phases.
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I. INTRODUCTION

Solid oxygen is known to occupy a particular place in the
family of cryocrystals.1 The steady interest in oxygen for
almost 50 years is due to the magnetic properties of O2 mol-
ecule which posses nonzero spin SO2

=1 in the ground elec-
tronic state. This ensures magnetism in all solid O2 phases.

Solid oxygen has a rather complicated phase diagram,
which includes three low-temperature phases stable at ambi-
ent pressure � �T�43.8 K�, � �23.8�T�43.8 K�, and �
�T�23.8 K�, and several high pressure phases �, �, and 	
�see Ref. 2 which also includes a comprehensive history of
the problem�. All phases except 	-O2 are insulators. Metalli-
zation of solid O2 takes place at 96 GPa �Refs. 3 and 4� at
room temperature. Moreover, 	-O2 was also observed in the
superconducting state.5

An interesting feature of all the phases �except �-O2� of
solid oxygen is parallel alignment of the molecules which is
usually explained by strong contribution of exchange inter-
actions into the anisotropic part �i.e., depending on the mu-
tual orientation of molecules� of intermolecular potential.
The presence of stable orientation ordering enables us to sub-
stantially simplify many of the theoretical models and, in
particular, makes it possible to describe the structural phase
transitions in solid oxygen disregarding orientational dynam-
ics of molecules.

In the absence of the orientational degrees of freedom, the

low-temperature rhombohedral �space group R3̄m� � phase
can be thought of as a paraphase for all the magnetic phases.
In particular, �-O2 has a planar structure, consisting of close
packing of parallel oxygen molecules with centers of mass in
the apexes of regular triangles, and with orientation perpen-
dicular to the basal planes. The temperature dependence of
magnetic susceptibility of �-O2 is typical for antiferromag-
nets �AFMs�.6 Noncollinear three-sublattice ordering in this
phase �Loktev structure� was predicted in Ref. 7 and is now
generally accepted. Below 23.9 K �or at high pressure� the �
phase becomes unstable and transforms into a monoclinic
�space group C2/m� � phase. The corresponding ��-phase
transition has magnetoelastic nature associated with the
strong dependence of exchange interaction vs intermolecular
distance, as was shown in Ref. 8. The � phase possesses a

collinear �Néel� magnetic structure with the easy direction
parallel to the monoclinic axis b of slightly distorted lattice
�compared to regular hexagonal�. Long-range AFM ordering,
which can be described within a simple two-sublattice
model, is stabilized by the “deformation-induced splitting”
of intrasublattice and intersublattice exchange integrals. It
should be stressed that all the in-plane exchange constants
originate from a single constant J�r� that has AFM character
�i.e., J�r�
0� is isotropic and describes intermolecular spin
interactions in the � phase.9 The mutual shift of the close-
packed basal planes that accompanies formation of AFM or-
dering also has magnetoelastic nature and originates from the
space dependence of the interplane exchange integral.10

Hydrostatic pressure up to 6 GPa induces continuous shift
of the basal planes, while the magnetic structure of �-O2 and
orientation of molecules remain invariable. At approximately
6.5 GPa the mutual shift of neighboring planes attains 1 /2 of
an in-plane intermolecular distance and solid O2 transforms
into the orthorhombic �space group Fmmm� � phase. The
type of magnetic order in � and � phases is similar �collinear
AFM structure� within the ab plane, but the relative orienta-
tion of spins in the neighboring planes �between the first
interplane neighbors� is different—parallel in �-O2 and anti-
parallel in �-O2.11 Due to the crucial change of magnetic
structure �from two to four sublattice� the ��-phase transi-
tion is classified as first order.12 Abrupt change of magnetic
order at the ��-transition point is accompanied by discon-
tinuous shift of the close-packed planes, which also origi-
nates from space dependence of the interplane exchange in-
tegral.

Further increase of pressure up to 8 GPa produces another
phase transformation into the � phase whose elusive struc-
ture has been determined recently.13,14 The transition is un-
doubtedly first order and is accompanied by a considerable
�up to 5.4%� volume reduction. The crystal structure of the �
phase is layered, as is the case for �, �, and � phases, and
has monoclinic �space group C2/m� symmetry. Variation of
the interplane distance �equal �3.4 Å at the transition point�
with pressure is very small. So, the volume change is mainly
due to the variation of intermolecular distances within the
basal plane. The peculiar feature of the � phase is the asso-
ciation of four O2 molecules into rhomb-shaped �according
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to Ref. 13� or square-shaped �according to Ref. 14� �O2�4

molecular units, which are symmetry equivalent and cen-
tered on the lattice points at �0,0,0� and �0.5,0.5,0�. The com-
mon spin state of the �O2�4�O8 cluster is nonmagnetic,15

with the total spin SO8
=0.

The physical reasons for such an unusual behavior of the
magnetic molecular crystal are not yet clearly understood.
Should the � phase be considered as a chemically new sub-
stance? What is the nature of forces that keep �O2�4 quad-
rates in neighboring planes locked under high pressure?
What is the role of magnetic interactions? All of these ques-
tions are still open. First-principles calculations16 demon-
strate the tendency of the O2 molecules for dimerization and
formation of herringbone-type chains but failed to prove that
the �O2�4 structure has the lowest energy.Taking these results
into account, in the present paper we make an attempt to
elucidate the role of the exchange interactions in formation
of the nonmagnetic � phase and show how the pressure-
induced variation of the exchange constants may produce
strong distortion of crystal lattice.

II. INTUITIVE CONSIDERATIONS

Analysis of the magnetic and structural properties of �, �,
and � phases of solid oxygen shows2 that exchange interac-
tions in this crystal are so strong that they are responsible not
only for variation of magnetic order but also produce rather
noticeable deformations of the crystal lattice. So, it seems
reasonable to assume that the � phase makes no exclusion
and its complicated and surprising structure is mainly due to
the strong exchange intermolecule interaction that keeps
quarters of O2 molecules as the independent chemical units,
equalizes intermolecular distances within these complexes,
and weakens intercluster bonds to such an extent that O8
clusters can be approximately considered as �magnetically�
noninteracting units.

From the general point of view, magnetic collapse �disap-
pearance of magnetic properties� observed in the � phase
may result from coupling of two, three, or any other number
of O2 molecules in a singlet spin state. The tendency of the
O2 molecules to form such multimolecular clusters �consist-
ing of two, three, and four units� was ascertained long ago in
the optical spectra of the � phase, where two-, three- �at
higher temperature�, and four-molecule dipole transition
bands were directly observed and identified.17 Why, then, is
the 4O2 complex more favorable18,19 than, say, dimer 2O2 or
trimer 3O2?

One possible reason for such a behavior is the weakness
of van der Waals intermolecular forces in comparison with
exchange interaction. As long as exchange interactions are
not taken into account, O2 molecules in �, �, �, and � phases
can be considered as noninteracting solid spheres packed in
the most compact way, i.e., in a regular triangular lattice,
within the basal plane20 �see also Refs. 1 and 2�. Singlet
complexes concatenated by the exchange forces and decou-
pled from each other may also be considered as noninteract-
ing �or weakly interacting� solids. Dimers themselves21 are
highly anisotropic, formation of the decoupled pairs should
produce additional distortion of crystal lattice �see Fig. 1�a��

so, O4 complexes seem to be unstable with respect to forma-
tion of herringbone chains. On the contrary, 3O2, 4O2, and
7O2 complexes may be invariant with respect to rotation
around third, fourth, or, correspondingly, sixth order symme-
try axis, and so are isotropic in the basal plane. In turn, a
hexagonal plane can be completed by the regular triangulars
�Fig. 1�b��, 60°-angled diamonds �Fig. 2�, or hexagons that
by appropriate deformations may be transformed into highly
symmetric n-O2 units. The lattice distortions shown in Figs.
1 and 2 by arrows could be classified �see Table I� according
to the symmetry of different optical modes.22

It is quite obvious that the formation of trimers and sestets
should be accompanied by isotropic contraction of inter-
atomic distances within the complex, while formation of
quaters �see below� is related to anisotropic �shear� deforma-
tion of the corresponding rhombus. The second process
seems to be energetically more favorable because shear
modes are usually much more soft compared to isomorphic
striction. So, formation of quaters may be induced by an
increase of AFM exchange coupling at high pressure and the
softening of the appropriate optical mode.

III. MODEL

A. Order parameter

A phenomenological description of �-O2 as a phase in a
series of �→�→�→� transitions is not so straightforward

a1

a2

a1

a2

(a)

(b)

FIG. 1. �Color online� Covering of the hexagonal plane with �a�
pairs and �b� triples of O2 molecules. Arrows show directions of the
molecular shift in a corresponding optical mode and the red �dark
gray� parallelogram is a unit cell of the superstructure.
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as that of the other magnetic phases. According to the phase
diagram,24 the � phase may be obtained from both � and �
phases whose Brave lattices belong to the different space
groups. So, what phase should be considered as a parent
phase? The three-dimensional space group of �-O2 coincides
with that of �-O2, though in the phase diagram both phases
are separated with the high symmetry � phase. Moreover, �,
�, and � phases are described by the same symmetry group
within the basal plane. This fact makes questionable the
choice of the components of deformation tensor as an order
parameter of the �� transition.

The easiest way to overcome these difficulties is to accept
that all the magnetic phases, including �-O2, originate from a
virtual nonmagnetic phase viewed as a stack of regular tri-
angular planes. This assumption is based on the following
facts.

�i� Crystal lattices of �, �, and � phases can be thought of
as the different modifications of the same hexagonal �space
group 6/mmm� pra-phase in which the neighboring close-
packed planes are shifted in the �1100� direction.10

�ii� Though the O2 lattice in � phase is strongly distorted
within the basal plane, as compared to lattice of � phase, an

angle between the bonds connecting the molecules in neigh-
boring O8 clusters remains approximately equal to 60° in a
wide interval of pressures, as seen from experiment.14

From this point of view, the structural order parameter of
pra-phase-�-phase transition can be represented by the am-
plitudes ux, uy of the optical mode

u�n� = eib1·n/2�ux cos
b2 · n

4
+ uy sin

b2 · n

4
� , �1�

where n denotes the position of a molecule within the basal
plane.25

Figure 3�a� shows the position of the k7=b1 /2+�b2 vec-
tor within the first Brillouin zone in a two-dimensional re-
ciprocal space of a hexagonal lattice. For a special value
�=−1/4 both longitudinal �blue �horizontal� arrows in Fig.
3�b�� and transverse �red �vertical� arrows� k7 modes imple-
ment the same one-dimensional irreducible representation
that is compatible with the point symmetry group �2/m� of
the � and � phases. The order parameter �1� can then be
interpreted as a superposition of the longitudinal and trans-
verse optical modes with the same wave vector k7=b1 /2
−b2 /4 and the mutual phase shift � /2 �see Fig. 3�b��.

A macroscopic description of the magnetic state of the �
phase may be given using spin-spin correlation functions. A
discussion of this question is beyond the scope of the present
paper.

a1

a2

FIG. 2. �Color online� Covering of hexagonal plane with quar-
ters �outlined with ellipses� of O2 molecules. Arrows show direc-
tions of the molecular shift in a corresponding optical mode and the
red �dark gray� rectangle is a unit cell of the superstructure.

TABLE I. Wave vectors and polarization of optical modes
coupled with different singlet states. Representatives of stars k are
given according to Kovalev’s notations �Ref. 23�. Lattice vectors a1,
a2 and reciprocal lattice vectors b1, b2 are attributed to the hexago-
nal pra-phase.

Number of O2 mol. Wave vector Polarization vector

two-dimer k12=b1 /2 a1+a2

three-trimer k13= �b1+b2� /3 	3�a1+a2�+ i�a1−a2�
four-quater k7=b1 /2−b2 /4 ux

	3a1+ iuy�a1+2a2�

a1

a2

b1

b2

k7

k7

ux

uy

(a)

(b)

FIG. 3. �Color online� Optical mode responsible for the pra-
phase-�-phase transition. �a� Brillouin zone in a two-dimensional
reciprocal space for a hexagonal lattice. Special choice of the k7

wave vector with �=−1/4 and corresponding rays are shown in
green �thick arrows�. �b� The structural order parameter is repre-
sented as a superposition of the transverse �uy� and longitudinal �ux�
modes shifted by 1/4 period.
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It is interesting to note that the structural order parameter
in the sequence of �→�→�-phase transitions �i.e., a func-
tion of mutual shift of the neighboring close-packed planes
in the �1100� direction calculated with respect to the initial
nonshifted hexagonal stacking� is symmetry related to the
transverse acoustic modes propagating in �0001� and �1000�
directions �wave vectors parallel to b3 and b1, correspond-
ingly�.

B. Free energy and spin Hamiltonian

Different phases of solid oxygen and interphase transi-
tions are described on the basis of phenomenological expres-
sion for free energy of the crystal. Substantial simplification
of the model may be achieved by neglection of interplane
interactions. This assumption is justified by noticeable differ-
ence in the variation of in-plane and interplane distances in
the course of pressure-induced phase transitions.

As was mentioned above, the magnetic and crystal struc-
ture of � and � phases is indistinguishable within the ab
plane, so, herewith we consider the series of �→�→� tran-
sition. Gibbs free energy 
 of the crystal is modeled as a
function of �two-dimensional� phonon amplitude u�k�, strain
tensor components ujk, invariant with respect to the symme-
try group of hexagonal pra-phase, plus magnetic contribution
into internal energy Emag:


 =
1

2

j

K�k j��u�k j��2 +
c11 + c12

2
�uxx + uyy�2

+
c�

2
��uxx − uyy�2 + 4uxy

2 � + P�uxx + uyy�

+ 

j

�ph
�iso��k j��u�k j��2�uxx + uyy�

+ �ph
�an��k7��ux

2�k7� − uy
2�k7���uxx − uyy� + Emag. �2�

Vectors k j in the above expression denote different wave
vectors, classified according to irreducible representations of
6 /mmm space group, phenomenological constants K�k j� de-
scribe nonmagnetic contribution into the corresponding pho-
non frequencies, and coefficients �ph�k j� originate from the
crystal anharmonicity and describe nontrivial coupling be-
tween phonon amplitude and crystal lattice parameters. The
last term in Eq. �2� accounts for the �external� hydrostatic
pressure P.

While the origin of the first term in Eq. �2� is quite obvi-
ous �potential energy of the corresponding oscillations in a
harmonic approximation�, the form of the coupling term with
�ph

�an��k7� needs additional explanations. As was already men-
tioned, the special choice of the wave vector k7 �with �
=−1/4� corresponds to a mode in which rotational symmetry
�point group 2/m� coincides with the symmetry of the � and
� phases. Homogeneous elongation and contraction of crys-
tal lattice described by the strain component uxx−uyy has the
same symmetry properties. As a result, the term with �ph

�an�

��k7� is invariant with respect to the symmetry operations of
6 /mmm pra-phase space group and describes deformation of
crystal lattice that could be produced by the mutual shifts of

O2 molecules during transition into the � phase.
Magnetic contribution Emag is calculated as an average of

spin Hamiltonian Ĥ over a ground state ��� of the crystal

Emag= 
� �Ĥ ���, where

Ĥ = 

n,m

J�rn,m�Ŝn · Ŝm, �3�

and summation is accomplished over the nearest and next to
the nearest neighbors separated by distance �rn,m�. Magneto-
elastic part of the internal energy is derived from the expres-
sion �3� with due account of space dependence of the ex-
change integral J�rn,m�.

Once the ground state of the magnetic subsystem is cal-
culated, structure and stability conditions of a phase can be
determined by minimization of free energy �2� with respect
to phonon amplitudes and deformation tensor components.
As was already mentioned, � and � phases posses a kind of
the Néel spin ordering that can be described macroscopically
by assigning an average value 
Sn� to the spin vector at each
site.

A ground state ���� of the � phase is a true eigenfunction
of spin-Hamiltonian �3� and is calculated within the assump-
tion of magnetically decoupled O8 clusters. In other words,
���� may be represented as an unentangled combination of
quaters wave functions ��n�, that satisfies equation

Ĥ�intra����� = E�intra�����, ���� � �
n

��n� , �4�

with the Hamiltonian of intracluster interactions written as

Ĥ�intra� = 

n

�J�r12��Ŝ1n · Ŝ2n + Ŝ2n · Ŝ3n + Ŝ3n · Ŝ4n

+ Ŝ4n · Ŝ1n� + J�r13�Ŝ1n · Ŝ3n + J�r24�Ŝ2n · Ŝ4n� .

�5�

Here the vectors n define the positions of O8 cluster in a
superstructure with lattice vectors a1�=2a1 and a2�=2a2. For
the sake of simplicity we use the rectangular “unit cell”
which contains two clusters �see Fig. 4�. The choice of the
unit cell corresponds to one of three different domains of the
� phase. The positions of the individual O2 molecules �la-
beled with number 1, 2, 3, 4� within the cluster are defined
with the basis vectors ±�1� ±a1 and ±�2� ±a2.

The interaction between the clusters with account of the
next-to-nearest neighbors is described by operator H�inter�

�see Fig. 4 for notations�

Ĥ�inter� =
1

2

n

�J�r12� ��Ŝ1n�Ŝ2�n−�1� + Ŝ4�n+�2��

+ Ŝ3n�Ŝ2�n−�2� + Ŝ4�n+�1�� + Ŝ2n�Ŝ1�n+�1� + Ŝ3�n+�2��

+ Ŝ4n�Ŝ1�n−�2� + Ŝ3�n−�1���

+ J�r13� ��Ŝ1n · Ŝ3�n+�1−�2� + Ŝ3n · Ŝ1�n−�1+�2��

+ J�r24� ��Ŝ1n�Ŝ3�n+�1+�2� + Ŝ3�n−�1−�2��
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+ Ŝ3n�Ŝ1�n+�1+�2� + Ŝ1�n−�1−�2���

+ J�r13� ��Ŝ2n�Ŝ4�n+�1−�2� + Ŝ4�n−�1+�2��

+ Ŝ4n�Ŝ2�n+�1−�2� + Ŝ2�n−�1+�2���

+ J�r24� ���Ŝ2n · Ŝ4�n+�1+�2� + Ŝ4n · Ŝ2�n−�1−�2���� , �6�

so that spin Hamiltonian �3� is represented as a sum:

Ĥ = Ĥ�intra� + Ĥ�inter�. �7�

In the � phase the first term in Eq. �7� is responsible for the
formation of the ground state, while the second one describes

the contribution that arises from excitations. In �, �, and �
phases both terms contribute equally to the magnetic energy
of the crystal.

IV. � PHASE

A. Magnetic structure

It was already mentioned that according to experimental
data, the units O8 form a common singlet state, while each
O2 molecule possesses spin Sj =1, j=1−4. So, it is conve-
nient to express the spin state � of the O8 cluster in terms of

the eigenfunctions �0�, �±1� of spin operators Ŝj
Z, where Z is

a quantization axis.
According to the general theorem of quantum mechanics,

the singlet state in such a system has three representations
�among 81 basic vectors� with spin wave functions that could
be easily found from the conditions

�

j=1

4

Ŝ j�2

�singlet = 0, 

j=1

4

Ŝj
Z�singlet = 0. �8�

Obviously, the �singlet is also an eigenfunction of Hamil-

tonian Ĥ�intra�.
Additional simplification of the problem may be achieved

using the permutation symmetry group. All three singlet
states should have different symmetry with respect to permu-
tations of molecules within the cluster and hence, correspond
to the different eigenvalues of operators �see Table II�

P̂1 � �Ŝ1,Ŝ2� + �Ŝ2,Ŝ3� + �Ŝ3,Ŝ4� + �Ŝ4,Ŝ1� ,

P̂2 � �Ŝ1,Ŝ3�, P̂3 � �Ŝ2,Ŝ4� . �9�

Finally, the singlet wave functions may be written in the
following form:

�gr
�singlet� =

1
	5

��11̄11̄� + �1̄11̄1�� +
1

3	5
�2�0000� + �0101̄�

+ �101̄0� + �01̄01� + �1̄010� −
3

2
��0011̄� + �011̄0�

+ �11̄00� + �1̄001� + �001̄1� + �01̄10� + �1̄100�

+ �1001̄�� +
1

2
��111̄1̄� + �1̄1̄11� + �11̄1̄1� + �1̄111̄��� ,

�10�

1

2

3

4

3

3

4
4

2 2

1

3 1

2

4

1

a1

a2

r13

r12

r'13 r'13

r'12

r'12r'12

r'12

r'12

r'12
r'12

r'12

r''13
r''13

r''13r''13

r''24
r''24

r''24r''24

r'24

r'24

FIG. 4. �Color online� Primitive cell of the � phase. Magneti-
cally coupled quaters of molecules are outlined by quadrates. Red
�vertical� and blue �horizontal� arrows show the shift of O2 mol-
ecules in the course of phase transition. Vectors a1,2 are the Brave
lattice vectors of the hexagonal pra-phase.

TABLE II. Eigenvalues of operators P̂1, P̂2, P̂3 in a singlet subspace, cluster energy 
Ĥ�intra�� /N per
molecule for arbitrary intermolecular spacing, equilibrium angle � between intermolecular bonds within the
cluster, and corresponding equilibrium energy E� per molecule.

Function P̂1 P̂2,3 
Ĥ�intra�� /N �eq E�

�gr
�singlet� −6 1 �J�r13�+J�r24�−6J�r12�� /4 � /4 �J�	2a�−3J�a�� /2

�ex1
�singlet� −4 0 −J�r12� arb. −J�a�

�ex2
�singlet� 0 −2 −�J�r13�+J�r24�� /2 � /4 −J�	2a�
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�ex1
�singlet� =

1

2	3
��11̄00� + �0011̄� + �1̄100� + �001̄1� + �111̄1̄�

+ �1̄1̄11�− �11̄1̄1� − �1̄111̄� − �1001̄� − �011̄0�

− �1̄001� − �01̄10�� , �11�

�ex2
�singlet� =

1

3
��111̄1̄� + �1̄1̄11� + �11̄1̄1� + �1̄111̄� + �0000�

− �0101̄� − �01̄01� − �101̄0� − �1̄010�� . �12�

In order to find out what of three functions �10�–�12� de-
scribes the ground state of Hamiltonian �7�, we compare cor-
responding eigenvalues �see Table II, fourth column�. Taking
into account the antiferromagnetic character of the exchange
interaction �J�r�
0�, the fact that J�r� monotonically de-
creases with intermolecular distance r and geometrical rela-
tion r12�r13�r24, one can easily verify that


Ĥ�intra��gr � 
Ĥ�intra��ex1 � 
Ĥ�intra��ex2, �13�

and the required ground state is �gr
�singlet� �see Eq. �10��. We

have also implicitly taken into account the obvious fact that

the average value of 
Ĥ�inter�� in any singlet state is exactly
zero.

It is interesting to compare �gr
�singlet� with the AFM Néel

state observed in the � phase, where all the nearest neighbors
are coupled antiferromagnetically. In terms of O2 spin states

this means that the most preferable combinations are �11̄11̄�
and �1̄11̄1�. States �singlet

�ex1,2� are orthogonal to a subspace

spanned over the “Néel-state” vectors �11̄11̄� and �1̄11̄1�. On
the contrary, �gr

�singlet� belongs to this subspace with 0.4 prob-
ability.

We may also compare eigenvalues of Hamiltonian �7� in a
singlet state for different clusters: hypothetical dimer, trimer,
and the already described quater. It is obvious that for 2O2
and 3O2 complexes the singlet state is kept by the nearest
neighbor interactions only, corresponding eigenvalues of
Hamiltonian �that could be found without explicit expression
for wave function� are


Ĥ�intra��dim = − NJ�r12� for dimer,


Ĥ�intra��trim = − N�2

3
J�r12� +

1

3
J�r13�� for trimer, �14�

where N is the number of O2 molecules. In the case of mono-
tonically decreasing AFM exchange and fixed r12�r13�r24
values


Ĥ�intra��gr
�singlet� � 
Ĥ�intra��dim

= 
Ĥ�intra��ex1
�singlet� � 
Ĥ�intra��trim � 
Ĥ�intra��ex2

�singlet�.

�15�

So, the magnetic energy of the crystal in the state with

S=0 takes on its minimum value when the number of O2
molecules in a singlet group is at least n=4.

B. Distortion of crystal lattice

It was already mentioned that magnetic interactions in
solid oxygen are so strong that they cause a large distortion
of the crystal lattice. This effect was observed, e.g., in the
course of �� transitions, where in-plane lattice deformation
achieved nearly 5%.26 In the � phase the effect of magneto-
elastic interactions is even more pronounced, though very
unusual, because in this case lattice distortion is produced by
magnetic collapse, not by magnetic ordering.

The in-plane structure of the � phase can be considered as
a result of two-step distortion27 of the ideal hexagonal basal
plane of pra-phase ��-� with the lattice constant ah �see Fig.
5�: �i� homogeneous deformation which changes scales in X
and Y directions

r13
�0� = ah�1 + uxx�, r24

�0� = 	3ah�1 + uyy� �16�

and �ii� inhomogeneous distortion of the rhombus formed by
the in-cluster molecules 1, 2, 3, 4. In fact, this means that the
virtual intermediate state �after step i� has an �-type lattice.

The symmetry condition that the distances rjk between the
pairs of molecules jk=12, 23, 34, and 41 within the cluster
are equal rjk=a makes it possible to introduce very conve-
nient and obvious parametrization using an angle � between
the directions to nearest neighbors r13=2a cos �, r24
=2a sin �, and

ϕ
aa

r13

2r
0
13 2r

0
13

ϕ0

r
0
13

r
0
24

ah

ah

600

1

2

3

4

(a)

(b) (c)

FIG. 5. �Color online� Two-step distortion of the crystal lattice
of hexagonal pra-phase �a�: �i� homogeneous deformation �b�; �ii�
inhomogeneous distortion of rhombus �c�.
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ux = a cos � −
1

2
r13

�0� � a�cos � − cos �0� ,

uy =
1

2
r24

�0� − a sin � = a�sin �0 − sin �� , �17�

where r13
�0�=2a cos �0, r24

�0�=2a sin �0 are interatomic dis-
tances in the reference frame.

The positions of O2 molecules in the � phase are then
calculated by minimization of Gibbs’ free energy �2� with
respect to the components of deformation tensor ujk and
angle �. The last term Emag is the magnetic energy in the
singlet ground state

Emag =
N

4
�J�r13� + J�r24� − 6J�r12�� . �18�

Thus, expression �2� can be rewritten as


 =
1

2
�c11 + c12��uxx + uyy�2 +

1

2
c���uxx − uyy�2 + 4uxy

2 �

+ P�uxx + uyy� + 2a2 sin2 � − �0

2
�K�k7� + �ph

�iso��k7��uxx

+ uyy� − �ph
�an��k7�cos�� + �0��uxx − uyy��

+
N

4
�J�2a sin �� + J�2a cos �� − 6J�a�� . �19�

Minimization conditions ��
 /�� j =0, ��2
 /�� j��k�
0, � j
=� ,uxx ,uyy� give rise to the following equation for �:

dJ�r13�
dr

cos � +
dJ�r24�

dr
sin � +

4K�k7�a
N

sin�� − �0� = 0.

�20�

Constant K�k7� describes the contribution into intermolecu-
lar bonds which arises from weak Van der Waals forces28 so
that K�k7�a2�a�dJ�r� /dr�N and we can neglect the last term
in Eq. �20�. Then, Eq. �20� has an obvious solution �eq
=� /4 �and automatically, r13=r24�. This means that the four
molecules in the ground singlet state are situated in the cor-
ners of quadrate and it is the exchange interaction within the
cluster that keeps the molecules in that state. Such a sym-
metric arrangement of molecules seems to be quite natural in
the case when the exchange forces are the strongest interac-
tions in the system. Really, in the ground state �10� the mol-
ecules in the neighboring corners �12, 23, 34, and 41� with
high probability have the opposite spins and thus are at-
tracted to each other, due to the antiferromagnetic character
of the exchange forces. On the contrary, the molecules in the
opposite corners �pairs 13 and 24� have parallel spins and are
therefore repulsed. For a fixed value of the attraction force
�and for a fixed nearest-neighbor distance� the energy of re-
pulsion reaches its minimum at the maximal average distant
between corresponding molecules. This can be achieved in a
symmetrical combination similar to a quadrate. Small deflec-
tion �e.g., 96° and 84° at 17.6 GPa� from the right angle
observed in the experiment13 may be calculated from Eq.
�20� with account of the contribution from the optical mode

� =
�

4
−

4	2K�k7�a sin��/4 − �0�
NJ��r13�

. �21�

A rough estimation of the K�k7� value can be done on the
basis of structural data for the � phase. According to Ref. 14,
�0�arctan�r24

�0� /r13
�0��=53°. Using the most elaborated phe-

nomenological form29,30 of space dependence for

J�r� = J0 exp�− ��r − r0� + ��r − r0�2�, 2.6 � r � 4.2,

�22�

with J0=60 K, �=3.5 Å−1, �=1.2 Å−2, r0=3.1854 Å, and
taking a=2.18 Å,13,14 we get an upper limit for K�k7� /N
�9.2 K/Å2, while an estimated value of J��r13� /a
�80 K/Å2. Considering K as a stiffness constant of inter-
molecular bonds, one obtains the characteristic frequency
16.2 cm−1 which is smaller than the frequencies of optical
modes ��300 cm−1� calculated in Ref. 16. On the other
hand, characteristic value of the magnetoelastic constant
J��r13�a�370 cm−1. So, it may be assumed that the magne-
toelastic interactions contribute strongly to the optical pho-
non modes related with the mutual shift of O2 molecules
within the quaters.

The stability condition of the “quadrate” solution

d2J�r�
dr2 +

2K�k7�
N

cos��/4 − �0� 
 0 �23�

is obviously satisfied, because according to Ref. 2 J�r� is a
monotonically decreasing concave function �see, e.g., Eq.
�22�� of intermolecular distance, and K�k7�
0 �from the
condition of crystal lattice stability�.

So, even in magnetically neutral state the exchange inter-
actions play a role of a motive force that crucially changes
the angle � between intermolecular bonds. Analysis of the
expression �19� makes it possible to calculate shear deforma-
tion uxx−uyy and isotropic striction uxx+uyy within the plane:

uxx − uyy =
2a2�ph

�an��k7�
c�

cos��/4 + �0� ,

uxx + uyy = −
1

c11 + c12
�P + 2�ph

�iso��k7�a2 sin2 �/4 − �0

2
� .

�24�

Space dependence of the exchange constant J�r� does not
contribute into macroscopic deformation, because O8 clus-
ters are supposed to be decoupled from each other. So, shear
deformation of the � phase is due solely to anharmonicity
�coupling constant �ph

�an��k7�� of the crystal lattice. Isotropic
striction uxx+uyy describes the relative change of the in-plane
square. From the pressure dependence of lattice parameters13

we can estimate the in-plane compressive modulus c11+c12
=88 GPa. From the value of jump of isotropic striction in the
��-transition point ��uxx+uyy�=0.019 we estimate isotropic
anharmonicity constant �ph

�iso��k7�=1.1�105 K/Å2.
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V. COMPARISON WITH � AND � PHASES

In the previous section it was shown that once the singlet
ground state is formed, the crystal lattice should be distorted
in a described manner, due to strong exchange interactions
and reduced optical phonon frequency. However, what about
the inverse mechanism? Can the crystal lattice of the � ��
phase� be unstable with respect to u�k7� distortions?

To answer this question, we minimize Gibb’s potential �2�
assuming the presence of the collinear long-range AFM or-

der. In this case 
Ŝn
2�=2, 
Ŝn

Z�= ±1 at a site Rn, and spin
polarization alters from 1 to −1 when shifted through the
vectors a1, a2. Taking into account the locations of molecules
1–4 �see Fig. 4�, it can be easily seen that


Ŝ1 · Ŝ2� = 
Ŝ2 · Ŝ3� = 
Ŝ3 · Ŝ4� = 
Ŝ4 · Ŝ1� = − 1,


Ŝ1 · Ŝ3� = 
Ŝ2 · Ŝ4� = 1. �25�

Substituting these values into Eq. �7� we obtain an expres-
sion for the magnetic energy EAFM of the AFM state:

Emag � EAFM = EAFM
cluster + EAFM

int =
N

4
�J�r13� + J�r24� − 4J�r12��

+
N

4
�J�r13� � + J�r24� � + 2�J�r13� � + J�r24� �� − 4J�r12� �� ,

�26�

where the first term describes interactions inside the cluster
and the second one is responsible for interaction energy.

Using the same parametrization of shift components ux ,uy
as in Eq. �17� we express all the intermolecular distances
�see Fig. 4� in the expression �26� in terms of �, a as follows:

r12� = a	�2 cos �0 − cos ��2 + �2 sin �0 − sin ��2,

r13� = 2a�2 cos �0 − cos �� ,

r13� = 2a	cos2 �0 + �sin �0 − sin ��2,

r24� = 2a�2 sin �0 − sin �� ,

r24� = 2a	sin2 �0 + �cos �0 − cos ��2. �27�

Analysis of the expressions �2� and �26� shows that the con-
ditions of minimum �
 /��=0, �2
 /��2
0 for AFM state
are satisfied for �=�0, r12� =r12, r13� =r13� =r13

�0�, r24� =r24� =r24
�0�,

as can be seen from the following relations:

�


��
= Na�J��r12� �

2 sin��0 − ��
	5 − 4 cos�� − �0�

+ J��r24�
sin ��cos �0 − cos ��

	sin2 �0 + �cos �0 − cos ��2

+ J��r13�
cos ��sin � − sin �0�

	cos2 �0 + �sin �0 − sin ��2�
+ 2a2K�k7�sin�� − �0� = 0, �28�

�2


��2 = Na�J��r24�sin �0 + J��r13�cos �0 − 2J��r12� ��

+ 2a2K�k7� 
 0. �29�

Inequality �29� is obviously satisfied due to the already men-
tioned fact that the exchange integral is a positive and mono-
tonically decreasing function of intermolecular distance.

So, in the AFM state the crystal lattice is stable with re-
spect to distortions even in the case of vanishingly small
stiffness K�k7�. As in the case of the � phase, it is the ex-
change forces that keep the lattice from distortion. In the
phase with the long-range magnetic ordering the values of
the “exchange bonds” pulling the O2 molecules in opposite
directions are equal �compare with � phase, Fig. 5�, and this
impedes nonsymmetrical distortion of O8 rhombuses.

It is also instructive to compare the magnetic energies of
AFM

EAFM = N�J�2a cos �0� + J�2a sin �0� − 2J�a�� �30�

and � phases

E� =
N

2
�J�	2a� − 3J�a�� . �31�

It is obvious that in a nondeformed hexagonal lattice ��0

=60° � E��EAFM for any value of a. This means that the
AFM state of � and �-phases is stabilized by the long-range
elastic forces that produce homogeneous deformation �stric-
tion� of crystal lattice, as was shown in Ref. 8.

VI. CONCLUSIONS

In summary, we have calculated the wave functions of
singlet state implemented on the 4�O2� cluster and found that
the exchange energy of the ground state �10� is lower than
that in another singlet states implemented on dimers, trimers
and quaters. Interactions between next-to-nearest neighbors
�i.e., between O2 molecules located in the opposite corners of
rhombuses� plays an important role in stabilization of the
magnetic and crystal structure in the ground state.

We have shown that the observed distortion of crystal
lattice and formation of 4�O2� quadrates in the � phase can
be explained by strong magnetoelastic contribution into ex-
change energy along with the softening of u�k7� optical pho-
non mode. Stability of the distorted lattice in �-phase is then
due to antiferromagnetic character of exchange interaction in
solid oxygen.

The same magnetoelastic forces ensure stability of the
AFM long-range phases �� ,�� with respect to inhomoge-
neous distortion of crystal lattice even in the case when stiff-
ness constant of the u�k7� mode is vanishingly small.
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